

Phytochemical, microbiological and sensory characteristics of tigernut (*Cyperus esculentus* L.) milk pasteurized at different times

Abstract

5 Côte d'Ivoire is a country rich in agri-foodresources, some of which are underutilized. This is
6 the case with *Cyperus esculentus* L. (tigernut), an unconventional and under-exploited tuber
7 despite its good nutritional value. The overall objective is to determine its phytochemical and
8 microbiological composition after pasteurization. The milk produced was divided into four
9 portions. Three portions were pasteurized at 70°C for 10 min (LP10), 15 min (LP15), 20 min
10 (LP20), and 25 min (LP25), and the remaining portion was unpasteurized (LNP). The
11 phytochemical and microbiological characteristics were then determined. The
12 results showed that pasteurization time did not influence the levels of polyphenols (5.90 to 7.33
13 mg GAE/100g) and flavonoids (0.15 to 0.21 mg QE/100g). However, the levels of vitamin C
14 (26.67 to 66 mg/100g) and tannins (0.11 to 0.13 mg/100g)
15 decreased with increasing pasteurization time. All microorganisms except *Staphylococcus*
16 were counted at the LNP (GAM (2.8×10^3 CFU/mL); total coliforms (9.3×10^2 CFU/mL);
17 yeasts and molds (5.6×10^2 CFU/mL)). Overall, the number of
18 microorganisms decreased with increasing pasteurization time. Tiger
19 nut milk was much appreciated by the panelists who indicated that all tigernut-based drinks were
20 good. This work paves the way for the valorization of tigernuts.

21 **Keywords:** *Cyperus esculentus*, milk, pasteurization ; phytochemical and
22 microbiological characteristics, sensory analysis

24 **Introduction**

25 A beverage is any liquid substance intended for human consumption for hydration, sustenance,
26 and energy. According to Eke-Ejiofor and Beleya, (2018), beverages are
27 liquid specifically prepared for human consumption. They can be homemade or
28 industrially produced. The three main categories of beverages are stimulants, refreshers, and
29 nutrients Eze and Njoku, (2018). Stimulant beverages such as tea and coffee are consumed to
30 stimulate mental and physical activity. Refreshers such as water and juices are consumed to
31 compensate for fluid loss in the body. Nutrients are consumed to provide nutrients to the body.
32 This study focused on nutrient-rich beverages, specifically those prepared from tigernuts.

33 Tiger nuts, native to the Mediterranean basin, primarily Egypt, are herbaceous plants found in
34 almost every part of the world (Bezerra et al., 2023). They belong to the Cyperaceae family and

35 have the scientific name *Cyperus esculentus* (Aké-Assi, 1984). According to statistics from the
36 Food and Agriculture Organization of the United Nations, global tigernut production
37 amounted to approximately 10 million tons, with a cultivated area of nearly 7 million
38 hectares.

39 In Côte d'Ivoire, national tigernut production is estimated at nearly 16,000 tons per
40 year (Tamboura, (2014). Yields per hectare range from 2.5 to 4 tons, with an
41 average gross income per hectare of approximately 1,500,000 FCFA, primarily in the
42 northern region (Abaejoh et al., 2006). In West Africa, this plant is known and cultivated for
43 local consumption (Ongpeamuru, 2013).

44 In Africa in general, and in Côte d'Ivoire in particular, *Cyperus esculentus* is generally consumed raw or dried. Like peanuts or coconuts, its milk, oil, and flour
45 are produced. Its derivative products are commonly found in markets. Plant-based milk is known
46 for its antihypertensive, antidiabetic, antitumor, and antioxidant properties (Kampa, et al.,
47 2021). The use of tigernut milk is particularly recommended in cases of dyspepsia (indigestion),
48 intestinal inflammation (colitis), or diarrhea (Kambire, (2015). Many consumers are turning to
49 plant-based dairy products either for health reasons or as a lifestyle choice due to lactose
50 intolerance in cow's milk. It should also be noted that most of the beverages consumed are
51 carbonated and sweetened with artificial chemicals. Tiger nut milk production in Côte d'Ivoire
52 is primarily artisanal and little known despite its nutritional and therapeutic potential. Once
53 produced, the milk must be pasteurized to eliminate microorganisms. This study aims to
54 investigate the effect of pasteurization time on the phytochemical, microbiological and
55 sensory characteristics of tigernut milk.

57

58 Materials and Methods

59 Materials

60 Tiger nut (*Cyperus esculentus*) (**Figure 1**) constitute the plant material used in this study. It
61 purchased at the Korhogo main market in the Pororégion. Korhogo is located in northern Côte
62 d'Ivoire, 635 km from the city of Abidjan and between 9°27' north latitude and 5°38' west
63 longitude. Once purchased, the tigernut tubers are transported in coolers to the
64 biochemistry laboratory at Peleforo GON COULIBALY University in Korhogo. All
65 other chemicals and reagents used were of analytical quality.

66 Methods

67 Production of Tiger nut milk

68 The raw material (1 kg of dried tigernuts) was cleaned with distilled water and then soaked in
69 distilled water for 3 days. After soaking, the tubers were ground using a grinder containing 500
70 mL of water. The resulting powder was filtered through a white cloth. The milk was divided into
71 five batches. The first four batches were pasteurized at 72 °C for 10, 15, 20, and 25 minutes,
72 respectively. The fifth batch was not pasteurized. After pasteurization, the jars were cooled and

73 stored in a refrigerator at 4 °C for subsequent analysis. **Figure 2** shows the tigernutmilk
74 production flowchart.

75

76

86 **Figure 1** : Tiger nut tubers

87

88

89

90

91

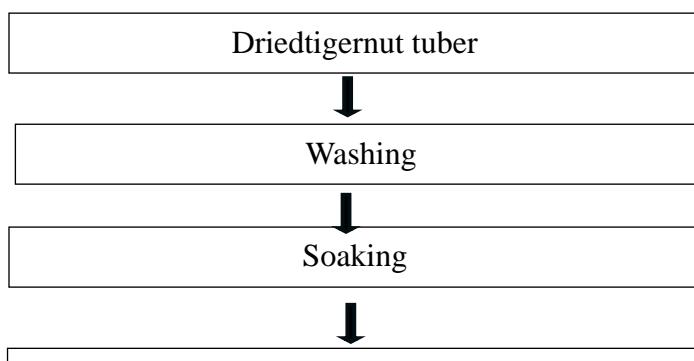
92

93

94

95

96


97

98

99

100

101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

119 Phytochemical properties of Tiger Nut Milk

120 Polyphenol determination

121 The polyphenol content was determined according to the method of Singleton et al., (1999).
122 The principle of the reaction is based on the reduction of Folin-Ciocalteu reagent during the
123 oxidation of polyphenols. 1 mL of milk was mixed with 10 mL of 70% methanol. The
124 resulting mixture was centrifuged at 1000 rpm for 10 min. The pellet was collected in 10 mL of
125 70% methanol and then centrifuged again. The supernatants were recombined in a 50
126 mL volumetric flask and the volume was adjusted with distilled water. 1 mL of the
127 methanolic extract was added to 1 mL of Folin-Ciocalteu reagent. After 3 min of stand, 1 mL of
128 a 20% sodium bicarbonate (Na_2CO_3) solution was added. The volume was adjusted to 10
129 mL with distilled water. The resulting mixture was incubated in the dark for 30 min. The
130 optical density (OD) was read using a spectrophotometer at 725 nm against a blank. The
131 amount of phenolic compounds was determined using a calibration curve established from a 1
132 mg/mL gallic acid solution.

133 Flavonoid Determination

134 The method of Marinova et al., (2005) was used for the determination of total flavonoids in the
135 flours. To 0.5 mL of methanolic extract in a 25 mL volumetric flask, 0.5 mL of distilled water,
136 0.5 mL of aluminum chloride (10% w/v), and 0.5 mL of sodium acetate (1M)
137 were successively added. The homogenized mixture was incubated for 30 minutes at room
138 temperature. The absorbance reading was taken at 415 nm against the blank.

139 **Tannin determination**

140 The tannin content was determined according to the method of Bainbridge et al., (1996). To 1
141 mL of metabolic extract, 5 mL of vanillin reagent (0.1 mg/mL vanillin 70% (v/v) sulfuric acid)
142 was added. The resulting mixture was incubated in the dark for 30 min. ODs were read at 500
143 nm against a blank. The amount of phenolic compounds was determined using a calibration
144 curve established from a 1 mg/mL gallic acid solution.

145 **Vitamin C determination**

146 The vitamin C content was determined according to the method of Pongracz, (1971). 10 mL of
147 milk was added to 10 mL of 20% metaphosphoric acid-acetic acid. The mixture is titrated with a
148 0.5 g/L solution of 2,6-DCPIP until a persistent pink color change is observed.

$$149 \quad \text{C (DCPIP)} \times \text{Veq} \times 5 \\ 150 \quad \text{Vitamin C (mg/100g)} = \frac{\text{C (DCPIP)} \times \text{Veq} \times 5}{\text{ME}} \\ 151$$

152 C = DCPIP solution concentration

153 Veq = volume at the equivalence point

154 ME = sample mass

155 **Microbiological Analyses**

156 **Inoculum Preparation**

157 The stock solution was prepared by dissolving 1 mL of the sample of tigernut milk in 9 mL of
158 sterile peptone water, serial dilution (10 fold) was carried out (1:10, 1: 100,
159 1:1000...10,000) near the flame of a Bunsen burner. according to standard NF V 08-
160 010 (AFNOR, 1996).

161 **Isolation and Enumeration**

162 Total bacterial count was determined using the method as described by Obasi et al., (2019).
163 0.1 mL of the dilutions obtained were inoculated onto agar media specific to the
164 target organisms and then incubated at the temperature and for the time required for
165 each microorganism (Table 1). All enumeration was expressed as colony forming unit per
166 milliliter (cfu/ml). The number of microorganisms was calculated using the following formula:

167

$$169 \quad N = \sum \text{Colonies} / (n_1 + 0,1n_2) \times d \times v$$

170 N: number of microorganisms

171 n_1 : number of plates in the first dilution considered

172 n_2 : number of plates in the second dilution considered

173 d: the smallest dilution considered

174 v: volume of the inoculated sample

175

176 **Table 1:** Culture medium and culture conditions of the microorganisms sought

Germs	Medium	Type of sowing	Incubation	Standards
Total coliforms	Neutral crystal violet and red (VRLB) bile lactose agar	Depth	37 °C 24-48 h	ISO 4832
Fecal coliforms	Neutral crystal violet and red (VRLB) bile lactose agar	Depth	44 °C 24-48 h	ISO 4832
Aerobic Mesophilic Germs (AMG)	Plate count agar (PCA)	Depth	30 °C 48 h	NF/08-05
Staphylococci	Baird Parker (BP) with egg yolk and potassium tellurite	Spreading	37 °C 24-48 h	NF/V 08-057-1
Yeast/mold	Sabouraud + chloramphenicol	Spreading	30 °C 72 h	NF/V 08-057-1

177

178 Sensory Analysis

179 Sensory evaluation is a unique source of information about products. It consists of
 180 measuring consumers' reactions to products in terms of appearance, aroma, taste, texture, and
 181 aftertaste, without taking into account the label, price, or other visual elements (Iwe, 2002).
 182 Acceptance and preference tests were conducted with 50 untrained panelists, comprised of
 183 employees and students from Peleforo Gon Coulibaly University in Korhogo, Côte d'Ivoire.
 184 The panelists' ages ranged from 22 to 67 years. The sensory analysis was based on a 9-point
 185 hedonic scale, according to the method of Curi et al. (2017). The
 186 hedonic scoring scale was arranged such that: 9 = like extremely, 8 = like very much, 7 = like
 187 moderately, 6 = like slightly, 5 = neither like nor dislike, 4 = dislike slightly, 3 = dislike
 188 moderately, 2 = dislike very much, 1 = dislike extremely. The evaluation was based on

189 quality parameters such as visual appearance, taste, color, odor, and overall acceptance.
190 Panelists were randomly given approximately 30 mL of each type of tigernut milk (pasteurized
191 and unpasteurized) in clear plastic cups. They were asked to drink water before tasting the
192 next sample.

193

194 **Statistical Analysis**

195 Statistical analysis of the results was performed using STATISTICA 7 software. 1. The
196 milk samples underwent analysis of variance (ANOVA) to determine the effect of
197 pasteurization time on their properties. When a significant difference was observed,
198 pairwise comparisons were made using Tukey's HSD test.

199

200 **RESULTS AND DISCUSSION**

201 **Results**

202 **Phytochemicals of Tiger Nut Milk**

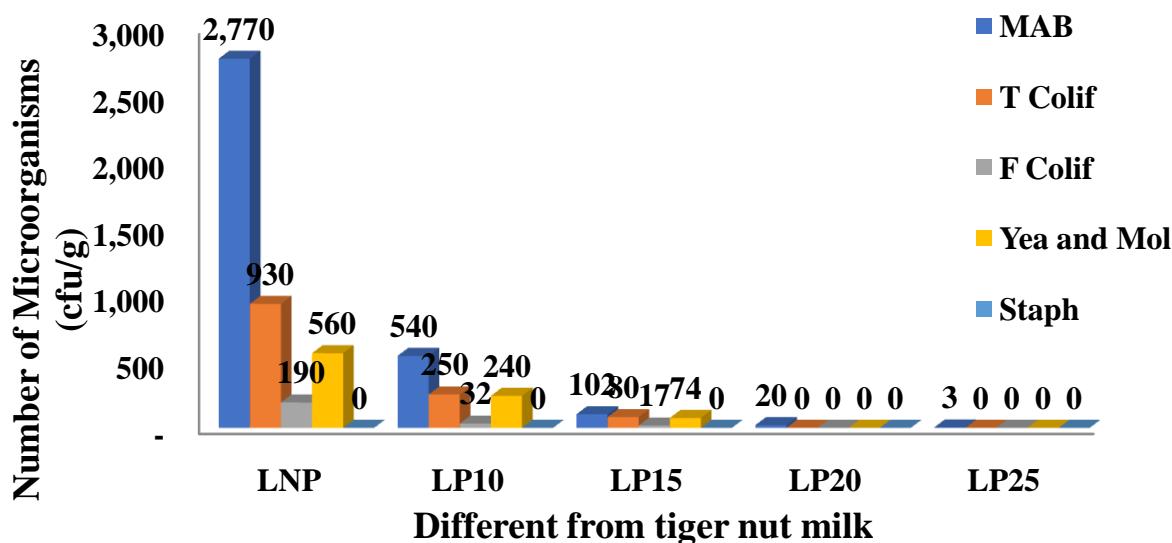
203 Table 2 shows the levels of phytochemical parameters in tigernut milk. Analysis of the results
204 in the table shows that the levels of polyphenols (5.90 to 7.33 mg GAE/100g) and flavonoids
205 (0.15 to 0.21 mg QE/100g) in the different milks are all similar at the 0.05 threshold. However,
206 the vitamin levels of LNP (62.67 mg/100g), LP10 (66 mg/100g), and LP15 (57 mg/100g) are
207 significantly higher ($p < 0.05$) than those of LP20 (36.70 mg/100g) and LP25 (26.67 mg/100g).
208 It should also be noted that the vitamin C level drops significantly after 15 minutes of
209 pasteurization. As for tannins, the levels of LNP (0.12 mg/100g) and LP10 (0.13 mg/100g) are
210 significantly higher ($p < 0.05$) than those of LP20 (0.11 mg/100g) and LP25 (0.11 mg/100g)
211 but similar to that of LP15 (0.12 mg/100g).

212

213 Table 2: Phytochemical parameters of tigernut milk

Parameters	LAIT				
	LNP	LP10	LP15	LP20	LP25
Flavonoids (mg QE/100g)	0.21 ± 0.01 ^a	0.15 ± 0.02 ^a	0.17 ± 0.04 ^a	0.19 ± 0.02 ^a	0.16 ± 0.01 ^a
Polyphenols (mg GAE/100g)	6.80 ± 0.76 ^a	7.33 ± 0.37 ^a	7 ± 0.65 ^a	5.90 ± 0.11 ^a	6.09 ± 0.63 ^a
Vitamin C (mg/100g)	62.67 ± 3.79 ^b	66 ± 1 ^b	57 ± 1 ^b	36.70 ± 0.75 ^a	26.67 ± 3.06 ^a

Tannin (mg/100g)	0.13 ± 0.01 ^b	0.13 ± 0.01 ^b	0.12 ± 0.01 ^{ab}	0.11 ± 0.01 ^a	0.11 ± 0.01 ^a
------------------	--------------------------	--------------------------	---------------------------	--------------------------	--------------------------


214 Means assigned a different letter on the same line are significantly different at $p < 0.05$.

215 LNP: Unpasteurized milk, LP10, LP15, LP20 and LP25: Milk pasteurized for 10, 15, 20 and 25 min respectively.

216 **Microbiological Parameters of the Juices**

217 Figure 3 shows the results of the count of these germs in tigernut milk. All germs except
 218 *Staphylococcus* were counted in the LNP. Only *mesophilic aerobic bacteria* were counted in LP20
 219 and LP25. Overall, the number of microorganisms decreased with increasing pasteurization
 220 time.

221

222
 223
 224 **Figure 3: Germ count in tigernut milk**

225
 226 **Sensory Analysis**

227 Sensory analyses were conducted to evaluate the visual appearance, taste, color, odor, and
 228 overall acceptability of pasteurized and unpasteurized tigernut milks. The
 229 mean sensory evaluation scores for each sample are presented in Table 3. Analysis of the table
 230 shows that in terms of visual appearance (6.8 to 7.3), color (6.9 to 7.5), odor (7.1 to 7.6), and
 231 overall acceptability (7.6 to 7.8), there was no significant difference ($p < 0.05$). Regarding taste,
 232 the values for LP15 (5.1), LP20 (5.3), and LP25 (5.4) were statistically higher than those for
 233 LPN (4.3) and LP10 (4.5). However, no significant difference ($p < 0.05$) in taste
 234 was observed between LP15, LP20 and LP25 on the one hand and LPN and LP10 on the other.

235

236

237
238
239
240
241
242

243 **Table 3: Mean scores for sensoryevaluation of pasteurized and**
244 **unpasteurizedtigernutmilks**

	LAIT				
	LNP	LP10	LP15	LP20	LP25
Visual appearance	7.2 ^a	7.3 ^a	7.2 ^a	7.1 ^a	6.8 ^a
Taste	4.3 ^a	4.5 ^a	5.1 ^b	5.3 ^b	5.4 ^b
Color	7.3 ^a	7.5 ^a	7.1 ^a	6.9 ^a	7.2 ^a
Odor	7.2 ^a	7.4 ^a	7.1 ^a	7.3 ^a	7.6 ^a
Overallacceptability	8.4 ^a	8.1 ^a	8.3 ^a	8.2 ^a	8.1 ^a

245

246 **Discussion**

247 The polyphenol content (5.90 to 7.33 mg GAE/100g) of tigernutmilkishigherthanthat of
248 tigernutmilkpowder (3.87 ± 0.08 mg GAE/100g) obtained by Kadjo et al., (2023) but
249 lowerthanthatfound in the aqueousextract of tigernutflour (211.5 mg GAE/100g) (Mai et al.,
250 2022). Theserésults show thattigernutsouldberich in polyphenols. Polyphenols are
251 moleculeswithantibacterial, anti-inflammatory, antithrombotic, anticancer, and
252 neuroprotectiveproperties(Amiot et al., 2009). Tiger nutmilkouldbeused in milk production
253 to replace cow'smilkgivenitsnutritional composition.

254 The flavonoid content (0.15 to 0.21 mg QE/100g) in tigernutmilkislowerthanthat in
255 tigernutflour (289 ± 1.53 mg QE/100g)(Laziz and Ihadaden, 2021). It
256 istruethattigernutmilkislessrich in flavonoidsthan tigernutflour. However,
257 consuminganyfoodcontainingflavonoidsisbeneficial to the body.

258 The vitamin C content of LNP is 62.67 ± 3.79 mg/100 mL. This content decreases as the
259 pasteurization time increases. This couldbeexplained by itsheat sensitivity. Vitamin C is a
260 reducing agent involved in antioxidantdefenses(Frei,2004).).The vitamin C content (26.67 to
261 66 mg/100 g) in tigernutmilkouldpartially cover the averagedailynutritionalrequirements of
262 the population (15–100 mg) depending on the individual'sage, with the exception of
263 breastfeedingwomen(Mariotti et al., 2021). As for the tannin content (0.11 to 0.13 mg/100 g),

264 it is lower than that found (53 mg/100 g) in studies conducted in Nigeria (Adedeji, 2016). on
265 fermented tigernuts. According to Kumari and Jain, (2012), the consumption of
266 vegetables containing high levels of tannins and flavonoids has proven that these phytochemical
267 compounds have numerous healing effects.

268 Regarding microbiological analysis, generally speaking, based on microbial loads, the
269 different milk samples are classified as follows: LNP > LP10 > LP15 > LP20 > LP25. The
270 number of each type of microorganism decreases with pasteurization time. This indicates that
271 the pasteurization times and temperatures used in this study are adequate. The results show the
272 presence of GAM (3 to 27.7×10^2 CFU/mL), total coliforms (0 to 9.3×10^2 CFU/mL),
273 fecal coliforms (0 to 1.9×10^2 CFU/mL), yeasts and molds (0 to 5.6×10^2 CFU/mL), and the
274 absence of *Staphylococcus*. The values for GAM, total coliforms, and yeasts and molds in
275 this study are significantly lower than those found in tigernut and date-based beverages ($1.90 \times$
276 10^3 to 1.26×10^6 , 3.20×10^3 to 1.6×10^6 , and 2.8×10^3 to 7.25×10^5 CFU/ml, respectively)
277 (Obasi and Mani, 2023). This difference is likely due to the unhygienic production conditions
278 of this commercially available tigernut and date-based beverage. The complete absence of
279 *Staphylococcus* could be explained by the fact that the pasteurization temperature eliminated all
280 vegetative forms. This confirms the findings of Jacob, (1990) which state that simple
281 heat treatment of food (pasteurized juice, for example) is insufficient to destroy these
282 *Staphylococcus* bacteria. It should be noted that the values obtained for GAM, total coliforms,
283 and fecal coliforms following the enumeration are below the acceptable concentration
284 described in the standard (5×10^6 and 3×10^3 CFU/mL, respectively). Those for yeasts and
285 molds and *Staphylococcus* are also below the acceptability standard (10^4 and 10^2 CFU/mL,
286 respectively). However, the fecal coliform value is within the acceptable range according to the
287 standard ($10^2 < \text{fecal coliforms} < 10^3$ CFU/mL).

288 The different pasteurization times showed no difference for most of the
289 evaluated quality attributes, except for taste, which affected the organoleptic properties of
290 tigernut milk. Regarding taste preference, LNP and LP10 obtained the lowest average values, at
291 4.3 and 4.5 respectively, while LP5, LP20, and LP25 obtained the highest values, at 5.1, 5.3,
292 and 5.2 respectively. All the milks were rated as "neither liked nor disliked to slightly disliked" in
293 terms of taste. This is likely related to the fact that the milks were reproduced without additives. As
294 for overall acceptance, the results indicated that the tigernut milks were highly regarded by the
295 panelists, who stated that all the tigernut-based beverages were good.

296 Conclusion

297 This study determined the nutritional potential of unpasteurized and pasteurized tigernut milk at
298 different times. Generally, after 20 minutes, pasteurized tigernut milk lost only vitamin C. The
299 results of this study demonstrate that both pasteurized and unpasteurized tigernut milk is a good
300 source of polyphenols, flavonoids, and tannins. The number of each type of
301 microorganism decreased with the pasteurization time. This indicates that the pasteurization
302 times and temperatures used in this study were appropriate.

303

304

305

306

307 **References**

1. Abaejoh R, Djomdi I, Ndojouenkeu R, 2006. Caractéristiques des tubercules de souchet (*Cyperus esculentus*) et leurs performances dans la production d'une boisson lactée. *J. Food Process. Preserv.* , 30 : 145-163
2. Adedeji O, 2016. Phytochemical composition and functional properties of flour produced from two varieties of tigernut (*Cyperus esculentus*). *FUW Trends in Science and Technology Journal* 1: 261-266.
3. AFNOR, 1996. Jus de fruits et de légumes: spécification et méthodes d'analyse. 2éme éd, Tour Europe, Paris, 155 p.
4. Aké-Assi L, 1984. Flore de la Côte d'Ivoire : Etude descriptive et biogéographique avec quelques notes ethnobotaniques. Doctorat Thèse de doctorat d'Etat, Université d'Abidjan Cocody. 1206 p
5. Amiot MJ, Riollet C, Landrier JF, 2009. Polyphénols et syndrome métabolique: Polyphenols and metabolic syndrome. *Médecine des Maladies Métaboliques* 3(5): 476-482.
6. Bainbridge Z, Tomlins K, Westby A, 1996. Methods for assessing quality characteristic of non-gums starch (Part 3. Laboratory methods). *Natural Resources Institute*, Chatham, United Kingdom, 16-18.
7. Bezerra JJL, Feitosa BF, Souto PC, Pinheiro AAV, 2023. *Cyperus esculentus* L. (Cyperaceae): Agronomic aspects, food applications, ethnomedicinal uses, biological activities, phytochemistry and toxicity. *Biocatalysis and Agricultural Biotechnology* 47: 102606.
8. Curi PN, Almeida ABD, Tavares BDS, Nunes CA, Pio R, Pasqual M, Souza VRD, 2017. Optimization of tropical fruit juice based on sensory and nutritional characteristics. *J. Food Sci. Technol.* 37(2): 308-314

- 332 9. Eke-Ejiofor J, Beleya EA, 2018. Chemical and sensory properties of spiced tigernut
333 (*Cyperus esculentus vassativa*) drink. International Journal of Biotechnology and Food
334 Science, 6(3), 52-58.
- 335 10. Eze NM, Njoku HA, 2018. Foods and Nutrition Today – Understanding nutrition for
336 students in tertiary institutions. Enugu: Grand-Heritage Global Communications.
- 337 11. Frei B, 2004. Efficacy of dietary antioxidants to prevent oxidative damage and inhibit
338 chronic disease. *J Nutr* 134(11): 3196s-3198s.
- 339 12. Iwe MO, 2002. Handbook of Sensory Methods and Analysis. Projoint
340 Communications services Ltd, Enugu. pp. 70-72.
- 341 13. Jacob M, 1990. Guide pour la formation des responsables d'établissement de
342 restauration, OMS. 141 p
- 343 14. Kadjo MMLR, Yeboue KH, Anin AAL, Farman OA, Ahui BML, Kati CS,
344 2023. Evaluation of the Physicochemical Parameters and Nutrient of Milk Powder of
345 Tigernut (*Cyperus esculentus* L.). *EAS Journal of Nutrition and Food Sciences* 5(5):
346 158-164.
- 347 15. Kambire SH, 2015. Quelques rappels sur la culture du souchet au Burkina Faso. 53 p.
- 348 16. KampaRP, Sęk A, Szewczyk A, Bednarczyk P, 2021. Cytoprotective effects of the
349 flavonoid quercetin by activating mitochondrial BKCa channels in endothelial cells.
350 *Biomedicine & Pharmacotherapy* 142: 112039 – 112048.
- 351 17. Kumari DM, Jain S, 2012. Tannin: An Antinutrient with Positive Effect to Manage
352 Diabetes. *Research Journal of Recent Sciences* 1: 70-73.
- 353 18. Lazizi SS, Ihadaden S, 2021. Effets biologiques de *Cyperus esculentus* L., Université
354 Abdelhamid Ibn Badis-Mostaganem, Faculté des Sciences de la Nature et de la Vie 69
355 p
- 356 19. Mai MMN, Ghada MY, 2022. Study the antioxidant and antimicrobial of tiger nut and
357 the biological effects of some its products. *International journal of family studies, food*
358 *science and nutrition health*, 3 (2), 165 - 193
- 359 20. Marinova D, Ribarova F, Atanassova M, 2005. Total phenolics in bulgarian fruits and
360 vegetables. *J. Univ. Chem. Technol. Met.*, 40 : 255-260.

- 361 21. Mariotti F, Barreau F, Beaudart C, Bennetau-Pelissero C, Benzi-Schmid C, Boutron-
362 Ruault M, C., Lauzon-Guillain B, et al., 2021. Actualisation des références
363 nutritionnelles françaises en vitamines et minéraux Avis de l'Anses, Rapport
364 d'expertise collective, Anses: 240 p.
- 365 22. Obasi B, Mani V, 2023. Evaluation of sensory and microbiological quality of tigernut
366 milk drink sweetened with date palm fruit. International Journal of Science and
367 Research Archive 10: 218-288.
- 368 23. Obasi BC, Sunday BA, Brown TC. 2019. Enumeration of microbial Quality of
369 Yoghurt Incorporated with moringa Oleiferaseedflour during storage. FUW.Trends in
370 Science and Technology Journal vol. 4(3):703-706.
- 371 24. Ongpeamuru, 2013. Le souchet : (*Cyperus esculentus*) une culture de rente très
372 prometteuse dans la région de Maradi (Niger). Rapports d'enquête sur le souchet. 2p.
373 https://recaiger.org/IMG/pdf/Souchet_au_Niger_P EAMURU_light.pdf
- 374 25. PongraczG, 1971. Neue
375 potentiometrische Bestimmungsmethoden für Ascorbinsäure und dessen Verbindungen
376 Fresenius Z. Anal. Chem. 253 : 271–274.
- 377 26. Singleton VL, Orthofer R, Lamuela-Raventos RM, 1999. Analysis of total phenols and
378 other oxidants substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods
379 Enzymol., 299, 152 p
- 380 27. Tamboura, 2014. *Cyperus esculentus* L. (Famille: Cyperaceae, Cyperacées)
381 Synonymes: souchet tubéreux, souchet sucré, souchet sultan, amande de terre
382 w\w.infoflora.ch (page web consulté le 02/02/2025)