

1 **POLLUTION AND HEALTH RISKS RELATED TO HEAVY METAL  
2 CONTAMINATION OF WATER RESOURCES IN THE KOKO RIVER  
3 WATERSHED IN THE CITY OF KORHOGO (NORTH OF CÔTE D'IVOIRE).**

4

5 **Abstract**

6 The present study aimed to evaluate the distribution of Hg, As, Cd, Cr, Cu, Ni, Pb and Zn as  
7 well as the health risks in surface water in northern Côte d'Ivoire. The pollution of the waters  
8 was determined by pollution indices. The human health risks were assessed using non  
9 carcinogenic and carcinogenic risks indices. In surface waters, concentrations of trace metals  
10 (Hg, As, Cd, Cr, Cu, Ni, and Zn) in groundwater respected the guideline values. However, the  
11 total concentrations of Pb in surface waters exceeded the guideline values. The pollution  
12 indices HPI, HEI, and WQI revealed very low pollution in the surface waters. The total non-  
13 carcinogenic risk values for Hg, As, Cd, Cr, Cu, and Ni in surface waters varied from  
14  $1.02 \times 10^{-3}$  to  $8.22 \times 10^{-1}$ , indicating low adverse on human health effects. In contrast, the total  
15 non-carcinogenic risk values for Pb and Zn suggest adverse on human health effects. The total  
16 carcinogenic risk (CR) values for Ni, Cd, and Cr in all surface waters varied from  $3.11 \times 10^{-4}$   
17 to  $2.36 \times 10^{-1}$  for children. Concerning adults, these values ranged between  $1.88 \times 10^{-3}$  and  
18  $4.80 \times 10^{-2}$  for Ni and Cr. These results indicate that possible carcinogenic effects may occur  
19 for humans exposed to these waters. The values of CRing (carcinogenic risk by ingestion) of  
20 Pb vary between  $1.93 \times 10^{-3}$  and  $10^{-2}$ , showed potentially significant carcinogenic effects for  
21 all surface waters. However, the CRing values for As for children and Cd for adults indicate  
22 possible carcinogenic effects by ingestion for these two metals. Therefore, it is essential to  
23 treat water to remove trace metals before any domestic or agricultural use.

24 **Keywords:** Trace metals, Pollution assessment, Risk assessment, Surface waters.

25

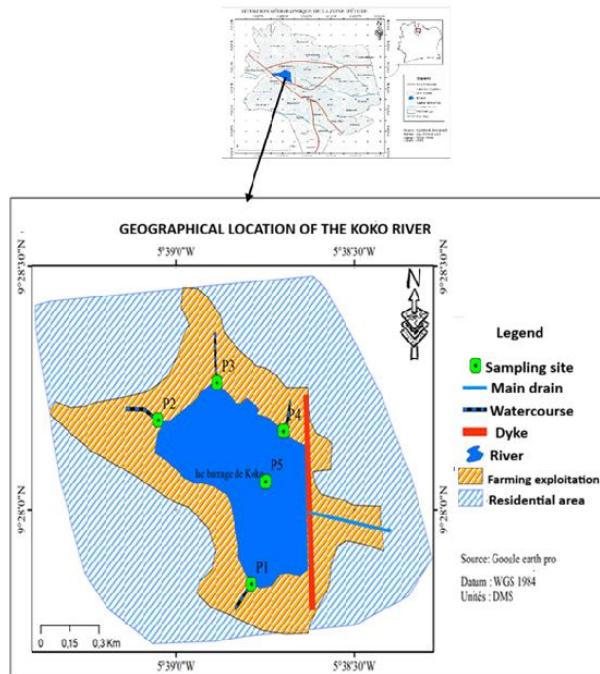
26 **1. Introduction**

27 The town of Korhogo (Figure.1) located in the Poro region (northern Côte d'Ivoire) is  
28 experiencing industrial, tourist and agricultural development, which is increasing the pressure  
29 on water resources already threatened by climate change. The KOKO river is affected by this  
30 economic dynamic. The massive and sustainable intensification of urban agriculture poses a  
31 several challenges for the quality of the river water resources. The use of chemical and  
32 biological inputs as well as maintenance chemicals (pesticides) in this type of agricultural

33 practice pollutes surface water (1). The development of urban agriculture may compromise, in  
34 the long term, the availability of potable water. In addition, the entire northern zone has  
35 become in recent years the cradle of many illegal gold miners from here and the sub-region  
36 who extract minerals through artisanal mining practices (gold, diamonds, etc.). This expose  
37 water resources to various metallic pollutions resulting from mining activities. Generally,  
38 these metal pollutants end up in runoff water, which contaminates surface water and  
39 groundwater, ending up in the food chain with all the harmful consequences this represents  
40 for our health (2,3). Surface waters are known to be the ultimate reservoirs of heavy metals  
41 released into the environment (4). However, in those city, the drinking water supply relies  
42 mainly on surface water reservoirs. It is in this perspective that the Koko dam has been the  
43 subject of many. The studies (5) showned that the metal elements analyzed do not present a  
44 risk of toxicity for consumers, according to the guidelines (6). Conversely, studies (7) showed  
45 that the KOKO dam is polluted by trace metal elements (Lead and Zinc). This dam is fed by  
46 four water sources in addition to rainwater. To date, no study on the evolution of metals in  
47 these effluents has been carried out to diagnose their pollution and their impacts on humans.  
48 Although no outbreaks of illness attributable to heavy metal poisoning have been reported in  
49 the city, it is known that increased concentrations of heavy metals in drinking water can cause  
50 immediate and chronic health problems for residents (8).The common approach to evaluate  
51 health risks consists of directly compare directly compare the values determined with the  
52 permissible limits. This system, although acceptable, does not correctly represent the levels of  
53 danger and does not allow differentiate of the risk agents of greatest concern (9). By  
54 assessing the potential risk involved, it is possible to estimate the likely health consequences  
55 of many pollutants present in an environment (10). Thus, the objective of the study is to  
56 assess pollution by heavy metals and the health risks linked to exposure to pollutants from  
57 water samples collected inside and around the KOKO river, in the town of Korhogo,

58

## 59 **2. Materials and Methods**


### 60 **2.1. Description of the Study Area**

61 The KOKO river is located in the Koko district of the city of Korhogo in northern Côte  
62 d'Ivoire. The city has two climates: hot and humid. The year is divided into two main seasons:  
63 the rainy season (May to October), with average precipitation of 1300 to 1400 mm per year,  
64 and the dry season (November to April), with average annual temperatures of 20°C and 37°C

65 (8). The dam is located between longitudes 5°38'45" W and latitudes 9°28'05"N (Figure.1). It  
66 has an area of 62 hectares (9). Four streams dissect the plateau on which the basin of this body  
67 of water is located. They constitute canals for collecting rainwater runoff and wastewater  
68 from commercial and domestic activities. We have canal to the south (the Koko district), to  
69 west another marks the boundary between Mongaha and Koko. We also have tcanal to the  
70 north (between the Sonzoribougou and Mongaha district) and finally, still to the north, an  
71 artificial stream created by the inhabitants to facilitate the passage of their wastewater (9).

## 72 **2-2. Sampling Methods**

73 The waters sampling was carried out in July 2019 from the tributaries and within the KOKO  
74 river. Preliminary measures have been taken in accordance with standard guidelines (10) to  
75 avoid contamination. Surface waters were sampled with a Niskin bottle (5 L) at 15 cm depth.  
76 To prevent metal precipitation, water samples were acidified with 1 mL of nitric acid (65%  
77 suprapur, E. Merck, Germany) and stored at 4°C until analysis(11).



87 **Figure 1: Geographic location of the study area**

## 88 **2-3-2. Assessment of the degree of metal contamination in surface water**

89 Standard solutions were prepared for calibration, and the total concentrations of Hg, AS, Cd,  
90 Cr, Cu, Ni, Pb, and Zn in the samples were determined using an atomic absorption  
91 spectrophotometer HACH DR 6000. The determination of heavy metals were applied in  
92 accordance with standard guidelines (12). The detection limit for trace metals were 0.0001

93 ppm for Cd and As, 0.0005 mg/L for Hg and Pb, 0.001 ppm for Cu and Ni, and finally 0.005  
94 mg/L for Zn.

95 **2-3-3. Assessment of the pollution level**

96 **2-3-3.2. Metal Pollution Index**

97 The heavy metal pollution index (HPI) is an index proposed by (13). The index is a global  
98 indicator used to assess the level of contamination of water (surface or groundwater) by many  
99 heavy metals simultaneously. It is used by many authors (12; 13) in the context of their  
100 studies to evaluate the metal pollution of surface waters. This method is based on weighted  
101 arithmetic quality. HPI is calculated from equation below :

$$102 \quad HPI = \frac{\sum_{i=0}^n Q_i * W_i}{\sum_{i=0}^n W_i} \quad \text{Equation 1}$$

$$103 \quad W_i = \frac{k}{S_i} \quad \text{Equation 2}$$

$$104 \quad Q_i = \left( \frac{V_i}{S_i} \right) * 100 \quad \text{Equation 3}$$

106  $Q_i$  is the sub-index for  $i$ th trace metal. The unit weighting of  $i$ th metal is defined by  $w_i$ .  $n$  is  
107 the number of metals analysed.  $V_i$  was the determined concentration of the pollutant  $i$ .  $K$  is  
108 the proportionality constant which is equal to 1, while  $S_i$  is the standard value of the parameter  
109 (as a reference the limit established by (6)).

110 The pollution risk based on the HPI value can be classified into three categories.  $HPI < 100$   
111 indicates low pollution of heavy metal.  $HPI = 100$  indicates that harmful health effects are  
112 probable.  $HPI > 100$  suggests that the water is not suitable for drinking (14).

113 **2-3-3.3. Heavy Metal Evaluation Index (HEI)**

114 The HEI is an indicator used to assess the overall quality of an aquatic environment (surface  
115 water, groundwater, etc.) based on the presence of heavy metals. It is used to determine  
116 whether the cumulative concentration of many metals exceeds the limit values established by  
117 reference organizations (6). The HEI index is calculated as follows (14, 15).

$$118 \quad HEI = \sum_{i=1}^n \frac{C_i}{H_{MAC_i}} \quad \text{Equation 4}$$

120 Where  $C_i$  is the measured concentration of the  $i$ th heavy metal.  $MAC_i$  is the maximum  
121 admissible concentration of metal  $i$ . The HEI value below 10 indicates low pollution level.

122 The water is moderately polluted when HEI is between 10 and 20. HEI higher than 20  
123 indicates high pollution level (14).

#### 124 **2-3-3.4. Water Quality Indices (WQI)**

125 The water quality index (WQI) was proposed by (16) with the following equation: Where Ci  
126 was the determined value of ith parameter. Si was the standard value according to WHO.

127  $IQE = \sum (PRi \times Ci / Si \times 100)$  **Equation 5**

128  $PRi = Pui / \sum Pui$  **Equation 6**

130 Where :

131 PRi and Pui : PRi and Pui were the relative weight and the weight attributed to the element i,  
132 respectively.

133 Ci : Concentration of element i

134 Si : was the standard value according to WHO

135 WQI value below 50 indicates excellent quality; water quality is good when  $50 \leq WQI < 1$ ;  
136 when  $100 \leq WQI < 200$ , water quality is poor; if  $200 \leq WQI < 300$ , water quality is very  
137 poor;  $WQI \geq 300$  indicates that water is not drinkable (17; 18).

#### 138 **2-3-3.4. Health Risk Assessment**

139 This study used the CDI to calculate the non-carcinogenic and carcinogenic risks associated  
140 with ingestion and dermal exposure to trace elements present in water samples (19, 20).

141  
142  $CDI_{ing} = \frac{C_i \times IR \times EF \times ED}{BW \times AT_{nc}}$  **Equation 7**  
143

144  $CDI_{der} = \frac{C_i \times SA \times K_p \times ET \times EF \times ED \times CF}{BW \times AT_{nc}}$  **Equation 8**  
145

147 Where CDI<sub>ing</sub> ( $\mu\text{g}/\text{Kg} \cdot \text{day}$ ) indicates the chronic daily intake through ingestion.  
148 CDI<sub>der</sub> ( $\mu\text{g}/\text{Kg} \cdot \text{day}$ ) expresses the chronic daily intake through dermal contact.

##### 149 **2-3-3.4.1. Non-carcinogenic risks**

150 The hazard quotient (HQ) was used to assess the non carcinogenic risk The hazard index (HI)  
151 expresses the total non-carcinogenic risk. HI is computed as follows (21)

$$HQ_{ing} = \frac{CDI_{ing}}{RFD_{ing}} \quad \text{Equation 9}$$

152

153

154 
$$HD_{der} = \frac{CDI_{der}}{RFD_{der}}$$
 **Equation 10**

155 
$$RFD_{der} = RFD_{ing} \times ABS_g$$
 **Equation 11**

156 
$$HI = \Sigma(HQ_{ing} + HQ_{der})$$
 **Equation 12**

157

158 The HI value below 1 indicates low adverse effects. When  $HI \geq 1$ , adverse effects can occur  
159 on human health (21).

160 **2-3-3.4.2. Carcinogenic risks**

161 Trace metals AS, Cd, Cr, Ni et Pb were used to assess the carcinogenic risk. The carcinogenic  
162 risk is calculated as follows (22, 23) :

163 
$$CR_{ing} = CDI_{ing} \times SF_{ing}$$
 **Equation 13**

164 
$$CR_{der} = CDI_{der} \times SF_{der}$$
 **Equation 14**

165

166 Where SF represents the carcinogenicity factor. The dermal carcinogenicity factor is  
167 calculated using the following formula:

168 
$$SF_{der} = \frac{SF_{ing}}{ABS_g}$$
 **Equation 15**

170 The total carcinogenic risk is determined by the equation:

171 
$$CR = \sum (CR_{ing} + CR_{der})$$
 **Equation 16**

172 The range of acceptable carcinogenic risk is  $10^{-6}$  to  $10^{-4}$ . CR value  $\leq 10^{-6}$  indicates no  
173 significant risk. When CR value  $\geq 10^{-4}$ , humans can develop a cancer (22). The other exposure  
174 parameters were reported in Table 1.

175 **Table 1 :Exposure assessment parameters.**

| Parameter | Meaning            | Adult | Child | Unit    | Références |
|-----------|--------------------|-------|-------|---------|------------|
| IR        | Ingestion rate     | 2,2   | 1     | L/jour  | (23)       |
| EF        | Exposure frequency | 365   | 365   | Jour/an | (23)       |

|               |                                                  |                                                                                         |                 |                 |       |
|---------------|--------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------|-----------------|-------|
| <b>ED</b>     | Exposure duration                                | 30                                                                                      | 10              | An              | (22)  |
| <b>BW</b>     | Body weight                                      | 70                                                                                      | 15              | Kg              | (23)  |
| <b>ATnc</b>   | Average time for non-carcinogenic                | DE x 365=25550                                                                          | DE x 365= 3650  |                 | (25)  |
| <b>ATc</b>    | Average time for carcinogenic                    | EDV x 365=21170                                                                         | EDV x 365=21170 |                 | (25)  |
| <b>SA</b>     | Skin-surface area                                | 5700                                                                                    | 2800            | Cm <sup>2</sup> | (23)  |
| <b>Kp</b>     | Permeability coefficient                         | As, Hg, Cu, et Cd :0,001 Cr :0,002 ; Ni :0,0002 ; Zn, Pb : 0,0001                       |                 | Cm /h           | (23)  |
| <b>ET</b>     | Exposure time                                    | 0,58                                                                                    | 1               | h/jour          | (23). |
| <b>CF</b>     | Conversion factor                                | 0,001                                                                                   |                 |                 | (23)  |
| <b>RfDing</b> | Reference dose of heavy metals through ingestion | As et Hg :0,3 ; Pb: 0,001 ; Zn: 0,0006 Cd :0,5 ; Cr :3, Ni :20 ; Cu : 20                | μg/Kg/Jour      |                 | (23)  |
| <b>SFing</b>  | Slop factor of metal through ingestion           | Cd : 0,38 ; Ni :0,91 ; Cr : 0,42, As : 0,0015 ; Pb : 0,0085                             | μg /Kg/Jour     |                 | (23)  |
| <b>ABSG</b>   | Gastrointestinal absorption factor               | As :1,5 et Cu :1 ; Hg : 0,07 ; Cd : 0,05 ; Ni :0,04 ; Cr : 0,025 ; Pb : 0,3 ; Zn : 0,02 |                 |                 | (24)  |

176

177 **3. Results and Discussion**

178 **3-1. Characteristics of trace metal elements in water**

179 The distributions of total concentrations of Hg, As, Cd, Cr, Cu, Ni, Pb, and Zn in the  
 180 tributaries and the Koko River are shown in Table 2. Hg concentrations varied between 0,37  
 181 and 0.11 μg/L. The Hg values were more concentrated of 0,37 μg/L, 0.31 μg/L, 0,27 μg/L,  
 182 0.24 μg/L, and 0.11 μg/L, in the river and tributaries 1, 4, 2, and 3, respectively. As  
 183 concentrations varied between 0.9 μg/L and 3.69 μg/L. The values were 0.9 μg/L in tributary  
 184 1 ; 1.5 in tributary 3 ; 2.43 μg/L in tributary 4 ; 2.68 in the river, and 3.69 μg/L in tributary 2.  
 185 As shown in Table 1, Cd concentrations varied between 0.19 and 0.40 μg/L. Cd  
 186 concentrations were 0.219 μg/L; 0.258 μg/L; 0.304 μg/L; 0.322 μg/L, and 0.40 μg/L in  
 187 tributaries 2, 4, 3, the river, and tributary 1, respectively. Concentrations of Cr varied  
 188 between 1,16 μg/L to 4.61 μg/L. The values were 1.16 μg/L in tributary 1; 1.81 μg/L in  
 189 tributary 3; 2.77 μg/L in tributary 2; 4.15 μg/L in tributary 4; and 4.61 μg/L in the river. Cu  
 190 Concentrations varied between 2.57 and 4.81 μg/L. The values Cu were 2.57 μg/L, 3.03 μg/L,  
 191 3.77 μg/L, 4.21 μg/L, and 4.81 μg/L in tributaries 1, 3, 2, the river, and tributary 4,  
 192 respectively. Trace metal Nickel concentrations varied between 1.42 and 3.89 mg/L.

193 Concentrations were 1.42 µg/L, 2.18 µg/L, 2.83 µg/L, 3.37 µg/L, and 3.89 µg/L in tributaries  
 194 1, 3, 2, 4, and the river, respectively. Trace metal Pb concentrations varied between 16.90  
 195 µg/L to 25.2 µg/L. The values were 22.1 µg/L in tributary 1; 25.2 µg/L in tributary 3; 16.90  
 196 µg/L in tributary 2; 24.5 µg/L in tributary 4; and 17.7 µg/L in the river. Zn concentrations  
 197 varied between 15.21 µg/L and 43.11 µg/L. The values were 15.21 µg/L in tributary 1, 19.67  
 198 µg/L in tributary 3, 39.41 µg/L in tributary 4, 43.11 in the river, and 28.44 µg/L in tributary  
 199 2. The trace metal concentrations measured in the tributaries and River varied between 0.11  
 200 and 43.11 µg/L. These values generally respect the standards recommended by (6), with the  
 201 exception of Pb, which has high values in the sampling areas. These results corroborate those  
 202 of (7), which had demonstrated a particularly high concentration of Pb in the water of the Koko  
 203 River. The high concentrations of Pb observed could be attributed to significant  
 204 anthropogenic pressure on the city of Korhogo, particularly due to agricultural, and agro-  
 205 industrial activities (26). (27) have reported that vehicular exhausts from leaded gasoline are a  
 206 source of Pb in the environment. Therefore, proximity of the study area to the road, may also  
 207 explain the high concentration of Pb. Pesticides and fertilizers used on surrounding farms  
 208 contain heavy metals (Cd, Hg, Pb, Al, As, Cr, Cu, Mn, Ni et Zn etc.). These heavy metals  
 209 may be introduced the river through natural processes. (28, 29, 30). According to (31), their  
 210 persistence in the environment (water, soil, air) can lead to the accumulation of these  
 211 molecules in the food chain. Surface water pollution is influenced by anthropogenic activities  
 212 (32).

213 **Table 2. Concentrations of trace metals (µg/L) in the tributaries and the KOKO River.**

| Stations    | Hg(µg/L) | AS(µg/L) | Cd(µg/L) | Cr(µg/L) | Cu(µg/L) | Ni(µg/L) | Pb(µg/L) | Zn(µg/L) |
|-------------|----------|----------|----------|----------|----------|----------|----------|----------|
| River       | 0.37     | 2.68     | 0.322    | 4.61     | 4.21     | 3.89     | 17.7     | 43.11    |
| Tributary 1 | 0.31     | 0.9      | 0.40     | 1.16     | 2.57     | 1.42     | 22.1     | 15.21    |
| Tributary 2 | 0.24     | 3.69     | 0.219    | 2.77     | 3.77     | 2.83     | 16.90    | 28.44    |
| Tributary 3 | 0.11     | 1.5      | 0.304    | 1.81     | 3.03     | 2.18     | 25.2     | 19.67    |
| Tributary 4 | 0.27     | 2.43     | 0.258    | 4.15     | 4.81     | 3.37     | 24.5     | 39.41    |

214

215

### 216 **3.2. Pollution indices and water quality assessment**

217 The pollution indices HPI, HEI, and WQI values are shown in Table 3. The HPI values  
 218 obtained in tributaries 1, 2, 3, 4, and the river are 57.50 ; 52.50 ; 65.01 ; 67.49 and 34.32,  
 219 respectively. According to the HPI scale, the HPI values obtained in surface waters indicate

220 low pollution of heavy metal. The HEI values in tributaries 1, 2, 3, 4, and the river are 2.62 ;  
221 2.36 ; 2.90 ; 3.06 and 2.49, respectively, which indicated a low pollution. For the WQI,  
222 tributaries 1, 2, 3, 4, and the river have respective values of 38.6 ; 32.45 ; 41.48 ; 41.86, and  
223 34.34. These results showed that the quality of the groundwater was excellent. Whatever the  
224 index, we noted that these values are significantly higher of tributaries 3 and 4. The high  
225 pollution level of surface waters may be due to Domestic wastewater and waste residues from  
226 agricultural activities discharge in the surface waters. Therefore, environmental management  
227 and reduced surface waters pollution by trace metals are highly crucial.

228 **Table 3: values of WQI, HPI, and HEI.**

| Water       | WQI   | HPI   | HEI  |
|-------------|-------|-------|------|
| River       | 34.34 | 34.32 | 2.49 |
| Tributary 1 | 38.60 | 57.50 | 2.64 |
| Tributary 2 | 32.45 | 51.78 | 2.36 |
| Tributary 3 | 41.48 | 65.01 | 2.90 |
| Tributary 4 | 41.86 | 67.49 | 3.06 |

234 **3.3. Health risk assessment**

235 **3.3.1. Assessment of non-carcinogenic risks in adults and children**

236 The HQder, HQing, and HI values were reported in Table 4. The values of the HQder, HQing  
237 and HI indices of Hg, As, Cd, Cr, Cu and Ni were lower than 1 for adults and children in the  
238 various tributaries and the KOKO River. The results showed that these trace metals have no  
239 adverse effects on humans. However, the HQing, HQder, and HI values for Pb and Zn in all  
240 of these surface waters varied between  $1.05$  and  $1.68 \times 10^3$ . the values were higher 1 for adults  
241 and children. All values suggested that adverse effects could occur on human health through  
242 ingestion or dermal contact with these metals (Pb and Zn). According to (33), Pb was reported  
243 as a major contributor to non-carcinogenic risk. In this study, the values of HQing were higher  
244 than those of HQder. Tributaries 3 and 4 showed high HQing and HI index values compared  
245 to other surface waters. It can therefore be inferred that the population living around these  
246 surface waters could develop non-carcinogenic risks related to Pb and Zn through water  
247 ingestion. It is therefore important to prohibit this population to swim in these waters.

248 **Table 4: Values of non-carcinogenic risk indices for dermal contact (HQder), ingestion**  
249 **(HQing), and total non-carcinogenic risk (HI) related to trace metals.**

**Children**

| Water         | Indice | Hg (ug/L)             | AS(ug/L)              | Cd(ug/L)              | Cr(ug/L)              | Cu(ug/L)              | Ni(ug/L)              | Pb(ug/L)             | Zn(ug/L)             |
|---------------|--------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------|----------------------|
| River         | HQing  | 8,22×10 <sup>-2</sup> | 5,97×10 <sup>-1</sup> | 4,29×10 <sup>-2</sup> | 1,02×10 <sup>-1</sup> | 1,40×10 <sup>-2</sup> | 1,30×10 <sup>-2</sup> | 1,18×10 <sup>3</sup> | 4,79×10 <sup>3</sup> |
|               | HQder  | 3,29×10 <sup>-3</sup> | 1,11×10 <sup>-3</sup> | 2,40×10 <sup>-3</sup> | 2,29×10 <sup>-2</sup> | 3,93×10 <sup>-5</sup> | 1,82×10 <sup>-4</sup> | 1,10                 | 6,71×10 <sup>1</sup> |
|               | HI     | 8,55×10 <sup>-2</sup> | 5,98×10 <sup>-1</sup> | 4,53×10 <sup>-2</sup> | 1,25×10 <sup>-1</sup> | 1,41×10 <sup>-2</sup> | 1,31×10 <sup>-2</sup> | 1,18×10 <sup>3</sup> | 4,86×10 <sup>3</sup> |
| Tributary 1   | HQing  | 7,00×10 <sup>-2</sup> | 2,00×10 <sup>-1</sup> | 6,00×10 <sup>-2</sup> | 2,58×10 <sup>-2</sup> | 8,57×10 <sup>-3</sup> | 4,73×10 <sup>-3</sup> | 1,47×10 <sup>3</sup> | 1,69×10 <sup>3</sup> |
|               | HQder  | 2,76×10 <sup>-3</sup> | 3,73×10 <sup>-4</sup> | 2,99×10 <sup>-3</sup> | 5,77×10 <sup>-3</sup> | 2,40×10 <sup>-5</sup> | 6,63×10 <sup>-5</sup> | 1,38                 | 2,37×10 <sup>1</sup> |
|               | HI     | 7,28×10 <sup>-2</sup> | 2,00×10 <sup>-1</sup> | 6,30×10 <sup>-2</sup> | 3,16×10 <sup>-2</sup> | 8,59×10 <sup>-3</sup> | 4,80×10 <sup>-3</sup> | 1,47×10 <sup>3</sup> | 1,71×10 <sup>3</sup> |
| Tributary 2   | HQing  | 5,30×10 <sup>-2</sup> | 8,20×10 <sup>-1</sup> | 3,00×10 <sup>-2</sup> | 6,16×10 <sup>-2</sup> | 1,26×10 <sup>-2</sup> | 9,43×10 <sup>-3</sup> | 1,13×10 <sup>3</sup> | 3,16×10 <sup>3</sup> |
|               | HQder  | 2,13×10 <sup>-3</sup> | 1,53×10 <sup>-3</sup> | 1,64×10 <sup>-3</sup> | 1,38×10 <sup>-2</sup> | 3,52×10 <sup>-5</sup> | 1,32×10 <sup>-4</sup> | 1,05                 | 4,42×10 <sup>1</sup> |
|               | HI     | 5,51×10 <sup>-2</sup> | 8,22×10 <sup>-1</sup> | 3,16×10 <sup>-2</sup> | 7,53×10 <sup>-2</sup> | 1,26×10 <sup>-2</sup> | 9,57×10 <sup>-3</sup> | 1,13×10 <sup>3</sup> | 3,20×10 <sup>3</sup> |
| Tributary 3   | HQing  | 2,00×10 <sup>-3</sup> | 3,30×10 <sup>-1</sup> | 4,00×10 <sup>-2</sup> | 4,02×10 <sup>-2</sup> | 1,01×10 <sup>-2</sup> | 7,27×10 <sup>-3</sup> | 1,68×10 <sup>3</sup> | 2,19×10 <sup>3</sup> |
|               | HQder  | 9,78×10 <sup>-4</sup> | 6,22×10 <sup>-4</sup> | 2,27×10 <sup>-3</sup> | 9,01×10 <sup>-3</sup> | 2,83×10 <sup>-5</sup> | 1,02×10 <sup>-4</sup> | 1,57                 | 3,06×10 <sup>1</sup> |
|               | HI     | 2,98×10 <sup>-3</sup> | 3,31×10 <sup>-1</sup> | 4,23×10 <sup>-2</sup> | 4,92×10 <sup>-2</sup> | 1,01×10 <sup>-2</sup> | 7,37×10 <sup>-3</sup> | 1,68×10 <sup>3</sup> | 2,22×10 <sup>3</sup> |
| Tributary 4   | HQing  | 6,00×10 <sup>-2</sup> | 5,40×10 <sup>-1</sup> | 3,40×10 <sup>-2</sup> | 9,22×10 <sup>-2</sup> | 1,60×10 <sup>-2</sup> | 1,12×10 <sup>-2</sup> | 1,63×10 <sup>3</sup> | 4,38×10 <sup>3</sup> |
|               | HQder  | 2,40×10 <sup>-3</sup> | 1,01×10 <sup>-3</sup> | 1,93×10 <sup>-3</sup> | 2,07×10 <sup>-2</sup> | 4,49×10 <sup>-5</sup> | 1,57×10 <sup>-4</sup> | 1,52                 | 6,13×10 <sup>1</sup> |
|               | HI     | 6,24×10 <sup>-2</sup> | 5,41×10 <sup>-1</sup> | 3,59×10 <sup>-2</sup> | 1,13×10 <sup>-1</sup> | 1,61×10 <sup>-2</sup> | 1,14×10 <sup>-2</sup> | 1,63×10 <sup>3</sup> | 4,44×10 <sup>3</sup> |
| <b>Adults</b> |        |                       |                       |                       |                       |                       |                       |                      |                      |
|               |        | Hg (ug/L)             | AS (ug/L)             | Cd(ug/L)              | Cr(ug/L)              | Cu(ug/L)              | Ni(ug/L)              | Pb(ug/L)             | Zn(ug/L)             |
| River         | HQing  | 1,67×10 <sup>-2</sup> | 1,20×10 <sup>-1</sup> | 8,67×10 <sup>-3</sup> | 2,07×10 <sup>-2</sup> | 2,84×10 <sup>-3</sup> | 2,62×10 <sup>-3</sup> | 2,38×10 <sup>2</sup> | 9,68×10 <sup>2</sup> |
|               | HQder  | 3,29×10 <sup>-3</sup> | 1,11×10 <sup>-3</sup> | 2,40×10 <sup>-3</sup> | 2,29×10 <sup>-2</sup> | 3,93×10 <sup>-5</sup> | 1,82×10 <sup>-4</sup> | 1,10                 | 6,71×10 <sup>1</sup> |
|               | HI     | 2,00×10 <sup>-2</sup> | 1,21×10 <sup>-1</sup> | 1,11×10 <sup>-2</sup> | 4,36×10 <sup>-2</sup> | 2,87×10 <sup>-3</sup> | 2,80×10 <sup>-3</sup> | 2,40×10 <sup>2</sup> | 1,03×10 <sup>3</sup> |
| Tributary 1   | HQing  | 1,39×10 <sup>-2</sup> | 4,04×10 <sup>-2</sup> | 1,08×10 <sup>-2</sup> | 5,21×10 <sup>-3</sup> | 1,73×10 <sup>-3</sup> | 9,56×10 <sup>-4</sup> | 2,98×10 <sup>2</sup> | 3,41×10 <sup>2</sup> |
|               | HQder  | 2,76×10 <sup>-3</sup> | 3,73×10 <sup>-4</sup> | 2,99×10 <sup>-3</sup> | 5,77×10 <sup>-3</sup> | 2,40×10 <sup>-5</sup> | 6,63×10 <sup>-5</sup> | 1,38                 | 2,37×10 <sup>1</sup> |
|               | HI     | 1,67×10 <sup>-2</sup> | 4,08×10 <sup>-2</sup> | 1,38×10 <sup>-2</sup> | 1,10×10 <sup>-2</sup> | 1,75×10 <sup>-3</sup> | 1,02×10 <sup>-3</sup> | 2,99×10 <sup>2</sup> | 3,65×10 <sup>2</sup> |
| Tributary 2   | HQing  | 1,08×10 <sup>-2</sup> | 1,66×10 <sup>-1</sup> | 5,90×10 <sup>-3</sup> | 1,24×10 <sup>-2</sup> | 2,54×10 <sup>-3</sup> | 1,91×10 <sup>-3</sup> | 2,28×10 <sup>2</sup> | 6,38×10 <sup>2</sup> |
|               | HQder  | 2,13×10 <sup>-2</sup> | 1,53×10 <sup>-3</sup> | 1,64×10 <sup>-3</sup> | 1,38×10 <sup>-2</sup> | 3,52×10 <sup>-5</sup> | 1,32×10 <sup>-4</sup> | 1,05                 | 4,42×10 <sup>1</sup> |
|               | HI     | 1,29×10 <sup>-2</sup> | 1,67×10 <sup>-1</sup> | 7,53×10 <sup>-3</sup> | 2,62×10 <sup>-2</sup> | 2,57×10 <sup>-3</sup> | 2,04×10 <sup>-3</sup> | 2,29×10 <sup>2</sup> | 6,83×10 <sup>2</sup> |
| Tributary 3   | HQing  | 4,94×10 <sup>-3</sup> | 6,73×10 <sup>-2</sup> | 8,19×10 <sup>-3</sup> | 8,13×10 <sup>-3</sup> | 2,04×10 <sup>-3</sup> | 1,47×10 <sup>-3</sup> | 3,39×10 <sup>2</sup> | 4,42×10 <sup>2</sup> |
|               | HQder  | 9,78×10 <sup>-4</sup> | 6,22×10 <sup>-4</sup> | 2,27×10 <sup>-3</sup> | 9,01×10 <sup>-3</sup> | 2,83×10 <sup>-5</sup> | 1,02×10 <sup>-4</sup> | 1,57                 | 3,06×10 <sup>1</sup> |
|               | HI     | 5,92×10 <sup>-3</sup> | 6,80×10 <sup>-2</sup> | 1,05×10 <sup>-2</sup> | 1,71×10 <sup>-2</sup> | 2,07×10 <sup>-3</sup> | 1,57×10 <sup>-3</sup> | 3,41×10 <sup>2</sup> | 4,72×10 <sup>2</sup> |
| Tributary 4   | HQing  | 1,21×10 <sup>-2</sup> | 1,09×10 <sup>-1</sup> | 6,95×10 <sup>-3</sup> | 1,86×10 <sup>-2</sup> | 3,24×10 <sup>-3</sup> | 2,27×10 <sup>-3</sup> | 3,30×10 <sup>2</sup> | 8,84×10 <sup>2</sup> |
|               | HQder  | 2,40×10 <sup>-3</sup> | 1,01×10 <sup>-3</sup> | 1,93×10 <sup>-3</sup> | 2,07×10 <sup>-2</sup> | 4,49×10 <sup>-5</sup> | 1,57×10 <sup>-4</sup> | 1,52                 | 6,13×10 <sup>1</sup> |
|               | HI     | 1,45×10 <sup>-2</sup> | 1,10×10 <sup>-1</sup> | 8,88×10 <sup>-3</sup> | 3,93×10 <sup>-2</sup> | 3,28×10 <sup>-3</sup> | 2,43×10 <sup>-3</sup> | 3,32×10 <sup>2</sup> | 9,46×10 <sup>2</sup> |

250

251

252

253

### 254 3.3.2. Carcinogenic risk assessment

255 The carcinogenic risk was assessed using these trace metals : As, Pb, Cr, Ni, and Cd (34). The  
 256 CRing, CRder, and total risk (CR) values are reported in Table 5. The total carcinogenic risk  
 257 (CR) values for Ni, Cd, and Cr in all surface waters ranged between  $3.11 \times 10^{-4}$  and  $2.36 \times 10^{-1}$   
 258 for children. For adults, they ranged between  $1.88 \times 10^{-3}$  and  $4.80 \times 10^{-2}$  for Ni and Cr. These

259 results indicate that possible carcinogenic effects can occur for humans who will be in contact  
 260 with these waters. The CRing values of As ranged between  $1.5 \times 10^{-4}$  and  $3.70 \times 10^{-4}$ , indicating  
 261 possible great carcinogenic effects for children. In contrast, for adults, ingestion would  
 262 present a high risk related to Cd ( $1.12 \times 10^{-3} \leq \text{CRing} \leq 12.11 \times 10^{-3}$ ), while no significant risk  
 263 ( $3.04 \times 10^{-8} \leq \text{CRder} \leq 7.47 \times 10^{-8}$  or  $1.82 \times 10^{-5} \leq \text{CRing} \leq 7.46 \times 10^{-5}$ ) would be observed for  
 264 As in adults. Possible carcinogenic effects through ingestion are also observed in adults ( $1.93$   
 265  $\times 10^{-3} \leq \text{CRing} \leq 2.89 \times 10^{-3}$ ) and children ( $9.58 \times 10^{-3} \leq \text{CRing} \leq 10^{-2}$ ) for Pb. In this study, the  
 266 CRing values were higher than those of CRder. All tributaries and rivers showed high values  
 267 of CRing and CRder for Cd, Cr, and Ni. Pb and As showed significant values for the CRing  
 268 index for all surface waters. Similar results were obtained by (35, 36, and 37), who indicated  
 269 that these trace metals posed a possible carcinogenic risk. In addition, previous studies have  
 270 revealed that human exposure to low concentrations of these trace metals over long-term can  
 271 have toxic and carcinogenic effects (38). (39) also reported that these trace metals in the soil  
 272 posed a significant carcinogenic risk to adults and children. Particular attention should be paid  
 273 therefore to the pollution of these elements.

274 **Table 5: Values of carcinogenic risk indices for dermal contact (CRder), ingestion**  
 275 **(CRing), and total carcinogenic risk (TCR) related to trace metals.**

| Children   |         |                       |                       |                       |                       |                       |
|------------|---------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Water      | Indices | As(ug/L)              | Cd(ug/L)              | Cr(ug/L)              | Ni(ug/L)              | Pb(ug/L)              |
| River      | CRing   | $2.70 \times 10^{-4}$ | $7.60 \times 10^{-3}$ | $1.29 \times 10^{-1}$ | $2.36 \times 10^{-1}$ | $1.00 \times 10^{-2}$ |
|            | CRder   | $5.00 \times 10^{-7}$ | $4.57 \times 10^{-4}$ | $2.89 \times 10^{-2}$ | $3.30 \times 10^{-3}$ | $9.36 \times 10^{-6}$ |
|            | CR      | $2.71 \times 10^{-4}$ | $8.06 \times 10^{-3}$ | $1.58 \times 10^{-1}$ | $2.39 \times 10^{-1}$ | $1.00 \times 10^{-2}$ |
| Tributary1 | CRing   | $9.00 \times 10^{-5}$ | $1.01 \times 10^{-2}$ | $3.25 \times 10^{-2}$ | $8.61 \times 10^{-2}$ | $1.25 \times 10^{-2}$ |
|            | CRder   | $1.68 \times 10^{-7}$ | $5.67 \times 10^{-4}$ | $7.28 \times 10^{-3}$ | $1.21 \times 10^{-3}$ | $1.17 \times 10^{-5}$ |
|            | CR      | $9.02 \times 10^{-5}$ | $1.07 \times 10^{-2}$ | $3.98 \times 10^{-2}$ | $8.74 \times 10^{-2}$ | $1.25 \times 10^{-2}$ |
| Tributary2 | CRing   | $3.69 \times 10^{-4}$ | $5.55 \times 10^{-3}$ | $7.76 \times 10^{-2}$ | $1.72 \times 10^{-1}$ | $9.58 \times 10^{-3}$ |
|            | CRder   | $6.89 \times 10^{-7}$ | $3.11 \times 10^{-4}$ | $1.74 \times 10^{-2}$ | $2.40 \times 10^{-3}$ | $8.94 \times 10^{-6}$ |
|            | CR      | $3.70 \times 10^{-4}$ | $5.86 \times 10^{-3}$ | $9.49 \times 10^{-2}$ | $1.74 \times 10^{-1}$ | $9.59 \times 10^{-3}$ |
| Tributary3 | CRing   | $1.50 \times 10^{-4}$ | $7.70 \times 10^{-3}$ | $5.07 \times 10^{-2}$ | $1.32 \times 10^{-1}$ | $1.43 \times 10^{-2}$ |
|            | CRder   | $2.80 \times 10^{-7}$ | $4.31 \times 10^{-4}$ | $1.14 \times 10^{-2}$ | $1.85 \times 10^{-3}$ | $1.33 \times 10^{-5}$ |
|            | CR      | $1.50 \times 10^{-4}$ | $8.13 \times 10^{-3}$ | $6.20 \times 10^{-2}$ | $1.34 \times 10^{-1}$ | $1.43 \times 10^{-2}$ |
| Tributary4 | CRing   | $2.43 \times 10^{-4}$ | $6.54 \times 10^{-3}$ | $1.16 \times 10^{-1}$ | $2.04 \times 10^{-1}$ | $1.39 \times 10^{-2}$ |
|            | CRder   | $4.54 \times 10^{-7}$ | $3.66 \times 10^{-4}$ | $2.60 \times 10^{-2}$ | $2.86 \times 10^{-3}$ | $1.30 \times 10^{-5}$ |
|            | CR      | $2.43 \times 10^{-4}$ | $6.90 \times 10^{-3}$ | $1.42 \times 10^{-1}$ | $2.07 \times 10^{-1}$ | $1.39 \times 10^{-2}$ |
| Adults     |         |                       |                       |                       |                       |                       |
| River      | CRing   | $5.41 \times 10^{-5}$ | $1.65 \times 10^{-3}$ | $2.61 \times 10^{-2}$ | $4.77 \times 10^{-2}$ | $2.03 \times 10^{-3}$ |
|            | CRder   | $5.42 \times 10^{-8}$ | $4.95 \times 10^{-5}$ | $3.14 \times 10^{-3}$ | $3.58 \times 10^{-4}$ | $1.02 \times 10^{-6}$ |
|            | CR      | $5.42 \times 10^{-5}$ | $1.70 \times 10^{-3}$ | $2.92 \times 10^{-2}$ | $4.80 \times 10^{-2}$ | $2.03 \times 10^{-3}$ |
| Tributary1 | CRing   | $1.82 \times 10^{-5}$ | $2.05 \times 10^{-3}$ | $6.56 \times 10^{-3}$ | $1.74 \times 10^{-2}$ | $2.53 \times 10^{-3}$ |
|            | CRder   | $1.82 \times 10^{-8}$ | $6.15 \times 10^{-5}$ | $7.89 \times 10^{-4}$ | $1.31 \times 10^{-4}$ | $1.27 \times 10^{-6}$ |

|                   |       |                       |                       |                       |                       |                       |
|-------------------|-------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|                   | CR    | $1,82 \times 10^{-5}$ | $2,11 \times 10^{-3}$ | $7,35 \times 10^{-3}$ | $1,75 \times 10^{-2}$ | $2,53 \times 10^{-3}$ |
|                   | CRing | $7,46 \times 10^{-5}$ | $1,12 \times 10^{-3}$ | $1,57 \times 10^{-2}$ | $3,47 \times 10^{-2}$ | $1,93 \times 10^{-3}$ |
| <b>Tributary2</b> | CRder | $7,47 \times 10^{-8}$ | $3,37 \times 10^{-5}$ | $1,88 \times 10^{-3}$ | $2,61 \times 10^{-4}$ | $9,69 \times 10^{-7}$ |
|                   | CR    | $7,46 \times 10^{-5}$ | $1,15 \times 10^{-3}$ | $1,76 \times 10^{-2}$ | $3,49 \times 10^{-2}$ | $1,94 \times 10^{-3}$ |
|                   | CRing | $3,03 \times 10^{-5}$ | $1,56 \times 10^{-3}$ | $1,02 \times 10^{-2}$ | $2,67 \times 10^{-2}$ | $2,89 \times 10^{-3}$ |
| <b>Tributary3</b> | CRder | $3,04 \times 10^{-8}$ | $4,68 \times 10^{-5}$ | $1,23 \times 10^{-3}$ | $2,01 \times 10^{-4}$ | $1,45 \times 10^{-6}$ |
|                   | CR    | $3,03 \times 10^{-5}$ | $1,60 \times 10^{-3}$ | $1,15 \times 10^{-2}$ | $2,69 \times 10^{-2}$ | $2,89 \times 10^{-3}$ |
|                   | CRing | $4,91 \times 10^{-5}$ | $1,32 \times 10^{-3}$ | $2,35 \times 10^{-2}$ | $4,13 \times 10^{-2}$ | $2,81 \times 10^{-3}$ |
| <b>Tributary4</b> | CRder | $4,92 \times 10^{-8}$ | $3,97 \times 10^{-5}$ | $2,82 \times 10^{-3}$ | $3,10 \times 10^{-4}$ | $1,41 \times 10^{-6}$ |
|                   | CR    | $4,91 \times 10^{-5}$ | $1,36 \times 10^{-3}$ | $2,63 \times 10^{-2}$ | $4,16 \times 10^{-2}$ | $2,81 \times 10^{-3}$ |

276

277

278 **5. Conclusion**

279 The objective of the study is to assess heavy metal concentrations and health risks in surface  
 280 waters around and within the KOKO River in the city of Korhogo, Côte d'Ivoire. The results  
 281 showed that concentrations of Hg, As, Cd, Cr, Cu, Ni, and Zn in surface water were below  
 282 WHO guidelines, while Pb values exceeded WHO guideline values. The pollution indices  
 283 HPI and HEI indicated low pollution of surface water. In addition, WQI Index indicated that  
 284 surface water quality was excellent. The non-carcinogenic risk assessment showed that, for  
 285 surface water, the HQder, HQing, and HI values were below 1 for trace metals such as  
 286 mercury (Hg), arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), and nickel (Ni) in  
 287 adults and children, indicating low adverse effects. However, the HQing, HQder, and HI  
 288 values for Pb and Zn in all of these surface waters exceeded 1 for adults and children,  
 289 indicating potential adverse effects on human health. The assessment of the carcinogenic risk  
 290 of Ni, Cd, and Cr in children showed CR values for Ni, Cd, and Cr in surface water exceeding  
 291  $10^{-4}$ . These indicate a possible carcinogenic risk for children. In contrast, in adults only the  
 292 CR values of Ni and Cr indicate a potential great carcinogenic risk. The CRing values of As  
 293 showed potentially significant carcinogenic effects for children. However, for adults,  
 294 ingestion would present a high risk related to Cd. Possible carcinogenic effects through  
 295 ingestion also observed in adults and children for Pd. It is therefore essential to treat water in  
 296 order to remove trace metals before before using them for irrigation or domestic purposes. In  
 297 addition, Complementary studies including Hg, As, Cd, Cr, Cu, Ni, Pb, and Zn accumulation  
 298 in the blood, urine, and hair of population should be investigated to better understand the risks  
 299 related to trace metals.

300

301 **References**

302 1. Wade, C.S. (2003). The use of pesticides in peri-urban agriculture and its impact on the  
303 environment. Doctoral thesis, No. 66. Department of Pharmacy. Cheikh Anta Diop  
304 University, Dakar. p. 59.

305 2. Jost, J-P. & Jost-Tse, Y. C. (2018). Heavy metal hyperaccumulating plants, a solution to  
306 soil and water pollution, Ed. Connaissances et Savoirs, France, 161 p.

307 3. Dewaele, D.C. D., Toure, A., Cabral, M., Cazier, F., Fall, M., Ouddane B., & DIOUF, A.  
308 (2019). Study of heavy metal contamination in coastal sediments at wastewater discharge  
309 points in Dakar (Senegal). Revue sciences de l'eau, Vol. 25 No. (3), pp. 277-285.  
310 <https://doi.org/10.7202/1013107ar>.

311 4. Malferrari, D., Brigatti, M. F., Laurora, A., & Pini, S. H. (2009). Metals in sediments  
312 from canals for water supplying and drainage: mobilization and control strategies, J. Hazard.  
313 Mater. 161, 723– 729.

314 5. Gnamba, F. M., Baka, D., Brahma, S., Brou, Y. Y. A., & Oga, Y. M. S. (2020).  
315 Monitoring from 2016 to 2018 of some physical-chemical parameters and heavy metals in  
316 SODECI raw water stations in the Savanes and Denguéle districts in northern Côte d'Ivoire.  
317 Afrique SCIENCE 17(5): pp. 70–84.

318 6. WHO. (2017). Guidelines for drinking water quality, 4th ed. Incorporating the first  
319 addendum. Geneva: World Health Organization; license: CC BY-NC-SA 3.0 IGO, 539 p.

320 7. N'guessan, S. A., Kouadio, A. A., Koffi, Y. S. (2018). Impact of urban agriculture on the  
321 quality of surface water resources in northern Côte d'Ivoire: the case of the Koko dam in the  
322 municipality of Korhogo. International Journal of Humanities and Social Science Research.  
323 4(2): pp. 20–29.

324 8. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B., Beeregowda, K. N. (2014).  
325 Toxicity, mechanism and health effects of some heavy metals, Interdiscip. Toxicol. 7 (2) 60–  
326 <https://doi.org/10.2478/intox-2014-0009>.

327 9. Silué, D.P. (2012). Socio-spatial impact of water reservoirs in northern Côte d'Ivoire, case  
328 study of the Savanes region. Doctoral thesis, Félix Houphouët-Boigny University, Cocody;  
329 pp. 330.

330

331 10. World Health Organization. Guidelines for Drinking Water Quality, 4th edition, Geneva,  
332 Switzerland. 2011.

333 11. Ouattara, A. A., Yao, K. M., Soro, M. P., Diaco, T., Trokourey, A. (2018). Arsenic and  
334 Trace Metals in Three West African rivers: Concentrations Partitioning, and Distribution in  
335 Particle-Size Fractions. Archives of Environmental Contamination and Toxicology 75: 449–  
336 463. <https://doi.org/10.1007/s00244-018-0543-9>.

337 12. American Public Health Association (APHA). Standard methods for the examination of  
338 water and wastewater, 23rd ed, American PublicHealth Association, Washington DC USA,  
339 2017, pp. 1–1546.

340 13. Mohan, S. V., Nithila, P., & Reddy, S. J. (1996). Estimation of heavy metal in drinking  
341 water and development of heavy metal pollution index. *Journal of Environmental Science &*  
342 *Health. Part A: Environmental Science and Engineering*, 31(2), 283-289.

343 14. Karaouzas, I., Kapetanaki, N., Mentzafou, A., Kanellopoulos, T. D., Skoulikidis, N.  
344 (2021). Heavy metal contamination status in Greek surface waters : A review with application  
345 and evaluation of pollution indices. *Chemosphere* 263 :  
346 <https://doi.org/10.1016/j.chemosphere.2020.128192>.

347 15. Hossain, M., Patra, P. K. (2020). Contamination zoning and health risk assessment of  
348 trace elements in groundwater through geostatistical modelling. *Ecotoxicology and*  
349 *Environmental Safety* 189 : 1-11. <https://doi.org/10.1016/j.ecoenv.2019.110038>.

350 16. Brown R. M., McClelland N. I., Deininger R. A. et Tozer R. G. (1970). A water quality  
351 index do we dare? *Water Sew. Works* 117, 339343.

352 17. Şener S., Şener E. et Davraz A. (2017). Evaluation of water quality using water quality  
353 index (WQI)method and GIS in Aksu River (SW-Turkey). *Sciences of the Total*  
354 *Environment*. pp 131–144.

355 18. Traore T., Kouassi N. L. B., Assemian A. S., Kouassi K. E., Drogui, P. et Kouassi B. Y.  
356 (2021). Distribution and Health Risk Assessment of Trace Metals in Surface Waters and  
357 Groundwater Around Artisanal Gold Mining Areas in Central-western Côte d'Ivoire, West  
358 Africa. *International Journal of Environmental Monitoring and Analysis.*, 9(5), pp 136 151.

359 19. Zhang, Y., Chu, C., Li, T., Xu, S., Liu, L., Ju, M. (2017). A water quality management  
360 strategy for regionally protected water through health risk assessment and spatial distribution  
361 of heavy metal pollution in 3 marine reserves. *Sciences of the Total Environment* 599-600 :  
362 <http://dx.doi.org/10.1016/j.scitotenv.2017.04.232> 721-731.

363 20. US Environmental Protection Agency. (2004). Risk Assessment Guidance for Superfund,  
364 Vol. 1, Human Health Evaluation Manual. Part E (supplemental guidance for dermal risk  
365 assessment), EPA/540/R/99/005. Office of Superfund Remediation and Technology  
366 Innovation, Washington, DC, USA.

367 21. Zhang, Y., Chu, C., Li, T., Xu, S., Liu, L., Ju, M. (2017). A water quality management  
368 strategy for regionally protected water through health risk assessment and spatial distribution  
369 of heavy metal pollution in 3 marine reserves. *Sciences of the Total Environment* 599-600:  
370 <http://dx.doi.org/10.1016/j.scitotenv.2017.04.232>

371 22. United States Environmental Protection Agency (USEPA). (2004). Risk Assessment  
372 Guidance for Superfund, Vol.1, Human Health Evaluation Manual : Part E (supplemental  
373 guidance for dermal risk assessment). Office of Superfund Remediation and Technology  
374 Innovation, Washington, DC, USA. Report EPA/540/R/99/005.

375 23. United States Environmental Protection Agency (USEPA). (2013). Regional screening  
376 level (RSL) summary Table, Disponible après de , Accessed November 2013.

377 24. OEHHA. (2019). California Office of Environmental Health Hazard Assessment  
378 (OEHHA). Technical Support Document for Cancer Potency Factors 2009, Appendix A: Hot  
379 Spots Unit Risk and Cancer Potency Values. Updated May 2019.

380 25. Coulibaly, M., Kouassi, N. L. B., N'goran, K.P.D. A., Diabate, D., Trokourey A. (2022).  
381 Distribution, Ecological and Health Risks of Arsenic in Sediment from the Mixing Zone of  
382 the theComoé River and the Ebrie Lagoon, Côte d'Ivoire, West Africa. Am. J. Appl. Chem 10,  
383 89-96.<https://doi.org/10.11648/j.ajac.20221004.13>.

384 26. Togbe A. M.O, Kouame K. V, Yao K. M, Ouattara A. A, Tidou A. S and Atsé B. C.  
385 (2019): Assessment of arsenic, lead, and cadmium contamination in the waters of Ebrié  
386 Lagoon (Zones IV and V), Ivory Coast: spatio-temporal variations and health risks. ISSN  
387 1997-342X (Online), ISSN 1991-8631 (Print). Int. J. Biol. Chem. Sci. 13(2): 1162-1179p.

388 27. Luo, X. S., Xue, Y., Wang, Y. L., Cang, L., Xu, B., Ding, J. (2015). Source identification  
389 and apportionment of heavy metals in urban soil profiles. Chemosphere 127: 152–157.  
390 <http://dx.doi.org/10.1016/j.chemosphere.2015.01.048>.

391 28. Yeo, M. (2023).Assessment of the concentration of studied trace metal elements (TMEs)  
392 (Fe, Cu, Zn, Cr, Hg, Pb, and Cd) in water and sediments of the Bandama River in the  
393 departments of Sinématiali and Niakara (Côte d'Ivoire). Master's thesis, Peleforo Gon  
394 Coulibaly University (UPGC), Department of Geosciences, 69 p.

395 29. Lü, J., Jiao, W. B., Qiu, H. Y., Chen, B., Huang, X. X., Kang, B. (2018). Origin and  
396 spatial distribution of heavy metals and carcinogenic risk assessment in mining areas at  
397 You'xi County southeast China. Geoderma 310:  
398 <http://dx.doi.org/10.1016/j.geoderma.2017.09.016>. 9.

399 30. Ouattara, A. A., Yao, K. M., Soro, M. P., Diaco, T., Trokourey, A. (2018). Arsenic and  
400 Trace Metals in Three West African rivers: Concentrations Partitioning, and Distribution in  
401 Particle-Size Fractions. Archives of Environmental Contamination and Toxicology 75: 449-  
402 463. <https://doi.org/10.1007/s00244-018-0543-9>.

403 31. Lanphear B. P. (2017). Low-level toxicity of chemicals : No acceptable levels ?, PLoS  
404 Biology, 15 (12) e2003066, Faculté de Santé Sciences, Simon Fraser Université, Burnaby,  
405 Canada, pp 1 - 8, <https://doi.org/10.1371/journal.pbio.2003066>.

406 32. Lü, J., Jiao, W. B., Qiu, H. Y., Chen, B., Huang, X. X., Kang, B. (2018). Origin and  
407 spatial distribution of heavy metals and carcinogenic risk assessment in mining areas at  
408 You'xi County southeast China. Geoderma 310:  
409 <http://dx.doi.org/10.1016/j.geoderma.2017.09.016>. 99-106

410 33. Bamuwamye, M., Ogwok, P., Tumuhairwe, V. (2015). Cancer and non-cancer risks  
411 associated with heavy metals exposure from street foods:evaluation of roasted meats in an  
412 urban setting, J. Environ. Pollut. Hum. Health 3 (2) 24–30, <https://doi.org/10.12691/jephh-3-2-1>.

414

415 34. Kim, H. S., Kim, Y. J., Seo, Y. R. (2015). An Overview of Carcinogenic Heavy Metal:  
416 Molecular Toxicity Mechanism and Prevention. Journal of Cancer Prevention 20: 232 – 240.  
417 <http://dx.doi.org/10.15430/JCP.2015.20.4.232>.

418 35. Song, H., Hu, K., An, Y., Chen, C., & Li, G. (2018). Spatial distribution and source  
419 apportionment of the heavy met als in the agricultural soil in a regional scale. Journal Soils  
420 Sediments, 18, pp 852–862. <https://doi.org/10.1007/s11368-017-1795-0>.

421 36. Mo, L., Zhou, Y., Gopalakrishnana, G., & Li, X. (2020). Spatial distribution and risk  
422 assessment of toxic metals in agricultural soils from endemic nasopharyngeal carcinoma  
423 region in South China. *Open Geosciences*, 12(1), pp 568–579. <https://doi.org/10.1515/geo-2020-0110>.

425 37. Liu, H., Zhang, Y., Yang, J., Wang, H., Li, Y., Shi, Y., Li, D., Holm, P. E., Ou, Q., & Hu,  
426 W. (2021). Quantitative source apportionment, risk assessment and distribution of heavy  
427 metals in agricultural soils from southern Shandong Peninsula of China. *Science of the Total  
428 Environment*, 767, pp 144-879. <https://doi.org/10.1016/j.scitotenv.2020.144879>.

429 38. Zhao, R., Guan, Q., Luo, H., Lin, J., Yang, L., Wang, F., Pan, N., & Yang, Y. (2019).  
430 Fuzzy synthetic evaluation and health risk assessment quantification of heavy metals in  
431 Zhangye agricultural soil from the perspective of sources. *Science of the Total Environment*,  
432 697, pp 1341-26. <https://doi.org/10.1016/j.scitotenv.2019.134126>.

433 39. Ehab, A. I. and El-Metwally, M. S. (2022). Pollution and health risk assessment of trace  
434 metal in vegetable field soils in the Eastern Nile Delta, Egypt. *Environ Monit Assess* (2022)  
435 194: 540 <https://doi.org/10.1007/s10661-022-10199-1>.

436

437

438

439

440

441

442

443 .

444

445

446

447

448

449

450

451

452

453

454

455

