

1   **STUDY OF VIRULENCE FACTORS AND ANTIMICROBIAL**  
2   **SUSCEPTIBILITY PATTERN OF UROPATHOGENIC ESCHERICHIA COLI**  
3   **IN A TERTIARY CARE HOSPITAL**

4   **ABSTRACT**

5   **INTRODUCTION**

6   Escherichia coli is the major causative agent of urinary tract infections. UPEC possess a variety of virulence  
7   factors that enable it to colonize, invade and persist within the urinary tract, leading to both complicated and  
8   uncomplicated UTIs. Knowledge of virulence factors of Escherichia coli is responsible for pathogenesis of UTIs  
9   and their antimicrobial susceptibility pattern will help in better understanding of the treatment of UTI.  
10   Emergence and spread of multi drug resistant strains of Escherichia coli have raised considerable interest in  
11   understanding their diversity and epidemiology of infections in humans.

12   **AIM**

13   To determine the virulence factors and antimicrobial susceptibility pattern of Uro Pathogenic Escherichia coli.

14   **MATERIALS AND METHODS**

15   A prospective study is done on urine samples over a period of 3 months from May 2025 to July 2025  
16   in a tertiary care hospital to detect virulence factors like Haemolysis, Hemagglutination and gelatin  
17   hydrolysis.

18   Antibiotic susceptibility test was done by Kirby Baur disc diffusion method as per the CLSI  
19   guidelines.

20

21   **RESULTS**

22   Out of total 350 urine samples tested 114 were Escherichia coli isolates. Out of the 114 Escherichia coli isolates  
23   69 were females and 45 males. Among the 114 isolates -43 isolates showed haemolysis virulence factor, 31  
24   isolates showed hemagglutination factor- 22 were mannose resistant and 9 mannose sensitive hemagglutination  
25   and, 11 isolates showed gelatin hydrolysis and 29 isolates did not show any of the virulence factor.

26   Antibiotic susceptibility testing revealed that UPEC strains showed maximum resistance to **Ampicillin (55.2%)**,  
27   followed by **Cotrimoxazole (48.2%) and Norfloxacin (44.7%)**. Most isolates were sensitive to **Meropenem**  
28   (**82.4%**), Amikacin (79.8%) and followed by **Nitrofurantoin (74.5%)**.

29   **CONCLUSION**

30   Detection of virulence factors of Uro-pathogenic Escherichia coli shows a strong association to urinary tract  
31   infection. And presence of multiple virulence factors leads to drug resistance.

32   **KEY WORDS**

33   Urinary tract infection, Uropathogenic Escherichia coli, Virulence factors, Haemolysis, Hemagglutination,  
34   Gelatin hydrolysis

35

36

37

38

39

40

41

42

43  
44  
45  
46  
47

## **INTRODUCTION**

48  
49

50

51 Urinary tract infections (UTIs) are one of the most common bacterial infections affecting humans throughout  
52 their life span. They can be symptomatic or asymptomatic. *Escherichia coli* is the most common cause of UTIs,  
53 accounting for about 85% of community acquired and 50% of hospital-acquired infections, it predominates  
54 strongly at most ages. UPEC is the main cause of community-acquired UTIs (about 80-90%).

55 *Escherichia coli* is a commensal in the human intestinal tract, when enters into unnatural sites, it can cause a  
56 variety of infections, e.g., UTIs, sepsis, pyelonephritis etc. Serotypes which lead to UTIs are designated as  
57 uropathogenic *Escherichia coli* (UPEC)<sup>1</sup>. It has been known that certain serotypes of *E.coli* are consistently  
58 associated with uro-pathogenicity and are designated as uropathogenic *E.coli* that expresses chromosomally  
59 encoded virulence markers<sup>3</sup>. Uropathogenic strains account for 90% of all UTIs among ambulatory patients and  
60 upto 50% of all nosocomial UTIs<sup>2</sup>.

61 The common virulence factors include surface hydrophobicity, colonization factor, capsule, serum resistance,  
62 resistance to phagocytosis, hemolysin production, enterotoxin and siderophore, fimbriae and hemagglutination.  
63 The ability of *E. coli* to adhere to the uroepithelium is mediated by fimbriae, thereby resisting elimination by the  
64 flow of urine. Adhesion is therefore measured to be important step in the pathogenesis of UTI<sup>4</sup>.

65 During UTIs, UPEC pathogenesis includes:

- 66 (a) UPEC colonization of the periurethral and vaginal areas with colonization of the urethra;
- 67 (b) ascending into the bladder lumen and growth as planktonic cells in urine;
- 68 (c) adherence to the surface and interaction with the bladder epithelium defense system (see below);
- 69 (d) biofilm formation;
- 70 (e) invasion and replication by forming bladder Intracellular Bacterial Communities (IBCs) where quiescent  
71 intracellular reservoirs (QIRs) form and reside in the underlying urothelium;
- 72 (f) kidney colonization and host tissue damage with increased risk for bacteremia/septicemia.

73 Considering the high degree of morbidity and mortality due to UTIs caused by uropathogenic *E. coli* and also  
74 the drug resistance among strains has further aggravated the problem of UTI's. Therefore, the present study was  
75 carried out with aim to know the prevalence of various virulence factors and the antimicrobial susceptibility  
76 pattern in UPEC<sup>5</sup>.

77

## **MATERIALS AND METHODS**

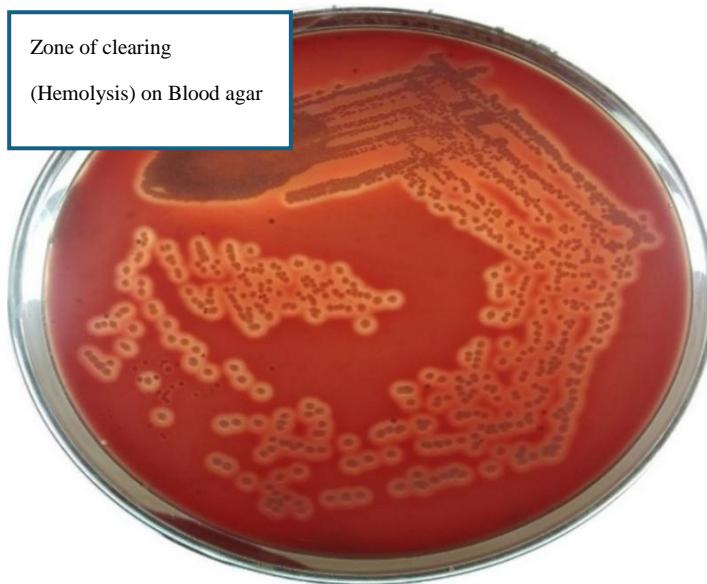
78 This is a prospective study which was conducted in the Department of Microbiology in a tertiary care hospital  
79 over a period of 3 months i.e from May 2025-July 2025. Patients of all age group were included. A total of 350  
80 urine samples were tested out of which 114 were *Escherichia coli* were isolates. The samples were processed  
81 immediately as per the standard guidelines in the lab. The isolates were taken for the detection of virulence  
82 factors.

83 The virulence factors tested were

84 1. Haemolysin production:

85 2. Haemagglutination

86 3. Gelatin hydrolysis


### **1. Haemolysin production**

87 The *Escherichia coli* isolates were inoculated onto 5 %sheep blood agar and incubated overnight at 37degree  
88 Celsius and observed for a zone of complete lysis around the colony. *Escherichia coli* ATCC 25922 was used as  
89 a negative control.

90 Presence of clear zone of complete hemolysis indicates hemolysin production.

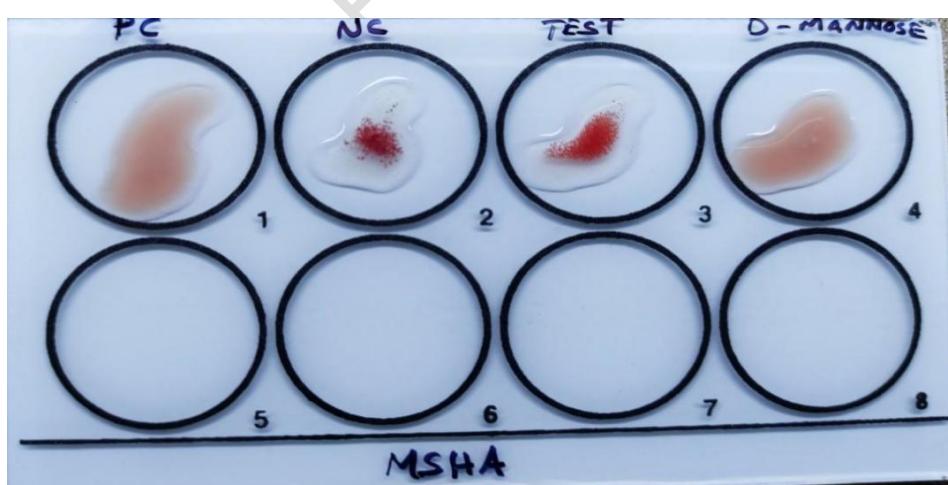
91  
92  
93

94  
95  
96  
97  
98



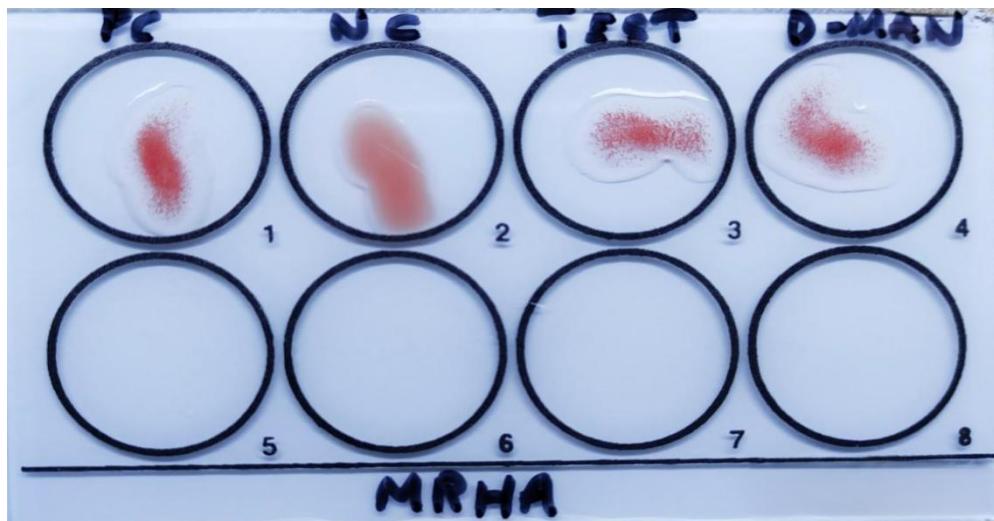
99

100


FIG 1: HEMOLYSIS

101

## 2.HAEMAGGLUTINATION

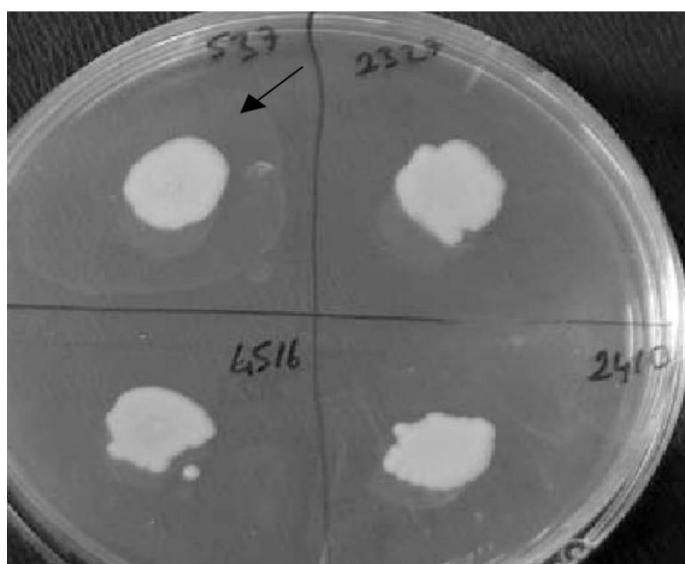

102  
103  
104  
105  
106  
107  
108

The test was carried out as per the direct bacterial hemagglutination test-slide method. One drop of red blood cell (RBC) suspension was added to a drop of broth culture and the slide was rocked at room temperature for 5 min. Presence of clumping was taken as positive for hemagglutination. Mannose-sensitive hemagglutination was detected by the absence of hemagglutination in a parallel set of test in which a drop of 2% W/V D-mannose was added to the red cells and a drop of broth culture. Mannose resistant hemagglutinating (MRHA) was detected by the presence of hemagglutination of 3% 'O' blood group human RBCs in the presence of 2% W/V D-mannose.



109  
110  
111

FIGURE 2: MANNOSE SENSITIVE HAEMAGGLUTINATION




112

113 FIGURE 3: MANNOSE RESISTANT HAEMAGGLUTINATION

114 3.GELATIN HYDROLYSIS.

115 Gelatinase production was tested using gelatin agar. *Escherichia coli* isolated was inoculated on gelatin agar and  
 116 incubated overnight at 37 degrees celsius for 24 hrs. Later the gelatin agar plate was flooded with 1% tannic  
 117 acid. Development of opacity around colonies shows gelatinase production.



118

119 FIGURE 4: GELATIN HYDROLYSIS

120 4. Antimicrobial susceptibility

121 Antimicrobial susceptibility testing was done on Mueller Hinton Agar by Kirby Bauer disc diffusion method as  
 122 per CLSI guidelines.

123

124 RESULTS

125 A total of 350 urine samples received from symptomatic cases of urinary tract infection with  
 126 significant bacteriuria were taken. Out of these, 114 *Escherichia coli* isolates were processed and  
 127 studied for the virulence factors and their antibiotic susceptibility pattern. Out of the 114 *Escherichia*  
 128 *coli* isolated samples, 60.5% were from females and 39.47% were from males. Among 114 isolates,  
 129 37.7% showed haemolysis, 19.3% showed manose resistant haemagglutination, 7.9% showed  
 130 manose sensitive haemagglutination, 9.7% showed gelatin hydrolysis and 25.4% did not show any of  
 131 the virulence factors.

132 Antibiotic susceptibility testing revealed that UPEC strains showed maximum resistance to Ampicillin  
133 (55.2%), followed by Cotrimoxazole (48.2%) and Norfloxacin (44.7%). Most isolates were sensitive  
134 to Meropenem (82.4%), Amikacin (79.8%) and followed by Nitrofurantoin (74.5%).

135 TABLE 1: GENDER WISE DISTRIBUTION OF ESCHERICHIA COLI ISOLATES

| GENDER  | TOTAL | PERCENTAGE |
|---------|-------|------------|
| FEMALES | 69    | 60.5%      |
| MALES   | 45    | 39.4%      |
| TOTAL   | 114   | 100%       |

136

137 TABLE 2: VIRULENCE FACTORS AMONG THE UROPATHOGENIC ESCHERICHIA  
138 COLI ISOLATES(n=114)

| VIRULENCE FACTOR                      | NUMBER | PERCENTAGE |
|---------------------------------------|--------|------------|
| HAEMOLYSIS                            | 43     | 37.7%      |
| HEMAGGLUTINATION                      | (31)   |            |
| MANNOSE RESISTANT<br>HEMAGGLUTINATION | 22     | 19.3%      |
| MANNOSE SENSITIVE<br>HEMAGGLUTINATION | 9      | 7.9%       |
| GELATIN HYDROLYSIS                    | 11     | 9.7%       |

139 TABLE 3: ANTIBIOTIC SUSCEPTIBILITY PATTERN OF UPEC ISOLATES

| ANTIBIOTIC                       | SENSITIVE | PERCENTAGE | RESISTANT | PERCENTAGE |
|----------------------------------|-----------|------------|-----------|------------|
| AMPICILLIN                       | 51        | 44.8%      | 63        | 55.2%      |
| TRIMETHOPRIM<br>SULFAMETHOXAZOLE | 59        | 51.8%      | 55        | 48.2%      |
| NORFLOXACIN                      | 63        | 55.3%      | 51        | 44.7%      |
| CEFTRIAXONE                      | 67        | 58.8%      | 47        | 41.2%      |
| MEROPENEM                        | 94        | 82.4%      | 20        | 17.6%      |
| AMIKACIN                         | 91        | 79.8%      | 23        | 20.2%      |
| NITROFURANTOIN                   | 85        | 74.5%      | 29        | 25.5%      |

140

141

142

143

144 **DISCUSSION**

145 UPEC are the most important group of micro-organisms responsible for UTI. UPEC differ from non-pathogenic  
146 E. coli by the production of specific virulence factors which enable the bacteria to adhere to uroepithelial cells  
147 and to establish UTI<sup>5</sup>. UTIs which are not properly treated from their onset can become a renal threat in time,  
148 finally leading to renal failure<sup>8</sup>.

149 These virulence factors enable some members of the normal flora to elicit an infection by overcoming the host  
150 defence mechanisms<sup>1</sup>.

151 The capacity of E. coli to produce many virulence factors contributes to its pathogenicity<sup>1,7</sup>.

152 Incidence of UTI was more common in females 60.5% than in males in our study. Piatti et al<sup>5,6</sup>. also reported a  
153 higher prevalence of UTI in female (77%). The reasons for the high prevalence of the UTIs in females can be  
154 due to the anatomical structure of the urogenital tract having short urethra, presence of normal flora in vagina,  
155 menstrual cycle and pregnancy<sup>5</sup>.

156 Priscilla et al<sup>1</sup> also reported a higher incidence of UTI was more common in females (66.72%) than in males  
157 (33.27%) in our study.

158 Our study also correlates with Sanjay Singh Kaira et al<sup>4</sup> who reported 56.09%, Mittal et al<sup>1,8</sup> (53.3%) and  
159 Chhaya et al<sup>8,9</sup>(53%).

160 Hemolysin production is associated with human pathogenic strains of E. coli, especially those causing more  
161 clinically severe forms of UTI<sup>5,10</sup>. It is toxic to a range of host cells in ways that probably contribute to  
162 inflammation, tissue injury and impaired host defenses<sup>1,11</sup>. In the present study, 37.7% E. coli isolates produced  
163 hemolysin. In other studies conducted by Raksha et al<sup>5,12</sup>, Siegfried et al<sup>5,13</sup> Hughes et al<sup>5,14</sup>, Shruthi et al  
164<sup>1,15</sup> hemolysin production was detected in 41.36% and 59.6%, 59.7% and 41.9% isolates respectively.

165 The role of bacterial adherence in the pathogenesis of urinary tract infection is that colonization of the urogenital  
166 epithelium of susceptible individuals by specific bacteria is associated with successful microbial invasion of the  
167 urinary tract<sup>16</sup> and lead to UTIs. Thus, possession of MRHA by UPEC can be considered as one of the important  
168 virulence factor in the pathogenesis of UTIs. My study correlates with Seigfried et al<sup>1,13</sup>, Vagarali et al<sup>13</sup>,  
169 Raksha et al<sup>1,12</sup>, Kauser et al<sup>3,16</sup> have reported the incidence of MRHA E.coli isolates as 23%, 25%, 30.9%, 30%  
170 respectively. In the present study also the rate of MRHA positive E. coli isolates was 19.3 %

171 Gelatinase, an important virulence factor which is capable of hydrolyzing gelatin, collagen, and is associated  
172 with inflammation. Shetty et al<sup>17,18</sup> observed that gelatinase is not an important virulence factor. While Mittal et  
173 al<sup>5</sup> observed that gelatinase producing strains were multidrug resistant. In the present study Gelatinase  
174 production was seen in 25.4 % of isolates which is similar to Mittal et al<sup>5</sup> where it was 67.5%. But Vaish et al  
175<sup>18,19</sup> & Jayanthi et al<sup>18,20</sup> showed lesser production of gelatinase which was 2% & 6% respectively.

176 Antibiotic susceptibility pattern was studied for all E. coli isolates. These isolates were most commonly resistant  
177 to Ampicillin, Cotrimoxazole and Norfloxacin. And the maximum sensitivity was shown to Meropenem,  
178 Amikacin and then followed by Nitrofurantoin. The present study has shown the production of various virulent  
179 factors and developing drug resistance in UPEC.

180 The antibiotic susceptibility pattern observed in our study correlates with Tabasi et al<sup>8,21</sup>, Karam et al<sup>8,22</sup> and  
181 Chhaya et al<sup>8,9</sup>.

182 The present study also correlates with Kauser Y et al<sup>16,18</sup>, Vaish et al<sup>18,19</sup> & Jayanthi et al<sup>18,20</sup>.

183 Antibiotic resistance may provide a substantial advantage to the survival of the pathogen. The drug resistance  
184 among UPEC is on rise therefore the selection of appropriate antibiotics after antibiotic susceptibility testing is  
185 must for proper treatment of patients and to avoid emergence of drug resistance.

186 Resistance to commonly used antibiotics is because of excessive use and misuse of the antibiotics by the  
187 healthcare personnel and dissemination of multidrug resistance among hospital strains<sup>18,23,24</sup>.

188 **CONCLUSION**

189 Detection of virulence factors of Uro-pathogenic Escherichia coli shows a strong association to urinary tract  
190 infection. And presence of multiple virulence factors leads to drug resistance. So this helps in better  
191 understanding and treatment of Urinary tract infection. Since most Urovirulent strains express multiple virulent  
192 factors simultaneously, further studies at molecular level are necessary.

193 **REFERENCES**

194

195 1. Priscilla, P., Tiwari, A., & Kumari, P. (2025). Study of virulence  
196 factors of uropathogenic *Escherichia coli* and its antibiotic  
197 susceptibility pattern. *International Journal of Health Sciences*,  
198 9(S1), 636-642. <https://doi.org/10.53730/ijhs.v9nS1.15820>

199

200 2. Steadman R, Topley N (1998) The virulence of *Escherichia coli* in  
201 urinary tract, In: Urinary tract infections. Chapman and Hall  
202 publication, London.

203

204 3. Vagarali MA, Karadesai SG, Patil CS, Metgud SC, Mutnal MB.  
205 Haemagglutination and Siderophore production as the urovirulence  
206 markers of Uropathogenic *Escherichia coli*. Indian J Med  
207 Microbiol. 2008;26(1):68-70

208

209 4. Kaira SS, Pai C. Study of uropathogenic *Escherichia coli* with  
210 special reference to its virulence factors. Int J Community Med  
211 Public Health 2018;5:177-81.

212 5. Mittal S, Sharma M, Chaudhary U. Study of virulence factors of  
213 uropathogenic *Escherichia coli* and its antibiotic susceptibility  
214 pattern. Indian J Pathol Microbiol 2014;57:61-4.

215

216 6. Piatti G, Mannini A, Balistreri M, Schito AM. Virulence factors in  
217 urinary *Escherichia coli* strains: Phylogenetic background and  
218 quinolone and fluoroquinolone resistance. J Clin  
219 Microbiol 2008;46:480-

220

221 7. Biswas D, Gupta P, Prasad R, Singh V, Arya M, Kumar A. Choice of  
222 antibiotics for empirical therapy of acute cystitis in a setting of  
223 high antimicrobial resistance. Indian J Med Sci. 2006;60(2):53-8.

224

225 8. K. Pavani, Ramalakshmi. K, T. Kanakadurgamba et.al. Study of  
226 virulence factors and antimicrobial susceptibility pattern of  
227 uropathogenic *Escherichia coli* in a tertiary care hospital.  
228 International Journal of Research and Review. 2021; 8(2): 591-596.

229

230

231 9. Shah Chhaya, Baral R, Bartaula B, Shrestha LB. Virulence factors  
232 of uropathogenic *Escherichia coli* (UPEC) and correlation with  
233 antimicrobial resistance. BMC Microbiol. 2019 Sep 2;19(1):204. doi:  
234 10.1186/s12866-019-1587-3.

235

236 10. Slavchev G, Pisareva E, Markova N. Virulence of uropathogenic  
237 *Escherichia coli*. J Cult Collect 2008-2009;62:3-9.

238

239 11. Stanley P, Koronakis V, Hughes C. Acylation of *Escherichia coli*  
240 hemolysin: A unique protein lipidation mechanism underlying toxin  
241 function. Microbiol Mol Biol Rev 1998;62:309-33.

242  
243 12. Raksha R, Srinivasa H, Macaden RS. Occurrence and  
244 characterisation of uropathogenic *Escherichia coli* in urinary tract  
245 infections. Indian J Med Microbiol 2003; 21:102-7.  
246  
247  
248 13. Siegfried L, Kmetová M, Janigová V, Sasinka M, Takácová V. Serum  
249 response of *Escherichia coli* strains causing dyspepsia and urinary  
250 tract infection: Relation to alpha-hemolysin production and O type.  
251 Infect Immun 1995; 63:4543-5.  
252  
253 14. Hughes C, Phillips R, Roberts AP. Serum resistance among  
254 *Escherichia coli* strains causing urinary tract infection in relation  
255 to O type and the carriage of hemolysin, colicin, and antibiotic  
256 resistance determinants. Infect Immun 1982; 35:270-5  
257  
258 15. Shruthi N, Kumar R, Kumar R. Phenotypic study of virulence  
259 factors in *Escherichia coli* isolated from antenatal cases,  
260 catheterized patients, and faecal flora. J Clin Diagn Res  
261 2012; 6:1699-703.  
262  
263 16. Kauser Y, Chunchanur SK, Nadagir SD, Halesh LH,  
264 Chandrashekhar MR. Virulence factors, serotypes and  
265 antimicrobial susceptibility pattern of *Escherichia coli* in  
266 urinary tract infections. Al Ameen J Med Sci 2009; 2:47-1.  
267  
268 17. Shetty SK, Rao SP, Subbannayya K, Janakiram K. Study of prevalence  
269 of virulence factors in extraintestinal pathogenic *Escherichia coli*  
270 isolated from a tertiary care hospital. Int J Curr  
271 Microbiol App Sci. 2014; 3(7):1055-61.  
272  
273 18. Hiremath MB, Lava R. Study of virulence factors and  
274 antibiotic susceptibility pattern of extraintestinal  
275 pathogenic *Escherichia coli*. Indian J Microbiol Res  
276 2020; 7(4):330-334.  
277  
278 19. Kandi V, Vaish R, Pradeep MSS, Setty CR. Evaluation of  
279 Virulence Factors and Antibiotic Sensitivity Pattern of  
280 *Escherichia Coli* Isolated from Extraintestinal Infections.  
281 Cureus. 2016; 8(5):604. doi:10.7759/cureus.604.  
282  
283 20. Jayanthi RS, Soumya K. Study of Virulence Factors in  
284 *Escherichia coli* Isolated from Skin and Soft Tissue  
285 Infections. Int J Curr Microbiol Appl Sci. 2017; 6(7):2288-94.  
286 doi:10.20546/ijcmas.2017.607.269.  
287  
288 21. Tabasi M, Asadi Karam MR, Habibi M, Yekaninejad MS,  
289 Bouzari S. Phenotypic Assays to Determine Virulence Factors of  
290 Uropathogenic *Escherichia coli* (UPEC) Isolates and their  
291 Correlation with Antibiotic Resistance Pattern. Osong Public  
292 Health Res Perspect. 2015; 6(4):261-268.  
293 doi:10.1016/j.phrp.2015.08.002  
294

295 22.Karam MRA, Habibi M, Bouzari S. Relationships between Virulence  
296 Factors and Antimicrobial Resistance among *Escherichia coli* Isolated  
297 from Urinary Tract Infections and Commensal Isolates in Tehran,  
298 Iran. *Osong Public Health Res Perspect.* 2018 Oct;9(5):217-224. doi:  
299 10.24171/j.phrp.2018.9.5.02.

300

301 23.Chitnis SV, Chitriv V, Sharma N, Chitnis DS. Current status  
302 of drug resistance among gram negative bacilli isolated from  
303 admitted cases in a tertiary care centre. *J Assoc Physicians*  
304 *India.* 2003;51:28-31.

305

306 24. Wiener J, Quinn JP, Bradford PA, Goering RV, Nathan C,  
307 Bush K. Multiple antibiotic resistant *Klebsiella* and  
308 *Escherichia coli* in a nursing home. *JAMA.* 1999;281:517-23.