

Jana Publication & Research

STUDY OF VIRULENCE FACTORS AND ANTIMICROBIAL SUSCEPTIBILITY PATTERN OF UROPATHOGENIC ESCHERICH...

 VRC10

Document Details

Submission ID

trn:oid:::2945:338514159

9 Pages

Submission Date

Dec 20, 2025, 11:33 AM GMT+5:30

3,111 Words

Download Date

Dec 20, 2025, 11:39 AM GMT+5:30

16,289 Characters

File Name

IJAR-55301.pdf

File Size

542.9 KB

64% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

Filtered from the Report

- ▶ Bibliography
 - ▶ Quoted Text
-

Match Groups

- **56** Not Cited or Quoted 64%
Matches with neither in-text citation nor quotation marks
 - **0** Missing Quotations 0%
Matches that are still very similar to source material
 - **0** Missing Citation 0%
Matches that have quotation marks, but no in-text citation
 - **0** Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks
-

Top Sources

- 62% Internet sources
- 43% Publications
- 35% Submitted works (Student Papers)

Match Groups

- 56 Not Cited or Quoted 64%
Matches with neither in-text citation nor quotation marks
- 0 Missing Quotations 0%
Matches that are still very similar to source material
- 0 Missing Citation 0%
Matches that have quotation marks, but no in-text citation
- 0 Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources

- 62% Internet sources
- 43% Publications
- 35% Submitted works (Student Papers)

Top Sources

The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

Rank	Type	Source	Percentage
1	Internet	www.ijpmonline.org	28%
2	Internet	ijrrjournal.com	12%
3	Internet	ipindexing.com	5%
4	Internet	docksci.com	4%
5	Internet	healthdocbox.com	4%
6	Internet	www.ncbi.nlm.nih.gov	2%
7	Internet	www.sciencegate.app	1%
8	Student papers	Bharati Vidyapeeth University Institute of management & research on 2018-06-16	1%
9	Internet	journalcra.com	<1%
10	Publication	Yu Jianguo. "Antimicrobial susceptibility and virulence factors of Escherichia coli i...	<1%

11 Student papers

Nottingham Trent University on 2024-03-22 <1%

12 Internet

repository-tnmgrmu.ac.in <1%

13 Internet

pubmed.ncbi.nlm.nih.gov <1%

14 Internet

www.ijcmas.com <1%

15 Internet

1library.net <1%

16 Student papers

Uniformed Services University of the Health Sciences on 2014-06-16 <1%

17 Internet

www.ijorl.com <1%

18 Internet

www.researchgate.net <1%

19 Publication

B. Hiremath, Mahendraswamy. "Study of Virulence Factors and Antibiotic Suscept... <1%

2 1 **STUDY OF VIRULENCE FACTORS AND ANTIMICROBIAL
2 SUSCEPTIBILITY PATTERN OF UROPATHOGENIC ESCHERICHIA COLI
3 IN A TERTIARY CARE HOSPITAL**

13 4 **ABSTRACT**

5 **INTRODUCTION**

6 Escherichia coli is the major causative agent of urinary tract infections. UPEC possess a variety of virulence
7 factors that enable it to colonize, invade and persist within the urinary tract, leading to both complicated and
8 uncomplicated UTIs. Knowledge of virulence factors of Escherichia coli is responsible for pathogenesis of UTIs
9 and their antimicrobial susceptibility pattern will help in better understanding of the treatment of UTI.
10 Emergence and spread of multi drug resistant strains of Escherichia coli have raised considerable interest in
11 understanding their diversity and epidemiology of infections in humans.

12 **AIM**

13 To determine the virulence factors and antimicrobial susceptibility pattern of Uro Pathogenic Escherichia coli.

14 **MATERIALS AND METHODS**

15 A prospective study is done on urine samples over a period of 3 months from May 2025 to July 2025
16 in a tertiary care hospital to detect virulence factors like Haemolysis, Hemagglutination and gelatin
17 hydrolysis.

18 Antibiotic susceptibility test was done by Kirby Baur disc diffusion method as per the CLSI
19 guidelines.

20

21 **RESULTS**

22 Out of total 350 urine samples tested 114 were Escherichia coli isolates. Out of the 114 Escherichia coli isolates
23 69 were females and 45 males. Among the 114 isolates -43 isolates showed haemolysis virulence factor, 31
24 isolates showed hemagglutination factor- 22 were mannose resistant and 9 mannose sensitive hemagglutination
25 and, 11 isolates showed gelatin hydrolysis and 29 isolates did not show any of the virulence factor.

26 Antibiotic susceptibility testing revealed that UPEC strains showed maximum resistance to **Ampicillin (55.2%)**,
27 followed by **Cotrimoxazole (48.2%) and Norfloxacin (44.7%)**. Most isolates were sensitive to **Meropenem**
28 (**82.4%**), Amikacin (**79.8%**) and followed by **Nitrofurantoin (74.5%)**.

29 **CONCLUSION**

30 Detection of virulence factors of Uro-pathogenic Escherichia coli shows a strong association to urinary tract
31 infection. And presence of multiple virulence factors leads to drug resistance.

32 **KEY WORDS**

33 Urinary tract infection, Uropathogenic Escherichia coli, Virulence factors, Haemolysis, Hemagglutination,
34 Gelatin hydrolysis

35

36

37

38

39

40

41

42

43
44
45
46
47

1 INTRODUCTION

48
49
50

51 Urinary tract infections (UTIs) are one of the most common bacterial infections affecting humans throughout
52 their life span. They can be symptomatic or asymptomatic. *Escherichia coli* is the most common cause of UTIs,
53 accounting for about 85% of community acquired and 50% of hospital-acquired infections, it predominates
54 strongly at most ages. UPEC is the main cause of community-acquired UTIs (about 80-90%).

55 *Escherichia coli* is a commensal in the human intestinal tract, when enters into unnatural sites, it can cause a
56 variety of infections, e.g., UTIs, sepsis, pyelonephritis etc. Serotypes which lead to UTIs are designated as
57 uropathogenic *Escherichia coli* (UPEC)¹. It has been known that certain serotypes of *E. coli* are consistently
58 associated with uro-pathogenicity and are designated as uropathogenic *E. coli* that expresses chromosomally
59 encoded virulence markers³. Uropathogenic strains account for 90% of all UTIs among ambulatory patients and
60 upto 50% of all nosocomial UTIs².

61 The common virulence factors include surface hydrophobicity, colonization factor, capsule, serum resistance,
62 resistance to phagocytosis, hemolysin production, enterotoxin and siderophore, fimbriae and hemagglutination.
63 The ability of *E. coli* to adhere to the uroepithelium is mediated by fimbriae, thereby resisting elimination by the
64 flow of urine. Adhesion is therefore measured to be important step in the pathogenesis of UTI⁴.

65 During UTIs, UPEC pathogenesis includes:

- 66 (a) UPEC colonization of the periurethral and vaginal areas with colonization of the urethra;
67 (b) ascending into the bladder lumen and growth as planktonic cells in urine;
68 (c) adherence to the surface and interaction with the bladder epithelium defense system (see below);
69 (d) biofilm formation;
70 (e) invasion and replication by forming bladder Intracellular Bacterial Communities (IBCs) where quiescent
71 intracellular reservoirs (QIRs) form and reside in the underlying urothelium;
72 (f) kidney colonization and host tissue damage with increased risk for bacteremia/septicemia.

73 Considering the high degree of morbidity and mortality due to UTIs caused by uropathogenic *E. coli* and also
74 the drug resistance among strains has further aggravated the problem of UTI's. Therefore, the present study was
75 carried out with aim to know the prevalence of various virulence factors and the antimicrobial susceptibility
76 pattern in UPEC⁵.

77

7 MATERIALS AND METHODS

78
79
80
81
82
83

84 This is a prospective study which was conducted in the Department of Microbiology in a tertiary care hospital
85 over a period of 3 months i.e from May 2025-July 2025. Patients of all age group were included. A total of 350
86 urine samples were tested out of which 114 were *Escherichia coli* were isolates. The samples were processed
87 immediately as per the standard guidelines in the lab. The isolates were taken for the detection of virulence
88 factors.

89

90 The virulence factors tested were

91

92 1. Haemolysin production:

93

94 2. Haemagglutination

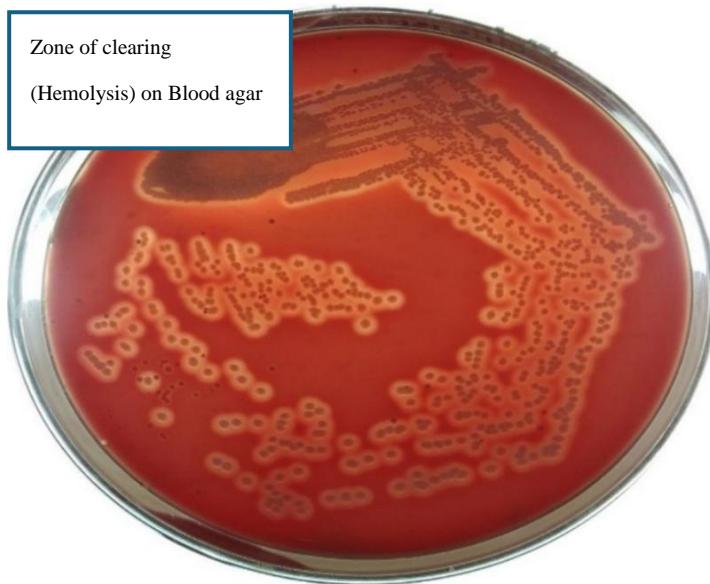
95

96 3. Gelatin hydrolysis

97

98 1. Haemolysin production

99


100 The *Escherichia coli* isolates were inoculated onto 5 % sheep blood agar and incubated overnight at 37 degree
101 Celsius and observed for a zone of complete lysis around the colony. *Escherichia coli* ATCC 25922 was used as
102 a negative control.

103

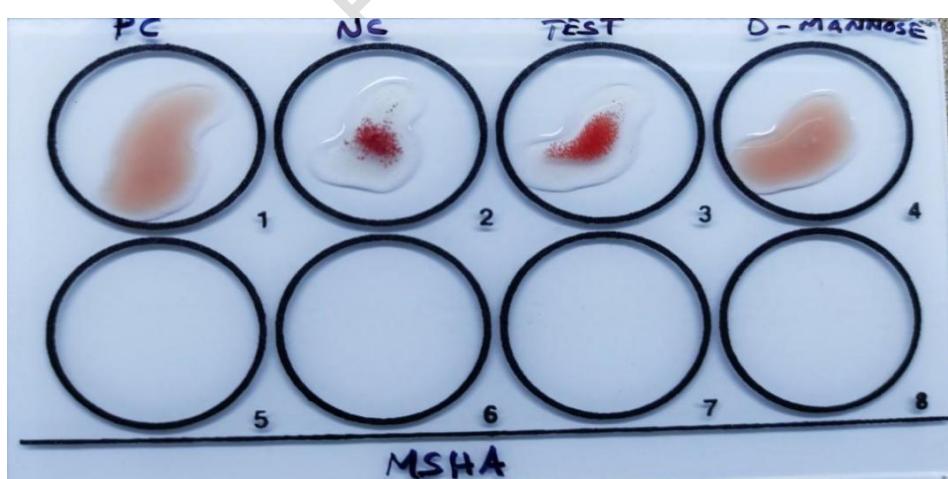
104 Presence of clear zone of complete hemolysis indicates hemolysin production.

105

94
95
96
97
98

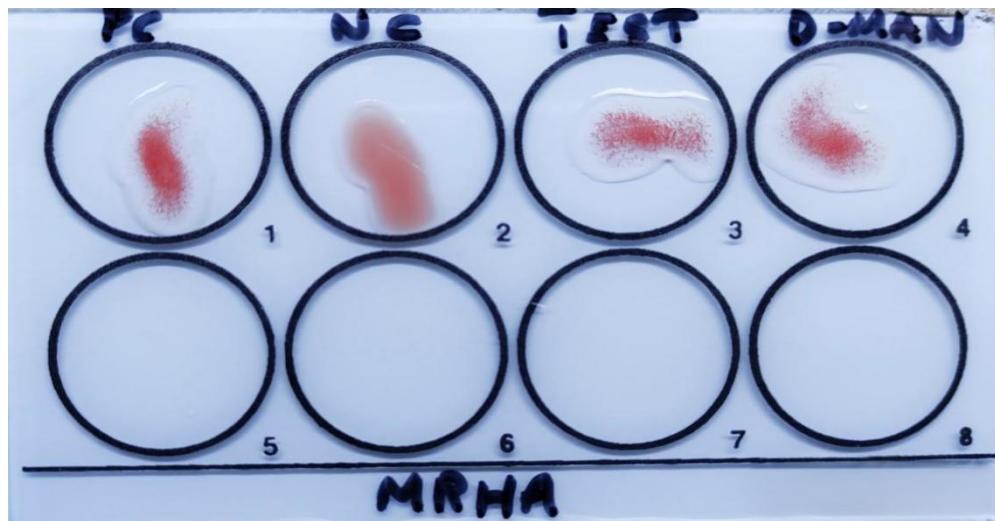
99

100


FIG 1: HEMOLYSIS

101

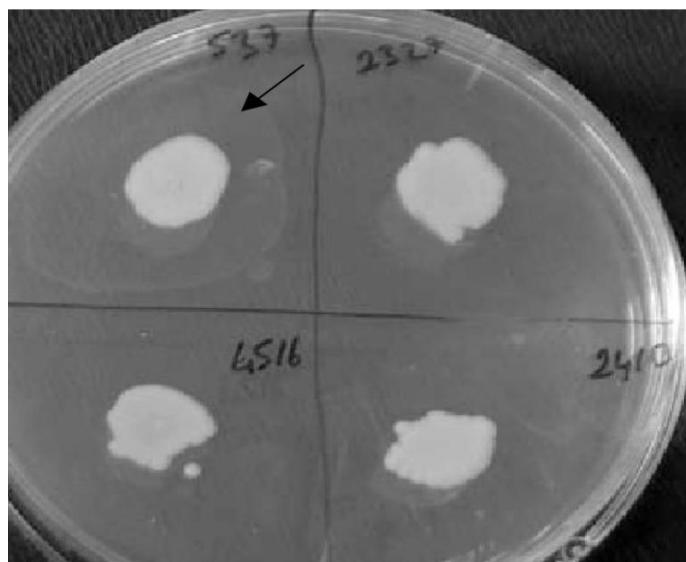
2.HAEMAGGLUTINATION


102
103
104
105
106
107
108

The test was carried out as per the direct bacterial hemagglutination test-slide method. One drop of red blood cell (RBC) suspension was added to a drop of broth culture and the slide was rocked at room temperature for 5 min. Presence of clumping was taken as positive for hemagglutination. Mannose-sensitive hemagglutination was detected by the absence of hemagglutination in a parallel set of test in which a drop of 2% W/V D-mannose was added to the red cells and a drop of broth culture. Mannose resistant hemagglutinating (MRHA) was detected by the presence of hemagglutination of 3% 'O' blood group human RBCs in the presence of 2% W/V D-mannose.

109
110
111

FIGURE 2: MANNOSE SENSITIVE HAE MAGGLUTINATION



112

113 FIGURE 3: MANNOSE RESISTANT HAEMAGGLUTINATION

114 3.GELATIN HYDROLYSIS.

115 Gelatinase production was tested using gelatin agar. *Escherichia coli* isolated was inoculated on gelatin agar and
116 incubated overnight at 37 degrees celsius for 24 hrs. Later the gelatin agar plate was flooded with 1% tannic
117 acid. Development of opacity around colonies shows gelatinase production.

118

119 FIGURE 4: GELATIN HYDROLYSIS

120 4. Antimicrobial susceptibility

121 Antimicrobial susceptibility testing was done on Mueller Hinton Agar by Kirby Bauer disc diffusion method as
122 per CLSI guidelines.

123

124 RESULTS

125 A total of 350 urine samples received from symptomatic cases of urinary tract infection with
126 significant bacteriuria were taken. Out of these, 114 *Escherichia coli* isolates were processed and
127 studied for the virulence factors and their antibiotic susceptibility pattern. Out of the 114 *Escherichia*
128 *coli* isolated samples, 60.5% were from females and 39.47% were from males. Among 114 isolates,
129 37.7% showed haemolysis, 19.3% showed manose resistant haemagglutination, 7.9% showed
130 manose sensitive haemagglutination, 9.7% showed gelatin hydrolysis and 25.4% did not show any of
131 the virulence factors.

4 132 Antibiotic susceptibility testing revealed that UPEC strains showed maximum resistance to Ampicillin (55.2%), followed by Cotrimoxazole (48.2%) and Norfloxacin (44.7%). Most isolates were sensitive to Meropenem (82.4%), Amikacin (79.8%) and followed by Nitrofurantoin (74.5%).

17 135 TABLE 1: GENDER WISE DISTRIBUTION OF ESCHERICHIA COLI ISOLATES

GENDER	TOTAL	PERCENTAGE
FEMALES	69	60.5%
MALES	45	39.4%
TOTAL	114	100%

136

16 137 TABLE 2: VIRULENCE FACTORS AMONG THE UROPATHOGENIC ESCHERICHIA COLI ISOLATES(n=114)

VIRULENCE FACTOR	NUMBER	PERCENTAGE
HAEMOLYSIS	43	37.7%
HEMAGGLUTINATION	(31)	
MANNOSE RESISTANT HEMAGGLUTINATION	22	19.3%
MANNOSE SENSITIVE HEMAGGLUTINATION	9	7.9%
GELATIN HYDROLYSIS	11	9.7%

15 139 TABLE 3: ANTIBIOTIC SUSCEPTIBILITY PATTERN OF UPEC ISOLATES

ANTIBIOTIC	SENSITIVE	PERCENTAGE	RESISTANT	PERCENTAGE
AMPICILLIN	51	44.8%	63	55.2%
TRIMETHOPRIM SULFAMETHOXAZOLE	59	51.8%	55	48.2%
NORFLOXACIN	63	55.3%	51	44.7%
CEFTRIAXONE	67	58.8%	47	41.2%
MEROPENEM	94	82.4%	20	17.6%
AMIKACIN	91	79.8%	23	20.2%
NITROFURANTOIN	85	74.5%	29	25.5%

140

141

142

143

1 144

DISCUSSION

145

UPEC are the most important group of micro-organisms responsible for UTI. UPEC differ from non-pathogenic E. coli by the production of specific virulence factors which enable the bacteria to adhere to uroepithelial cells and to establish UTI⁵. UTIs which are not properly treated from their onset can become a renal threat in time, finally leading to renal failure⁸.

10

149

These virulence factors enable some members of the normal flora to elicit an infection by overcoming the host defence mechanisms¹.

14

151

The capacity of E. coli to produce many virulence factors contributes to its pathogenicity^{1,7}.

1

152

Incidence of UTI was more common in females 60.5% than in males in our study. Piatti et al^{5,6} also reported a higher prevalence of UTI in female (77%). The reasons for the high prevalence of the UTIs in females can be due to the anatomical structure of the urogenital tract having short urethra, presence of normal flora in vagina, menstrual cycle and pregnancy⁵.

5

156

Priscilla et al¹ also reported a higher incidence of UTI was more common in females (66.72%) than in males (33.27%) in our study.

2

158

Our study also correlates with Sanjay Singh Kaira et al⁴ who reported 56.09%, Mittal et al^{1,8} (53.3%) and Chhaya et al^{8,9}(53%).

1

160

Hemolysin production is associated with human pathogenic strains of E. coli, especially those causing more clinically severe forms of UTI^{5,10}. It is toxic to a range of host cells in ways that probably contribute to inflammation, tissue injury and impaired host defenses^{1,11}. In the present study, 37.7% E. coli isolates produced hemolysin. In other studies conducted by Raksha et al^{5,12}, Siegfried et al^{5,13} Hughes et al^{5,14}, Shruthi et al^{1,15} hemolysin production was detected in 41.36% and 59.6%, 59.7% and 41.9% isolates respectively.

1

165

The role of bacterial adherence in the pathogenesis of urinary tract infection is that colonization of the urogenital epithelium of susceptible individuals by specific bacteria is associated with successful microbial invasion of the urinary tract¹⁶ and lead to UTIs. Thus, possession of MRHA by UPEC can be considered as one of the important virulence factor in the pathogenesis of UTIs. My study correlates with Seigfried et al^{1,13}, Vagarali et al¹³, Raksha et al^{1,12}, Kauser et al^{3,16} have reported the incidence of MRHA E.coli isolates as 23%, 25%, 30.9%, 30% respectively. In the present study also the rate of MRHA positive E. coli isolates was 19.3 %

3

171

Gelatinase, an important virulence factor which is capable of hydrolyzing gelatin, collagen, and is associated with inflammation. Shetty et al^{17,18} observed that gelatinase is not an important virulence factor. While Mittal et al⁵ observed that gelatinase producing strains were multidrug resistant. In the present study Gelatinase production was seen in 25.4 % of isolates which is similar to Mittal et al⁵ where it was 67.5%. But Vaish et al^{18,19} & Jayanthi et al^{18,20} showed lesser production of gelatinase which was 2% & 6% respectively.

1

176

Antibiotic susceptibility pattern was studied for all E. coli isolates. These isolates were most commonly resistant to Ampicillin, Cotrimoxazole and Norfloxacin. And the maximum sensitivity was shown to Meropenem, Amikacin and then followed by Nitrofurantoin. The present study has shown the production of various virulent factors and developing drug resistance in UPEC.

2

180

The antibiotic susceptibility pattern observed in our study correlates with Tabasi et al^{8,21}, Karam et al^{8,22} and Chhaya et al^{8,9}.

3

182

The present study also correlates with Kauser Y et al^{16,18}, Vaish et al^{18,19} & Jayanthi et al^{18,20}.

1

183

Antibiotic resistance may provide a substantial advantage to the survival of the pathogen. The drug resistance among UPEC is on rise therefore the selection of appropriate antibiotics after antibiotic susceptibility testing is must for proper treatment of patients and to avoid emergence of drug resistance.

3

186

Resistance to commonly used antibiotics is because of excessive use and misuse of the antibiotics by the healthcare personnel and dissemination of multidrug resistance among hospital strains^{18,23,24}.

188

CONCLUSION

8

189

Detection of virulence factors of Uro-pathogenic Escherichia coli shows a strong association to urinary tract infection. And presence of multiple virulence factors leads to drug resistance. So this helps in better understanding and treatment of Urinary tract infection. Since most Urovirulent strains express multiple virulent factors simultaneously, further studies at molecular level are necessary.

12

190

2

191

8

192

193 **REFERENCES**

- 194
- 195 1. Priscilla, P., Tiwari, A., & Kumari, P. (2025). Study of virulence
196 factors of uropathogenic *Escherichia coli* and its antibiotic
197 susceptibility pattern. *International Journal of Health Sciences*,
198 9(S1), 636-642. <https://doi.org/10.53730/ijhs.v9nS1.15820>
- 199
- 200 2. Steadman R, Topley N (1998) The virulence of *Escherichia coli* in
201 urinary tract, In: Urinary tract infections. Chapman and Hall
202 publication, London.
- 203
- 204 3. Vagarali MA, Karadesai SG, Patil CS, Metgud SC, Mutnal MB.
205 Haemagglutination and Siderophore production as the urovirulence
206 markers of Uropathogenic *Escherichia coli*. *Indian J Med*
207 *Microbiol*. 2008;26(1):68-70
- 208
- 209 4. Kaira SS, Pai C. Study of uropathogenic *Escherichia coli* with
210 special reference to its virulence factors. *Int J Community Med*
211 *Public Health* 2018;5:177-81.
- 212 5. Mittal S, Sharma M, Chaudhary U. Study of virulence factors of
213 uropathogenic *Escherichia coli* and its antibiotic susceptibility
214 pattern. *Indian J Pathol Microbiol* 2014;57:61-4.
- 215
- 216 6. Piatti G, Mannini A, Balistreri M, Schito AM. Virulence factors in
217 urinary *Escherichia coli* strains: Phylogenetic background and
218 quinolone and fluoroquinolone resistance. *J Clin*
219 *Microbiol* 2008;46:480-
- 220
- 221 7. Biswas D, Gupta P, Prasad R, Singh V, Arya M, Kumar A. Choice of
222 antibiotics for empirical therapy of acute cystitis in a setting of
223 high antimicrobial resistance. *Indian J Med Sci*. 2006;60(2):53-8.
- 224
- 225 8. K. Pavani, Ramalakshmi. K, T. Kanakadurgamba et.al. Study of
226 virulence factors and antimicrobial susceptibility pattern of
227 uropathogenic *Escherichia coli* in a tertiary care hospital.
228 *International Journal of Research and Review*. 2021; 8(2): 591-596.
- 229
- 230
- 231 9. Shah Chhaya, Baral R, Bartaula B, Shrestha LB. Virulence factors
232 of uropathogenic *Escherichia coli* (UPEC) and correlation with
233 antimicrobial resistance. *BMC Microbiol*. 2019 Sep 2;19(1):204. doi:
234 10.1186/s12866-019-1587-3.
- 235
- 236 10. Slavchev G, Pisareva E, Markova N. Virulence of uropathogenic
237 *Escherichia coli*. *J Cult Collect* 2008-2009;62:3-9.
- 238
- 239 11. Stanley P, Koronakis V, Hughes C. Acylation of *Escherichia coli*
240 hemolysin: A unique protein lipidation mechanism underlying toxin
241 function. *Microbiol Mol Biol Rev* 1998;62:309-33.

- 242
243 12. Raksha R, Srinivasa H, Macaden RS. Occurrence and
244 characterisation of uropathogenic *Escherichia coli* in urinary tract
245 infections. Indian J Med Microbiol 2003; 21:102-7.
246
247 13. Siegfried L, Kmetová M, Janigová V, Sasinka M, Takácová V. Serum
248 response of *Escherichia coli* strains causing dyspepsia and urinary
249 tract infection: Relation to alpha-hemolysin production and O type.
250 Infect Immun 1995; 63:4543-5.
251
252 14. Hughes C, Phillips R, Roberts AP. Serum resistance among
253 *Escherichia coli* strains causing urinary tract infection in relation
254 to O type and the carriage of hemolysin, colicin, and antibiotic
255 resistance determinants. Infect Immun 1982; 35:270-5
256
257 15. Shruthi N, Kumar R, Kumar R. Phenotypic study of virulence
258 factors in *Escherichia coli* isolated from antenatal cases,
259 catheterized patients, and faecal flora. J Clin Diagn Res
260 2012; 6:1699-703.
261
262 16. Kauser Y, Chunchanur SK, Nadagir SD, Halesh LH,
263 Chandrashekhar MR. Virulence factors, serotypes and
264 antimicrobial susceptibility pattern of *Escherichia coli* in
265 urinary tract infections. Al Ameen J Med Sci 2009; 2:47-1.
266
267 17. Shetty SK, Rao SP, Subbannayya K, Janakiram K. Study of prevalence
268 of virulence factors in extraintestinal pathogenic *Escherichia coli*
269 isolated from a tertiary care hospital. Int J Curr
270 Microbiol App Sci. 2014; 3(7):1055-61.
271
272 18. Hiremath MB, Lava R. Study of virulence factors and
273 antibiotic susceptibility pattern of extraintestinal
274 pathogenic *Escherichia coli*. Indian J Microbiol Res
275 2020; 7(4):330-334.
276
277 19. Kandi V, Vaish R, Pradeep MSS, Setty CR. Evaluation of
278 Virulence Factors and Antibiotic Sensitivity Pattern of
279 *Escherichia Coli* Isolated from Extraintestinal Infections.
280 Cureus. 2016; 8(5):604. doi:10.7759/cureus.604.
281
282 20. Jayanthi RS, Soumya K. Study of Virulence Factors in
283 *Escherichia coli* Isolated from Skin and Soft Tissue
284 Infections. Int J Curr Microbiol Appl Sci. 2017; 6(7):2288-94.
285 doi:10.20546/ijcmas.2017.607.269.
286
287 21. Tabasi M, Asadi Karam MR, Habibi M, Yekaninejad MS,
288 Bouzari S. Phenotypic Assays to Determine Virulence Factors of
289 Uropathogenic *Escherichia coli* (UPEC) Isolates and their
290 Correlation with Antibiotic Resistance Pattern. Osong Public
291 Health Res Perspect. 2015; 6(4):261-268.
292 doi:10.1016/j.phrp.2015.08.002
293
294

- 295 22. Karam MRA, Habibi M, Bouzari S. Relationships between Virulence
296 Factors and Antimicrobial Resistance among *Escherichia coli* Isolated
297 from Urinary Tract Infections and Commensal Isolates in Tehran,
298 Iran. *Osong Public Health Res Perspect.* 2018 Oct;9(5):217-224. doi:
299 10.24171/j.phrp.2018.9.5.02.
- 300
- 301 23. Chitnis SV, Chitriv V, Sharma N, Chitnis DS. Current status
302 of drug resistance among gram negative bacilli isolated from
303 admitted cases in a tertiary care centre. *J Assoc Physicians*
304 India. 2003;51:28-31.
- 305
- 306 24. Wiener J, Quinn JP, Bradford PA, Goering RV, Nathan C,
307 Bush K. Multiple antibiotic resistant *Klebsiella* and
308 *Escherichia coli* in a nursing home. *JAMA.* 1999;281:517-23.