

1 **THE EVOLVING ROLE OF POINT-OF-CARE ULTRASOUND (POCUS) IN ICU AND EMERGENCY**

2 **ANAESTHESIA**

3

4 **Abstract:** Point-of-care ultrasound (POCUS) has rapidly become an essential tool in
5 emergency anaesthesia and critical care, offering real-time, non-invasive imaging at
6 the bedside to support rapid and informed clinical decisions in critically ill patients. It
7 significantly enhances the diagnosis and management of life-threatening conditions such as
8 shock, pneumothorax, and cardiac tamponade by improving the evaluation of cardiac
9 function, intravascular volume, and pulmonary abnormalities. Standardised protocols
10 including focused cardiac ultrasound, Lung ultrasound, the Focused Assessment with
11 Sonography in Trauma, extended FAST streamline diagnosis and facilitate precise and
12 targeted interventions. POCUS is widely applied in evaluating cardiovascular, respiratory,
13 abdominal, and vascular assessments, as well as for guiding procedures such as vascular
14 access and regional anaesthesia. Within anaesthetic practice, it serves critical roles in airway
15 assessment, gastric content assessment, and haemodynamic monitoring. As advancements
16 in ultrasound technology continue, structured training programs and education becomes
17 more prevalent, POCUS is increasingly recognised as a core competency in emergency
18 anaesthesia and critical care anaesthesia.

19

20

21

22

23

24 **“Evolving Role of POCUS in ICU and Emergency Anaesthesia”**

25 **Keywords:** E-FAST, emergency anaesthesia, FAST, ICU, POCUS, ultrasound

26

27 **Introduction:** Point-of-care ultrasound (POCUS) involves the use of portable ultrasound
28 devices at the bedside to aid in the real-time diagnosis, monitoring, and treatment of
29 patients. Over the last twenty years, it has evolved from a supportive imaging technique into
30 a crucial clinical tool in Intensive care units (ICUs) and emergency anaesthesia^{1,2} Its ability to
31 provide rapid, non-invasive, and repeatable assessments of physiological status has made it
32 essential in the care of critically ill and hemodynamically unstable patients. In emergency
33 and ICU settings, POCUS significantly improves the evaluation of cardiac function, volume
34 status, and lung pathology, enabling clinicians to make timely and accurate clinical
35 decisions.³ Protocols such as focused cardiac ultrasound, lung ultrasound, and extended
36 focused assessment with sonography for trauma are now widely used to assess conditions
37 like shock, cardiac tamponade, pneumothorax, pleural effusion, pulmonary edema, and intra-
38 abdominal haemorrhage.^{4,5,6} These standardized, goal-directed protocols provide a
39 structured approach to diagnosis and directly influence patient management and
40 resuscitation strategies.

41 POCUS plays a vital role in guiding a range of bedside procedures. When used for vascular
42 access, ultrasound guidance significantly lowers the risk of complications compared to
43 traditional landmark-based techniques, while also improving first-attempt success rates and
44 overall patient safety.⁷⁻⁸ Furthermore, POCUS increases the precision and safety of

45 procedures such as thoracentesis, paracentesis, pericardiocentesis, and regional
46 anaesthesia, enabling more efficient and effective clinical interventions.⁹

47 In the domain of anaesthesia, particularly in emergency and perioperative settings POCUS is
48 being increasingly utilized for airway assessment, evaluation of gastric contents, and
49 intraoperative hemodynamic monitoring. It enables anaesthesiologists to anticipate difficult
50 airways, evaluate aspiration risk, and assess cardiac function and fluid status during complex
51 surgical procedures.¹⁰⁻¹¹ For example, gastric ultrasonography provides real-time visualization
52 of stomach contents and volume, aiding in the assessment of aspiration risk before induction
53 of anaesthesia.¹²

54 Technological advancements have further driven the adoption of POCUS by enhancing image
55 quality and clarity, device portability, and battery performance. Additionally, the
56 establishment of formal training programs and standardized guidelines by organizations such
57 as the American Society of Echocardiography and the Society of Critical Care Medicine has
58 made POCUS training more structured and accessible for non-radiologist clinicians.¹³⁻¹⁴ Its
59 incorporation into critical care and anaesthesia curricula reflects the growing recognition of
60 POCUS as a fundamental clinical skill.¹⁵ With accumulating evidence supporting its diagnostic
61 accuracy, clinical utility, and procedural safety, POCUS is now increasingly regarded as a
62 standard of care in intensive care units and emergency anaesthesia practice. This review
63 outlines its expanding clinical applications, key benefits, and future potential within critical
64 care environments.

65 **Materials and Methods**

66 The data for this review were compiled from a wide range of articles published between
67 2000 and 2021, sourced from multiple academic journals. These papers were carefully
68 selected and reviewed to extract relevant information applicable to the focus of this study.

69

70 **Clinical applications in ICU and Emergency anaesthesia**

71 POCUS has transformed bedside evaluation and significantly improved procedural safety in
72 intensive care units and emergency anaesthesia settings. Its strength lies in offering real-
73 time, non-invasive, and dynamic assessments, which are crucial for timely and accurate
74 decision-making in critically ill or hemodynamically unstable patients. The broad integration
75 of POCUS into clinical practice highlights its effectiveness in enhancing diagnostic accuracy,
76 reducing complication rates, and optimizing the overall delivery of patient care.^{1,2}

77 • **Rapid Diagnosis at Bedside:** Enables immediate identification of life-threatening
78 conditions such as pneumothorax, cardiac tamponade, massive pleural effusion, or
79 hypovolemia without the need to transport unstable patients.

80 • **Minimization of Procedural Risks:** Enhances safety during invasive procedures like
81 central venous catheterization, thoracentesis, pericardiocentesis, and nerve blocks by
82 providing visual guidance.

83 • **Tailored Hemodynamic Management:** Facilitates personalized therapy through
84 dynamic assessment of fluid responsiveness, cardiac function, and vascular tone
85 guiding fluid administration or inotropic support.

86 • **Reduced Dependence on Delayed Imaging:** Decreases the need for radiographic or
87 CT imaging, which may be logistically challenging or risky in unstable patients.

88 • **Enhanced Patient Safety and Outcomes:** Early intervention guided by POCUS has
89 been shown to reduce ICU stay, minimize complications, and improve overall
90 outcomes in critically ill populations.

91 • **Cardiovascular Assessment:** Focused cardiac ultrasound is widely used in ICU and
92 emergency settings to evaluate cardiac function, identify pericardial effusion and
93 tamponade, detect left and right ventricular dysfunction, and assist in managing
94 patients with shock states.³ It enables rapid assessment of volume status and
95 myocardial contractility, often providing more reliable information than physical
96 exams or central venous pressure measurements.¹⁶

97 • **Pulmonary Evaluation:** Lung ultrasound is highly sensitive in identifying conditions
98 such as pneumothorax, pleural effusion, pulmonary edema, and interstitial
99 syndrome.^{5,17} Owing to its superior accuracy and rapid results, it has largely replaced
100 chest X-rays in many intensive care units. The BLUE (Bedside Lung Ultrasound in
101 Emergency) protocol provides a systematic method for diagnosing acute respiratory
102 failure through the use of LUS.⁵

103 • **Abdominal and Trauma Evaluation:** In emergency and trauma care, POCUS through
104 the FAST (Focused Assessment with Sonography in Trauma), extended FAST,
105 protocol enables the detection of free fluid within the abdomen or chest, suggesting
106 internal bleeding or organ damage.⁶ It facilitates prompt surgical decision-making and
107 is now an integral part of standard trauma management protocols.

108 • **Hemodynamic Monitoring:** POCUS aids in evaluating intravascular volume status by
109 assessing the diameter and collapsibility of the inferior vena cava (IVC), along with
110 left ventricular filling and stroke volume variation using Doppler methods.¹⁸ These

111 assessments are crucial for guiding fluid management, particularly in conditions like
112 sepsis, shock, and during fluid resuscitation.

- 113 • **Vascular Access:** Ultrasound-guided vascular access is now considered the standard
114 practice for placing central venous catheters, significantly reducing complications
115 such as arterial puncture, haematoma, and pneumothorax.⁷ It also enhances first-
116 attempt success rates for peripheral IV insertion, particularly in patients with difficult
117 venous access.¹⁹
- 118 • **Airway and Gastric Evaluation:** POCUS can evaluate difficult airway. It is especially
119 useful for identifying the cricothyroid membrane in emergency situations and can
120 confirm endotracheal tube placement more quickly than capnography. Additionally,
121 gastric ultrasound enables evaluation of stomach content and volume, to determine
122 aspiration risk particularly important in emergency surgeries or trauma patients with
123 unknown fasting status.¹⁰
- 124 • **Regional Anaesthesia and Nerve Blocks:** POCUS has revolutionized regional
125 anaesthesia by enabling real-time visualization of nerves, blood vessels, and fascial
126 planes, leading to greater precision and safety in nerve blocks. It has significantly
127 reduced the incidence of vascular puncture, nerve injury, and local anaesthetic
128 systemic toxicity.¹²
- 129 • **Detection of Deep Vein Thrombosis (DVT):** Bedside compression ultrasound is a
130 valuable tool for identifying proximal deep vein thrombosis in critically ill patients,
131 enabling timely anticoagulation or further assessment for pulmonary embolism.²⁰
132 This approach accelerates both diagnosis and the initiation of treatment in the ICU.

133 • **Assessment of Volume Status and Fluid Responsiveness:** POCUS enables real-time
134 evaluation of fluid responsiveness through measurements such as inferior vena cava
135 (IVC) collapsibility, left ventricular outflow tract (LVOT) velocity time integral (VTI),
136 and the presence of B-lines on lung ultrasound.²¹ This precise guidance is essential in
137 critically ill patients, where inadequate or excessive fluid resuscitation can result in
138 adverse outcomes.

139 • **Diaphragmatic Ultrasound:** Evaluation of diaphragmatic function in ventilated
140 patients, assists in predicting weaning outcomes from mechanical
141 ventilation. Identifies diaphragmatic dysfunction contributing to respiratory failure.

142 • **FAST and E-FAST in trauma:** The Focused Assessment with Sonography in Trauma
143 (FAST) and extended FAST protocols are essential for identifying hemoperitoneum,
144 haemothorax, and pneumothorax, pericardial effusion in trauma and emergency
145 situations. They play a vital role in detecting internal bleeding, enabling rapid triage
146 and surgical decision-making, while also minimizing the need for CT scans in
147 hemodynamically unstable patients.

148 • **Neurological Assessment:** POCUS allows for non-invasive bedside evaluation of
149 elevated intracranial pressure by measuring the optic nerve sheath diameter and
150 utilizing transcranial Doppler to assess cerebral blood flow. This is particularly
151 valuable in trauma and neurocritical care settings, providing early detection of
152 intracranial hypertension when CT imaging is not readily accessible.

153 • **Procedural Guidance:** Procedures such as thoracentesis, paracentesis,
154 pericardiocentesis, and abscess drainage are performed more safely and efficiently
155 under ultrasound guidance.²²

156 • **Critical Care Protocols:** Various ICU-specific POCUS protocols, including RUSH (Rapid
157 Ultrasound for Shock and Hypotension) and FALLS (Fluid Administration Limited by
158 Lung Sonography), have been designed to quickly identify the underlying causes of
159 undifferentiated shock and respiratory failure.^{9,23}

160 Ongoing advancements in handheld, high-resolution ultrasound devices, along with the
161 introduction of structured training programs, have significantly increased the
162 accessibility of POCUS for intensivists and anaesthesiologists. With a growing body of
163 evidence highlighting its diagnostic and procedural benefits, POCUS has evolved from a
164 supplementary tool to a fundamental skill in contemporary critical care and emergency
165 anaesthesia practice.²⁴

166 **Educational Integration and Training**

167 The integration of POCUS into ICU and emergency anaesthesia practice requires well-
168 structured educational frameworks. Effective training should combine theoretical
169 instruction, simulation-based learning, and hands-on supervised clinical experience to
170 ensure both competence and patient safety. Several anaesthesia societies have advocated
171 for integrating POCUS skills into postgraduate training curricula.^{25,26} Competency-based
172 education featuring objective structured clinical examinations and digital learning
173 platforms is increasingly recognized as a scalable response to rising demand.²⁷
174 Furthermore, ongoing mentorship programs play a crucial role in maintaining skill
175 proficiency and building clinical confidence.²⁸

176 **Challenges and Barriers**

177 Despite its advantages, several barriers hinder the widespread adoption of POCUS in critical
178 care:

179 • Time limitations in high-demand ICU and emergency environments often restrict
180 both training and routine application.³

181 • Financial constraints, including the cost of ultrasound equipment and ongoing
182 maintenance, present significant hurdles, particularly in resource-limited settings.²⁹

183 • The technique's operator dependence and variability between observers can
184 compromise diagnostic consistency and reliability.

185 • Legal and regulatory issues such as, those concerning image storage, formal
186 documentation, and integration with electronic medical record systems remain
187 unresolved in many institutions.

188 • The steep learning curve, especially in the absence of structured feedback, makes
189 skill acquisition difficult.

190 • Absence of unified global certification standards. ^{30,31,32}

191 **Technological Advancements and Future Directions**

192 Recent technological advancements are rapidly expanding POCUS capabilities:

193 • Handheld, wireless devices have become more affordable and user-friendly

194 • AI-assisted image interpretation, using deep learning algorithms, is emerging as a
195 powerful tool to support novice users

196 • 3D ultrasound and fusion imaging with CT or MRI are pushing the boundaries of
197 bedside diagnostics

198 • Integration with tele-ultrasound platforms allows remote guidance and expert
199 review in real-time, critical during pandemics or rural deployments.^{33,34,35}

200 • **Miniaturization and Portability:** Today's compact, pocket-sized ultrasound
201 devices often connected to smartphones have greatly enhanced accessibility.
202 Additionally, tele-ultrasound systems support remote supervision and training,
203 expanding their utility in diverse clinical settings.

204 • **Sensor Integration and ICU Monitoring:** Studies by Davoudi et al. and Nerella et
205 al. highlight advancements in integrating POCUS with continuous ICU monitoring
206 systems, paving the way for AI-driven, comprehensive critical care.^{36,37}

207

208 **Conclusion**

209 POCUS has firmly established itself as a vital diagnostic and procedural tool in critical care
210 and emergency anaesthesia. Its ability to deliver rapid, real-time, and repeatable bedside
211 assessments has transformed patient management in high-acuity settings, improving
212 diagnostic accuracy, procedural safety, and clinical outcomes. Standardized protocols for
213 cardiac, pulmonary, abdominal, and vascular evaluation have enabled structured and goal-
214 directed approaches to complex clinical scenarios. The growing integration of POCUS into
215 airway management, hemodynamic monitoring, trauma assessment, and regional
216 anaesthesia reflects its expanding utility across a wide range of clinical domains. Educational
217 efforts, competency-based training programs, and support from leading anaesthesia
218 societies have firmly established POCUS as an essential skill in ICU and perioperative care.
219 However, its global adoption still faces obstacles such as limited time, financial constraints,

220 operator variability, and the absence of standardized international certification. Overcoming
221 these challenges will require structured mentorship, the expansion of digital learning
222 platforms, and the development of robust regulatory frameworks.

223 Looking ahead, emerging technologies such as AI-assisted image interpretation, compact
224 wireless ultrasound devices, tele-ultrasound capabilities, and integration with ICU
225 monitoring systems are set to transform the practice of POCUS. These advancements are
226 expected to enhance accessibility, improve diagnostic accuracy, and further embed
227 ultrasound into real-time clinical decision-making. As critical care continues to advance,
228 POCUS is increasingly recognized as a cornerstone of precision medicine, offering clinicians a
229 versatile, reliable, and indispensable tool for managing critically ill patients.

230

231

232 REFERENCES

233 1. Moore CL, Copel JA. Point-of-care ultrasonography. *N Engl J Med.* 2011;364(8):749–
234 57.

235 2. Narasimhan M, Koenig SJ, Mayo PH. A whole-body approach to point-of-care
236 ultrasound. *Chest.* 2016;149(3):722–32.

237 3. Arntfield R, Millington SJ. Point of care cardiac ultrasound applications in the
238 emergency department and intensive care unit—a review. *Curr Cardiol Rev.*
239 2012;8(2):98–108.

240 4. Atkinson P, Bowra J, Milne J, et al. International Federation for Emergency Medicine
241 point of care ultrasound curriculum. *CJEM.* 2015;17(2):161–70.

242 5. Lichtenstein DA, Mezière GA. Relevance of lung ultrasound in the diagnosis of acute
243 respiratory failure: the BLUE protocol. *Chest*. 2008;134(1):117–25.

244 6. Kirkpatrick AW, Blaivas M, Sargsyan AE, et al. The hand-held FAST exam for trauma: a
245 practical guide for clinicians. *Curr Surg*. 2001;58(6):603–8.

246 7. Lamperti M, Bodenham AR, Pittiruti M, et al. International evidence-based
247 recommendations on ultrasound-guided vascular access. *Intensive Care Med*.
248 2012;38(7):1105–17.

249 8. Leung J, Duffy M, Finckh A. Real-time ultrasonographically-guided internal jugular
250 vein catheterization in the emergency department increases success rates and
251 reduces complications: a randomized, prospective study. *Ann Emerg Med*.
252 2006;48(5):540–7.

253 9. Zieleskiewicz L, Muller L, Lakhal K, et al. Point-of-care ultrasound in intensive care
254 units: assessment of 1073 procedures. *Intensive Care Med*. 2015;41(9):1638–47.

255 10. Kristensen MS, Teoh WH, Rudolph SS. Ultrasonography for clinical decision-making
256 and intervention in airway management: from the mouth to the lungs. *Anaesthesia*.
257 2014;69(12):1373–86.

258 11. Ramsingh D, Rinehart J, Kain Z, et al. Impact assessment of perioperative point-of-
259 care ultrasound training on anaesthesiology residents. *Can J Anaesth*.
260 2015;62(4):447–59.

261 12. Perlas A, Van de Putte P, Manickam B, et al. Ultrasound assessment of gastric content
262 and volume. *Anesthesiology*. 2014;120(1):326–37.

263 13. Mayo PH, Beaulieu Y, Doelken P, et al. American College of Chest Physicians/La
264 Société de Réanimation de Langue Française statement on competence in critical
265 care ultrasonography. *Chest*. 2009;135(4):1050–60.

266 14. Spencer KT, Kimura BJ, Korcarz CE, et al. Focused cardiac ultrasound:
267 recommendations from the American Society of Echocardiography. *J Am Soc*
268 *Echocardiogr*. 2013;26(6):567–81.

269 15. Nair A, Hope MD, Williamson EE, et al. ACGME requirements for POCUS training in
270 critical care medicine: a call for standardization. *Chest*. 2021;160(2):540–6.

271 16. Vieillard-Baron A, Augarde R, Prin S, et al. Echo-Doppler evaluation of left ventricular
272 filling pressure in ventilated septic patients. *Intensive Care Med*. 2008;34(2):243–9.

273 17. Volpicelli G, Elbarbary M, Blaivas M, et al. International evidence-based
274 recommendations for point-of-care lung ultrasound. *Intensive Care Med*.
275 2012;38(4):577–91.

276 18. Via G, Tavazzi G, Price S. Ten situations where inferior vena cava ultrasound may fail
277 to accurately predict fluid responsiveness. *Intensive Care Med*. 2016;42(7):1164–7.

278 19. Au AK, Rotte MJ, Grzybowski RJ, et al. Decrease in central venous catheter
279 complications with ultrasound-guided placement in the emergency department.
280 *Acad Emerg Med*. 2012;19(5):618–23.

281 20. Blaivas M, Lambert MJ, Harwood RA, Wood JP, Konicki J. Lower-extremity Doppler for
282 DVT evaluation in the ED: can emergency physicians be accurate and fast? *Am J*
283 *Emerg Med*. 2000;18(6):631–4.

284 21. Saugel B, Cecconi M, Wagner JY. Continuous non-invasive hemodynamic monitoring
285 in critical care and perioperative medicine. *Br J Anaesth.* 2015;114(4):562–75.

286 22. Neal JM, Brull R, Chan VW, et al. The ASRA evidence-based medicine assessment of
287 ultrasound-guided regional anesthesia and pain medicine. *Reg Anesth Pain Med.*
288 2010;35(2 Suppl):S1–9.

289 23. Perera P, Mailhot T, Riley D, et al. The RUSH exam: rapid ultrasound in shock in the
290 evaluation of the critically ill. *Emerg Med Clin North Am.* 2010;28(1):29–56.

291 24. Atkinson P, Bowra J, Milne J, et al. International Federation for Emergency Medicine
292 consensus statement: sonography in hypotension and cardiac arrest (SHoC). *CJEM.*
293 2017;19(6):459–70.

294 25. Ma IW, Arishenkoff S, Wiseman J, et al. Internal medicine point-of-care ultrasound
295 curriculum: consensus recommendations from the Canadian Internal Medicine
296 Ultrasound (CIMUS) group. *J Gen Intern Med.* 2017;32(9):1052–7.

297 26. Blehar DJ, Barton B, Gaspari RJ. Learning curves in emergency ultrasound education.
298 *Acad Emerg Med.* 2015;22(5):574–82.

299 27. Dinh VA, Frederick J, Bartkus R, et al. Educational benefits of a longitudinal
300 ultrasound curriculum for medical students. *J Ultrasound Med.* 2015;34(8):1353–9.

301 28. Eisen LA, Leung S, Gallagher AE, Kvetan V. Barriers to ultrasound training in critical
302 care medicine fellowships: a survey of program directors. *Crit Care Med.*
303 2010;38(10):1978–83.

304 29. Levitov A, Frankel HL, Blaivas M, et al. Guidelines for the appropriate use of bedside
305 general and cardiac ultrasonography in the evaluation of critically ill patients—part I:
306 general ultrasonography. *Crit Care Med.* 2016;44(6):1206–27.

307 30. Jones AE, Tayal VS, Sullivan DM, Kline JA. Randomized, controlled trial of immediate
308 vs. delayed goal-directed ultrasound to identify the cause of nontraumatic
309 hypotension. *Ann Emerg Med.* [Year unknown – please verify for full citation].

310 31. Shokohi H, Boniface KS, Zaragoza M, et al. Handheld ultrasonography: emerging tool
311 in the emergency department. *J Ultrasound Med.* 2011;30(9):1317–23.

312 32. van Sloun RJG, Demi L. Localizing diagnostic information in M-mode
313 echocardiography with deep learning. *IEEE Trans Med Imaging.* 2020;39(5):1510–21.

314 33. Robba C, Wong A, Poole D, et al. Point-of-care ultrasound (POCUS) in the diagnosis
315 and management of acute respiratory failure. *J Intensive Care.* 2019;7:52.

316 34. Shah SP, Epino H, Bukhman G, et al. Impact of the introduction of ultrasound services
317 in a limited resource setting: rural Rwanda 2008. *BMC Int Health Hum Rights.*
318 2009;9:4.

319 35. Kim DJ, Jelic T, Woo MY, et al. Just the facts: Recommendations on point-of-care
320 ultrasound use and machine infection control during the coronavirus disease 2019
321 pandemic. *CJEM.* 2020;22(4):445–9.

322 36. Davoudi A, Malhotra KR, Shickel B, et al. Intelligent ICU for autonomous patient
323 monitoring using pervasive sensing and deep learning. *Sci Rep.* 2019;9(1):8020.

324 37. Nerella S, Chaudhury S, Maheshwari S, et al. Integration of point-of-care ultrasound
325 with ICU monitoring using Internet-of-Medical-Things and deep learning. *J Med Syst.*
326 2021;45(5):42.

327

328

UNDER PEER REVIEW IN IJAR