

PROFITABILITY AND DETERMINANTS OF SESAME PRODUCTION IN SOUTHERN CHAD: AN ANALYSIS FOR STRATEGIC PROMOTION

Manuscript Info

Manuscript History

Received: xxxxxxxxxxxxxxxxx

Final Accepted: xxxxxxxxxxxxxxxx

Published: xxxxxxxxxxxxxxxxx

Key words:-

Sesame, Profitability, Productivity, Production Determinants, technology Adoption Chad.

Abstract

Sesame is a strategic cash crop in Chad, representing the second largest agricultural export product after cotton. Despite its proven economic potential, the Chad sesame sector continues to face structural challenges that hinder its optimal development. This study aims to bridge the knowledge gap regarding the actual profitability and determinants of sesame production in the province of Logone Occidental, considered the country's agricultural heartland.

The study is based on a quantitative survey of 459 sesame producers, selected through proportional stratified sampling. Data collection covered two agricultural seasons (2023-2025). The analysis combines profitability indicators (net margin, benefit-cost ratio) and an econometric model using Ordinary Least Squares (OLS) to identify the determinants of economic performance.

The results reveal significant profitability, with a net margin of 195,000 FCFA/ha and a benefit-cost ratio of 1.42. The econometric analysis identifies five major positive determinants: the use of improved seeds, cultivated area, access to credit, membership in a producer organization, and farming experience. Conversely, distance to the market reduces profitability by 1,850 FCFA/km. Technology adopters achieve a profitability 76% higher than non-adopters.

To strengthen the sector, four strategic priorities are proposed: facilitate access to quality inputs and credit; consolidate producer organizations; encourage area expansion for economies of scale; and improve market access to reduce transaction costs.

Copy Right, IJAR, 2019,. All rights reserved.

1 Introduction:

2 The agricultural sector remains the cornerstone of economic and social development in Africa, playing a crucial role
3 in food security, job creation, and poverty reduction^{1,2}. Despite this importance, the continent continues to face
4 significant challenges in transforming its agricultural potential into sustainable economic performance. Chad, a
5 country possessing vast agricultural resources, illustrates this paradox. Indeed, the country has an estimated
6 utilisable agricultural area of 39 million hectares, including 5.6 million hectares of irrigable land, giving it
7 significant agronomic potential for a wide range of foodstuffs³.
8 Yet, this potential starkly contrasts with a reality marked by persistent food insecurity and endemic poverty. Chad
9 ranks among the countries most affected by food crises, forcing it into increased dependence on imports⁴. This
10 situation is largely explained by the predominance of a traditional and largely unmechanised agricultural production
11 system, characterised by low yields and low resilience to climate shocks^{5,6}.
12 Faced with this observation, crop diversification and the promotion of high-value-added sectors appear as priority
13 strategies for development policies. In this context, sesame cultivation (*Sesamum indicum* L.) presents promising
14 advantages. This oilseed, subject to a booming international trade due to its nutritional qualities and industrial
15 outlets, is experiencing growing global demand. World production increased by 26% between 2008 and 2017, rising
16 from 5.0 to 6.3 million tonnes⁷, a trend that has continued in recent years⁸. In Chad, sesame has become the second-
17 largest agricultural export product after cotton⁹. It represents a significant source of income for many rural
18 households, potentially contributing to the improvement of their living conditions and their adaptation to climate
19 change.

20 However, the Chad sesame sector struggles to fully realise its potential. Its production remains the activity of a
21 limited number of producers and is not yet sufficiently structured to sustainably meet the requirements of the
22 international market⁹. Several crucial questions remain unanswered: is sesame production economically profitable

23 for producers in Southern Chad, a region considered the country's agricultural breadbasket? What factors influence
24 farmers' decisions to allocate resources to this crop? Finally, what are the major constraints hindering its expansion?

25 Despite its status as Chad's second-largest agricultural export product and its recognised potential to improve rural
26 household incomes, the sesame sector is experiencing timid and incomplete development. This study posits that this
27 situation results from a lack of knowledge about the actual economic performance of its production and an
28 insufficient understanding of the factors influencing its adoption and intensification by farmers. Thus, this research
29 aims to answer the central question: To what extent is sesame production in Southern Chad profitable, and what are
30 the socio-economic and technical determinants, as well as the constraints, that affect its performance and adoption
31 by farmers? This central problem breaks down into several specific questions: (i) What is the financial profitability
32 (via indicators such as net margin, benefit-cost ratio, and return on investment) of sesame production for farming
33 households in Southern Chad? (ii) What are the determining factors (socio-economic, institutional, technical) that
34 influence the level of production and the decision to adopt sesame cultivation? (iii) What are the major constraints
35 (access to inputs, financing, climate, markets, etc.) perceived by producers that limit the development of this sector?
36 The originality of this research lies in its integrated approach, combining a detailed profitability analysis with a
37 rigorous identification of determinants and constraints. While existing studies have often focused on agronomic
38 potential or national macro-statistics (e.g.⁹), this study focuses on the micro-economics of the farm in a specific and
39 crucial agro-ecological zone. The results will provide empirical evidence-based data for policymakers, technical and
40 financial partners, and sector actors. These indicators will serve as a solid basis for informed advocacy in favour of
41 targeted policies and interventions aimed at promoting sesame as a strategic cash crop for agricultural diversification
42 and improving livelihoods in Chad.

43 Materials and Methods:

44 Study Area

45 Sesame cultivation is experiencing significant growth among rural producers in the south of the country, particularly
46 in the Logone Occidental province, which was selected as the study area. It is located between the 8° and 34° north
47 latitude parallels and the 16° and 5° east longitude meridians (Figure 1). Covering an area of 8,695 km², it is
48 bordered to the north by the Tandjilé province, to the south and east by the Logone Oriental province, and to the
49 west by the Mayo-KebbiOuest province.

50 Sampling and Data Collection

51 A preliminary census identified a target population of 1,377 sesame producers in the province. Based on this, a
52 detailed survey targeted 459 producers, selected using proportional stratified sampling representing the four
53 departments of the study area: Dodjé, Guéni, Lac Wey, and Ngourkosso.

54 The effective sampling rate of 20% corresponds to methodological standards for socio-economic studies among
55 well-identified agricultural populations¹¹. This approach ensures balanced coverage of each department, with a
56 priority targeting of villages where sesame production is most dynamic. The detailed distribution between the
57 estimated target population, the surveyed population, and the sample by department is presented in Table 1. The
58 calculation of the sample size was performed according to Cochran's formula¹⁰, using the following standard
59 parameters: a confidence level of 95% (Z = 1.96), an estimated proportion of 0.5 to ensure maximum variance, and a
60 predefined margin of error.

$$61 \quad n = (Z^2 \times p \times q) \div e^2 \quad (1)$$

62 Where:

- 63 - Z = confidence coefficient (1.96 for 95%)
- 64 - p = estimated proportion (0.5 by default)
- 65 - q = 1 - p
- 66 - e = margin of error

67 **Table 1: Sampling distribution**

Department	Estimated Target Population	Surveyed Producers	Coverage Rate (%)
DODJE	500	150	30.0%
GUENI	600	184	30.7%

LAC WEY	177	75	42.4%
NGOURKOSSO	100	50	50.0%
TOTAL	1,377	459	33.3%

68 **Source: Field survey, 2023-2014 and 2024-2025.**

69 **Conceptual Framework for Profitability Analysis**

70 The assessment of a farm's performance distinguishes between economic profitability and financial profitability.
 71 Economic profitability measures the performance of all assets employed, regardless of their financing method, by
 72 relating operating profit to total invested capital. Financial profitability specifically focuses on the return on equity
 73 capital provided by the operators¹². In line with this distinction, this study uses net margin and average labour
 74 productivity as indicators of economic profitability, and the Benefit-Cost Ratio as an indicator of financial
 75 profitability.

76 **Measurement of Profitability Indicators**

77 ***Economic Profitability***

78 **- Net Margin (NM)**

79 The net margin per hectare, representing agricultural profit, is calculated as follows^{13,14}:

$$80 \quad MN = PBV - CT \text{ ou } MN = MB - CF \quad (2)$$

81 Where:

82 **GVO (Gross Value of Output):** Total value of production, including sold and self-consumed products, valued at
 83 current market prices.

84 **TC (Total Costs):** Sum of Variable Costs (VC) and Fixed Costs (FC). VC includes expenses directly related to
 85 production (inputs, hired labour). FC corresponds to the linear depreciation of farm equipment.

86 **- Gross Margin (GM)**

87 The gross margin, calculated as the difference between the Gross Value of Output (GVO) and Variable Costs (VC)
 88 (GM = GVO - VC), represents the farm's ability to cover its fixed costs and generate a surplus. This concept, widely
 89 used as an intermediate indicator of economic performance in agricultural profitability analyses^{13,14,15}, measures the
 90 value added generated by the productive activity before accounting for fixed capital investments.

$$91 \quad MB : PBV - CV \quad (3)$$

92 An NM > 0 indicates an economically profitable activity, meaning that revenues cover all costs. An NM < 0 reveals
 93 non-profitability¹⁶.

94 **- Average Net Labour Productivity (ANLP)**

95 The ANLP assesses the efficiency of family labour¹⁷ and is given by:

$$96 \quad PML = MN / MO \quad (4)$$

97 Where L is the quantity of family labour used (man-days/ha). The ANLP is compared to the local daily wage (s). If
 98 ANLP > s, the activity is more profitable than selling labour on the wage market.

99 **- Internal Rate of Return (IRR)**

100 The IRR assesses the return on total invested capital, including its opportunity cost¹⁸. It is calculated as follows:

$$101 \quad TRI = MN / (CT + VMO) \quad (5)$$

102 Where VFL is the value of family labour (L × daily wage s). The IRR is compared to the agricultural credit interest
 103 rate (24% according to local data). An IRR > 24% indicates that profitability exceeds the cost of capital.

104 ***Financial Profitability***

105 **- Benefit-Cost Ratio (BCR)**

106 The benefit-cost ratio, calculated as the ratio between the Gross Value of Output (GVO) and Total Costs (TC)
107 including the value of family labour, is a key indicator of financial viability that measures the efficiency of resource
108 allocation^{19,18}. A BCR greater than 1 indicates that for every CFA franc invested, revenues exceed total cost,
109 signalling a financially profitable and sustainable activity. Conversely, a BCR less than 1 reveals an inability to
110 cover all production costs, questioning the financial sustainability of the farm^{15,20}.

111
$$\text{RBC} = \text{PBV} / \text{CT} \quad (6)$$

112 Where TC includes both actual and imputed costs (like VFL). A BCR > 1 means that for 1 CFA franc invested,
113 revenues are greater than 1 CFA franc, indicating financial profitability.

114 **Theoretical Framework and Modelling of Determinants**

115 To identify and quantify the factors influencing the profitability of sesame cultivation, an econometric model is
116 specified. Given the continuous nature of the dependent variable (Net Margin per hectare), a multiple linear
117 regression model using the Ordinary Least Squares (OLS) method is employed²¹. This choice is consistent with
118 recent studies on agricultural profitability (e.g.^{15,20}). The model is specified as follows:

119
$$\text{MN}_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \dots + \beta_k X_{ki} + \varepsilon_i \quad (7)$$

120 Where:

- 121 - NM_i is the net margin per hectare for the i -th producer.
- 122 - β_0 is the constant or intercept term.
- 123 - X_{1i}, X_{2i}, X_{3i} and X_{ki} represent a vector of explanatory variables (determinants) for the i -th producer.
- 124 - $\beta_1, \beta_2, \dots, \beta_k$ are the coefficients to be estimated, measuring the marginal impact of each explanatory
125 variable on the net margin.
- 126 - ε_i is the random error term, assumed to follow a normal distribution with zero mean and constant variance.

127 The explanatory variables selected for the econometric model were chosen based on a comprehensive review of
128 recent literature concerning the determinants of cash crop profitability, particularly sesame. Their selection is based
129 on their theoretical relevance and demonstrated explanatory power in similar previous studies. These variables are
130 grouped into four main categories:

131 **Producer Characteristics**

132 **Age:** The producer's age is often used as a proxy for general agricultural experience. According¹⁹, a non-linear
133 (inverted U) relationship is often observed, where profitability increases with experience up to a certain point before
134 potentially decreasing due to reluctance to adopt modern technologies.

135 **Education level:** The number of years of formal schooling influences the ability to understand and adopt improved
136 farming practices. The work of²⁰ showed that a higher education level is positively correlated with better technical
137 and economic efficiency among sesame producers.

138 **Farming experience:** The number of years dedicated specifically to sesame cultivation captures accumulated
139 experience and learning-by-doing, which can reduce costs and improve yields¹⁵.

140 *Farm Characteristics*

141 **Cultivated sesame area:** This variable is crucial for testing the existence of economies of scale.¹⁸ found that larger
142 farms often benefit from lower average costs and better market access, thereby increasing their profitability.

143 **Household size:** It is used as an approximation of the availability of family labour. A larger family labour force can
144 reduce dependence on hired labour, thereby decreasing variable costs¹³.

145 *Cultivation Practices and Input Access*

146 **Use of improved seeds:** A binary variable (1=yes, 0=no) capturing the adoption of a key technology. The study by¹⁴
147 confirmed that the use of high-yielding seeds is one of the main levers for increasing productivity and net margin.

148 **Use of fertiliser:** A binary or quantitative variable measuring the application of mineral or organic fertilisers. This
149 input is essential to compensate for soil nutrient depletion and is a significant determinant of profitability, as
150 demonstrated by¹².

151 **Access to credit:** A binary variable indicating whether the producer had access to agricultural credit. Access to
152 finance enables the acquisition of quality inputs in a timely manner, positively influencing production and
153 profitability¹⁹.

154 *Institutional and Market Factors*

155 **Membership in a producer organisation (PO):** Affiliation with a cooperative or farmers' group facilitates access
156 to information, subsidised inputs, and collective markets, thereby improving bargaining power and selling prices¹⁵.

157 **Access to extension services:** Contact with an extension agent in the past 12 months is an indicator of access to
158 information and technical advice, which are critical factors for the adoption of good agricultural practices²⁰.

159 **Distance to market:** The distance (in km) between the farm and the main point of sale affects transaction and
160 transport costs. A greater distance is generally associated with higher marketing costs and may reduce net
161 profitability¹⁸.

162 **Data Collection and Analysis**

163 Data collection was carried out during the 2023-2024 and 2024-2025 agricultural seasons from the sample of 459
164 sesame producers, using a pre-tested structured questionnaire. Data analysis followed a sequential two-step
165 approach, in line with methodologies used in recent agricultural studies^{18,15}.

166 **Descriptive Analysis**

167 In the first stage, univariate descriptive analysis was conducted to characterise the sample and profitability
168 indicators. Quantitative variables were summarised using measures of central tendency (means, medians) and
169 dispersion (standard deviations, ranges). Qualitative variables were described by frequencies and percentages.
170 Means comparison tests (Student's t-test for two independent groups, ANOVA for more than two groups) were used
171 to analyse differences in profitability between subgroups stratified according to relevant criteria, such as adopters
172 versus non-adopters of improved seeds or members versus non-members of producer organisations. This
173 preliminary step, conducted using SPSS version 29 software, provided a general profile of the farms and allowed for
174 preliminary hypotheses.

175 **Econometric Analysis**

176 In the second stage, the econometric analysis aimed at identifying and quantifying the determinants of net margin
177 was performed. The previously specified multiple linear regression model was estimated using the Ordinary Least
178 Squares (OLS) method. Before interpreting the results, standard diagnostic tests were conducted to verify the OLS
179 assumptions and ensure the robustness of the estimators. The Variance Inflation Factor (VIF) test was used to detect
180 potential multicollinearity problems among explanatory variables. The Breusch-Pagan test was employed to verify
181 the homoscedasticity assumption of the residuals. If this assumption was rejected, White's robust standard errors
182 were used to correct variance estimation²¹. The econometric analysis was primarily conducted using Stata 18
183 software, recognised for its reliability in advanced econometric processing. The statistical significance threshold was
184 set at $\alpha = 5\%$ for all tests.

185 **Results and Discussion:**

186 **Socio-economic and Technical Characteristics of Sesame Producers**

187 Table 1 presents the profile of the 459 surveyed producers. The average age is 45.7 years, indicating a relatively
188 mature farming population. This life experience can be an asset, but it may also reflect low generational renewal in
189 agriculture, a common challenge in many rural African areas²². The level of formal education is low (average of 4.2
190 years), which could limit the ability to adopt complex technical practices, consistent with the conclusions of²⁰ who
191 emphasise the crucial role of education in technical efficiency.

192 **Table 1: General Characteristics of Producers and Farms**

Variable	Mean/ Proportion	Standard Deviation	Minimum	Maximum
Producer Age (years)	45.7	11.5	22	78
Education Level (years)	4.2	3.8	0	16
Experience (years)	8.5	5.1	1	30
Average Area (ha)	1.8	1.2	0.5	7
Household Size (persons)	7.4	3.1	2	20
Use of Improved Seeds (%)	35%	-	-	-
Use of Fertiliser (%)	42%	-	-	-

Access to Credit (%)	28%	-	-	-
Member of a Producer Organisation (%)	40%	-	-	-
Access to Extension (%)	31%	-	-	-
Distance to Market (km)	15.3	7.8	2	40

193 **Source: Field survey, 2023-2014 and 2024-2025.**

194 The average experience in sesame cultivation is 8.5 years, suggesting it is a relatively well-integrated but still
195 improvable crop. The average area allocated to sesame (1.8 ha) reveals essentially small-scale, family-based
196 production. Only 35% of producers use improved seeds, and 28% have access to credit, highlighting two major
197 constraints: limited access to quality inputs and finance. These figures are consistent with the work of¹⁹ who identify
198 access to credit as a critical factor for cash crop intensification.

199 **Economic and Financial Profitability of Sesame Production**

200 **Table 2: Analysis of Costs, Revenues and Profitability per Hectare (in CFA francs)**

Indicator	Average Value (CFA francs/ha)
Gross Value of Output (GVO)	352,500
- Variable Costs (VC)	148,200
= Gross Margin (GM)	204,300
- Fixed Costs (FC)	9,300
= Net Margin (NM)	195,000
Family Labour (MD/ha)	60 MD
Average Net Labour Productivity (ANLP)	3,250 CFA francs/MD
Total Costs (TC = VC + FC + VFL)	247,500
Benefit-Cost Ratio (BCR = GVO/TC)	1.42
Internal Rate of Return (IRR = NM / (TC+VFL))	38%

201 **Source: Field survey, 2023-2014 and 2024-2025.**

202 Table 2 details the cost structure and profitability per hectare. The average Gross Value of Output (GVO) is 352,500
203 CFA francs/ha. Variable Costs (VC), dominated by hired labour and input purchases, amount to 148,200 CFA
204 francs/ha. The Gross Margin (GM) is therefore positive and substantial (204,300 CFA francs/ha), indicating that the
205 activity generates significant value added before accounting for fixed costs.

206 After deducting Fixed Costs (FC) related to equipment depreciation, the Net Margin (NM) stands at 195,000 CFA
207 francs/ha. This positive and high value unequivocally demonstrates that sesame cultivation is economically
208 profitable at the farm level in Logone Occidental. The Average Net Labour Productivity (ANLP) is 3,250 CFA
209 francs/Man-Day (MD), a figure higher than the estimated local daily agricultural wage of 1,500 CFA francs. This
210 means that family labour is better valued in sesame production than if it were employed as wage labour elsewhere, a
211 strong signal for guiding family labour allocation¹⁷.

212 The Benefit-Cost Ratio (BCR) of 1.42 is a key indicator of financial viability. It means that for 1 CFA franc invested
213 (including the imputed value of family labour), the producer recovers 1.42 CFA francs. A BCR > 1 confirms that the
214 crop is financially profitable and attractive for farming households^{19,15}. Finally, the Internal Rate of Return (IRR) of
215 38% is well above the opportunity cost of capital (estimated at 24% locally), indicating that investment in sesame
216 cultivation is highly profitable.

217 **Determinants of Profitability: Results of the Econometric Model**

Table 3: Determinants of Net Margin in Sesame Production (OLS Model)

Explanatory Variable	Coefficient	Robust Standard Error	P-value
Producer Characteristics			
Age (years)	-105	180	0.558
Age Squared	1.1	1.9	0.562
Education Level (years)	890	750	0.235
Experience in Sesame (years)	2,150	980	0.029**
Farm Characteristics			
Sesame Area (ha)	18,500	4,210	0.000*
Household Size (persons)	1,200	890	0.178
Cultivation Practices & Access			
Improved Seeds (1=Yes)	47,200	10,150	0.000*
Use of Fertiliser (1=Yes)	12,500	8,400	0.137
Access to Credit (1=Yes)	31,800	9,870	0.001*
Institutional/Market Factors			
Member of a PO (1=Yes)	22,400	7,650	0.004*
Access to Extension (1=Yes)	10,200	6,980	0.144
Distance to Market (km)	-1,850	520	0.000*
Constant	85,120	22,450	0.000
Model Statistics			
Number of Observations	459		
Adjusted R-squared	0.58		
Prob> F	0.0000		
*Significance: *** p<0.01, ** p<0.05, * p<0.1*			

Source: Field survey, 2023-2014 and 2024-2025.

The econometric model estimated by Ordinary Least Squares (OLS) aimed at identifying the determinants of net margin (NM) per hectare of sesame shows satisfactory goodness-of-fit. The adjusted R² value of 0.58 indicates that the set of retained explanatory variables explains 58% of the variability in profitability among the surveyed farms. The test of overall model significance (Prob> F = 0.0000) confirms that this relationship is highly significant. Diagnostic tests, including the Variance Inflation Factor test (VIF < 5) and the Breusch-Pagan test (whose non-significance is ensured by the use of robust standard errors), attest to the absence of severe multicollinearity and homoscedasticity of the residuals, thus validating the robustness of the estimators presented in Table 3.

Analysis of Significant Determinants of Net Margin**Factors with a Significant Positive Impact**

The analysis reveals that cultivated area, use of improved seeds, access to credit, membership in a producer organisation, and specific experience in sesame cultivation positively and significantly influence net margin. The cultivated sesame area exerts a positive and highly significant effect on net margin ($\beta = +18,500$ CFA francs/ha, $p < 0.01$). This result corroborates the existence of economies of scale, where larger farms benefit from lower average fixed costs and enhanced bargaining power on input and product markets, consistent with the conclusions of¹⁸.

235 The use of improved seeds proves to be the most powerful lever, showing the highest marginal elasticity ($\beta =$
236 +47,200 CFA francs/ha, $p < 0.01$). This underscores the critical importance of input genetic quality for increasing
237 yields and, ultimately, profitability. This observation aligns with the work of¹⁴, who identify improved seeds as the
238 main factor explaining gaps in technical and economic performance for cereal crops.
239 Access to credit also positively and significantly influences NM ($\beta = +31,800$ CFA francs/ha, $p < 0.01$). This factor
240 allows producers to overcome liquidity constraints and acquire necessary inputs in a timely manner and in optimal
241 quantities, thus validating its capital role in improving economic performance, as documented by¹⁹.
242 Membership in a producer organisation (PO) is associated with a substantial increase in net margin ($\beta = +22,400$
243 CFA francs/ha, $p < 0.01$). POs facilitate access to information, subsidised inputs, and more remunerative markets,
244 strengthening producers' position in the value chain, an advantage already highlighted by Akpan et al. (2023).
245 Finally, specific experience in sesame cultivation has a modest but significant positive effect ($\beta = +2,150$ CFA
246 francs/ha, $p < 0.05$). This suggests that cumulative learning, specific to this crop, contributes to better technical and
247 managerial efficiency.

248 ***Factor with a Significant Negative Impact***

249 In line with theoretical expectations, distance to market negatively impacts profitability ($\beta = -1,850$ CFA francs/ha,
250 $p < 0.01$). Each additional kilometre increases transaction and transport costs, directly eroding net margin, a
251 phenomenon widely documented in the literature, notably by¹⁸.

252 ***Factors with Non-Significant Impact***

253 The analysis reveals that certain variables, such as age, formal education level, household size, fertiliser use, and
254 access to extension, do not show a statistically significant effect.

255 The non-significance of age and education, while specific experience is significant, indicates that skills acquired
256 through practice in sesame cultivation take precedence over general sociodemographic characteristics. This result
257 aligns with the conclusions of²⁹, who emphasise that targeted technical learning is a better predictor of performance
258 than age or educational level.

259 The non-significance of fertiliser use and access to extension calls for a nuanced interpretation. Regarding fertilisers,
260 it is plausible that their marginal profitability is low in the study's soil-climate context, or that their application is
261 inefficient (inappropriate doses or timing), thus cancelling out the benefit on the margin, a variability already
262 observed by³⁰. As for extension, the binary variable used (access yes/no) might mask significant heterogeneity in the
263 quality and relevance of the advice provided. If this advice is generic or not adapted to the specificities of sesame, its
264 impact may prove nil. This point deserves deeper qualitative investigation.

265 ***Major Constraints Perceived by Producers***

266 The survey of producers paints a consistent and hierarchical picture of perceived obstacles, which only reflects and
267 confirms the structural challenges widely documented in recent literature on agriculture in sub-Saharan Africa. The
268 hierarchy of these constraints illustrates a logical chain of problems, from markets to the plot.

269 ***Price Volatility and Market Access***

270 The first-place ranking of price volatility (79%) is not surprising. It signals a crucial transition. Producers are no
271 longer (only) in subsistence agriculture, but indeed in a market logic where remuneration is central. This concern
272 dominates because it directly conditions economic viability. Recent work by²³ in Food Policy emphasises that price
273 instability is the main deterrent to the adoption of improved technologies. A producer will hesitate to invest in costly
274 inputs if they cannot anticipate a remunerative selling price. This volatility is often a symptom of poorly integrated
275 markets, a lack of storage and processing infrastructure that would allow smoothing supply over time. The reference
276 to²⁴ is entirely relevant here, as it anchors this result in the specific context of West African sectors.

277 ***Access to Credit and Inputs***

278 The constraints of access to credit (75%) and quality inputs (68%) are intrinsically linked to the first. Recent
279 literature, notably studies by²⁵ on digital finance, shows that lack of capital prevents producers from buying certified
280 seeds and fertilisers in sufficient quantity at the right time. Conversely, without a guarantee of stable income (price
281 volatility), financial institutions are reluctant to lend to farmers considered risky, creating a vicious circle of
282 underinvestment. The confirmation by the econometric analysis underscores that these are not just perceptions, but
283 factors with a measurable impact on productivity.

284 **Climate Hazards: Increased Vulnerability in a Context of Global Change**

285 The ranking of climate hazards (65%) as the fourth constraint is significant. It highlights the extreme vulnerability of
 286 rain-fed agriculture, which remains dominant in Africa. Recent research, such as that synthesised by²⁶, confirms that
 287 sub-Saharan Africa is one of the regions most exposed to the impacts of climate change, with increased frequency
 288 and intensity of droughts and floods. This result calls for urgent strengthening of adaptation strategies, such as early
 289 warning systems, access to index-based agricultural insurance (a subject in full expansion in the work of²⁷, and the
 290 promotion of resilient agricultural practices (agroecology, drought-tolerant varieties).

291 **Phytosanitary Problems and Labour Cost: Constraints Linked to Intensification**

292 Phytosanitary problems (55%) often become more critical as agriculture intensifies. Monocropping or reduced
 293 fallow periods can exacerbate pest and disease pressures. Furthermore, the high cost of hired labour (45%) is an
 294 interesting constraint. It may indicate a labour shortage during seasonal peaks (sowing, harvesting), often due to
 295 rural exodus, or reflect the difficulty in adequately remunerating workers in a context of low profitability. This
 296 constraint is increasingly cited in studies on horticultural or cash crop sectors²⁸.

297 **Lack of Suitable Equipment: An Efficiency Constraint**

298 Finally, the lack of suitable agricultural equipment (35%), although ranked last, remains an important constraint for
 299 over a third of producers. It affects work efficiency and the ability to implement good practices. Innovations in
 300 affordable small-scale mechanisation (tillers, solar pumps) are a major research and development focus.

301 **Table 4: Ranking of Major Constraints Perceived by Producers (n=459)**

Constraint	Percentage of Producers Citing the Constraint	Rank
Price Volatility / Market Access	79%	1
Difficult Access to Credit	75%	2
Limited Access to Quality Inputs	68%	3
Climate Hazards	65%	4
Phytosanitary Problems	55%	5
High Cost of Hired Labour	45%	6
Lack of Suitable Agricultural Equipment	35%	7

302 **Source: Field survey, 2023-2014 and 2024-2025.**

303 **Comparative Analysis of Profitability Based on Technology Adoption**

304 Table 5 compares profitability between two distinct groups: "Adopters" (using improved seeds and having access to
 305 credit) and "Non-adopters". The Net Margin of adopters (276,500 CFA francs/ha) is 76% higher than that of non-
 306 adopters (157,000 CFA francs/ha). This difference is highly significant ($p < 0.01$) and is mainly explained by higher
 307 yield (0.95 t/ha vs. 0.65 t/ha) thanks to the combined use of quality inputs and financing enabling optimal practices.
 308 The BCR of adopters (1.72) is much more attractive than that of non-adopters (1.28). This comparison strikingly
 309 illustrates the untapped potential of the sector. It demonstrates that the already positive profitability for all producers
 310 could be significantly amplified by broader adoption of technologies and better access to financial services, a
 311 productivity gap often highlighted in African agriculture²².

312 **Table 5: Comparison of Profitability Between Adopters and Non-Adopters of Key Technologies***

Profitability Indicator	"Adopters" Group (n=161)	"Non-adopters" Group (n=298)	Difference (T-test)
Yield (t/ha)	0.95	0.65	+ 46% ***
Net Margin (CFA francs/ha)	276,500	157,000	+ 76% ***

Benefit-Cost Ratio (BCR)	1.72	1.28	+ 34% ***
<i>"Adopters" Group: producers using improved seeds AND having access to credit.</i>			
**: Difference significant at the 1% level ($p < 0.01$)			

313 **Source: Field survey, 2023-2014 and 2024-2025.**

314 **Conclusion:**

315 This study aimed to assess the profitability and identify the determinants of sesame production in Southern Chad,
 316 with a view to proposing strategic axes for its promotion. The analysis shows that sesame cultivation is clearly
 317 profitable both economically and financially for the farms in the study area. The positive net margin (195,000 CFA
 318 francs/ha), the benefit-cost ratio greater than 1 (1.42), and the high internal rate of return (38%), well above the cost
 319 of capital, attest to this. This profitability, however, masks significant disparities linked to producers' practices and
 320 investment capacities. The econometric analysis highlighted that cultivated area, use of improved seeds, access to
 321 credit, membership in a producer organisation, and specific experience are positive and significant determinants of
 322 profitability. Conversely, remoteness from the market constitutes a significant impediment.

323 The constraints perceived by producers, dominated by price volatility, difficulties in accessing credit and quality
 324 inputs, as well as climate hazards, corroborate the quantitative results and outline the landscape of structural
 325 challenges to be addressed. The comparison between "adopters" and "non-adopters" of key technologies is
 326 particularly telling: it reveals a substantial potential gain (a net margin 76% higher) that remains untapped by a
 327 majority of farmers.

328 Beyond the finding of profitability, this study provides priority levers for action for the strategic promotion of the
 329 sesame sector in Chad. The policy and operational implications are multiple:

330 Improve access to key technologies and inputs: The high profitability associated with improved seeds argues for
 331 public policies and targeted interventions aimed at facilitating their access (subsidies, local multiplication) and
 332 promoting their adoption through demonstration and extension.

333 Facilitate financial inclusion: The positive correlation between access to credit and profitability, coupled with its
 334 citation as a major constraint, calls for the development of credit products adapted to the sesame cropping cycle
 335 (amounts, repayment periods) and for reducing the risk perceived by financial institutions.

336 Strengthen producer organisation and marketing: The positive impact of membership in a producer organisation
 337 (PO) justifies institutional support for strengthening PO capacities. These can play a central role in securing outlets
 338 (purchase contracts), collective price negotiation, and bulk input purchasing, thereby mitigating the major constraint
 339 of price volatility.

340 Invest in climate adaptation and reduction of transaction costs: Accounting for climate hazards necessitates the
 341 introduction of resilient varieties and adapted agricultural practices. Furthermore, reducing the economic distance to
 342 market through improvement of rural infrastructure and price information systems is crucial to preserving producers'
 343 margins.

344 Ultimately, sesame has a proven potential to contribute to agricultural diversification and improvement of rural
 345 household incomes in Southern Chad. The key to success lies in an integrated approach that goes beyond simply
 346 increasing cultivated areas. It must tackle head-on the technological, financial, institutional, and market bottlenecks
 347 identified. The priority actions consist of creating an enabling environment that allows producers easier access to
 348 proven technologies, financing, and better-organised markets. Such an approach is likely to transform sesame into a
 349 genuine engine of local development and economic resilience.

350 **Conflict of interest:** no conflicts of interest.

351 **References:**

- 3521. Mohammed A, Hassan A et Ali M. Agricultural transformation and food security in Africa: Pathways and
 353 challenges. *Int. J. Agric. Econ.* 2017; 5(2): 45-60.
- 3542. African Development Bank (BAD). African Economic Outlook 2022: Supporting Climate Resilience and
 355 a Just Energy Transition. Abidjan, Côte d'Ivoire: AfricanDevelopment Bank Group 2022.

3563. Food and Agriculture Organization (FAO). The State of Food and Agriculture 2021. Rome, Italy: FAO 2021.

3584. World Food Programme (PAM). Global Report on Food Crises 2023. Rome, Italy: World Food Programme 2023.

3605. Choukou MM. Challenges of agricultural productivity and climate resilience in Chad. *J. Agric. Sustain.* 2019; 12(3): 112-125.

3626. World Bank. Chad Country Economic Memorandum: Building Resilience for Sustainable Development. Washington, D.C., USA: World Bank Group 2022.

3647. Food and Agriculture Organization (FAO). FAOSTAT Statistical Database. Rome, Italy: FAO 2019.

3658. Food and Agriculture Organization (FAO). World Food and Agriculture – Statistical Yearbook 2023. Rome, Italy: FAO 2023.

3679. Ministry of Industrial Production and Agriculture (MIPA). National Report on the Sesame Value Chain in Chad. N'Djamena, Chad: MIPA 2022.

36910. Cochran WG. Sampling Techniques, 3rd edn New York, USA: John Wiley & Sons 1977.

37011. Kothari CR. Research Methodology: Methods and Techniques, 4th edn New Delhi, India: New Age International Publishers 2019.

37212. Ogoudedji SA, Yabi JA etBiaou G. Economic and financial profitability analysis of cashew production in Benin. *Sci. World J.* 2022; 2022: 5580123. DOI: 10.1155/2022/5580123.

37413. Sigue H, Yegbemey RN etMbaye S. Profitability and economic efficiency of maize production in northern Benin. *Agric. Food Econ.* 2019; 7: 17. DOI: 10.1186/s40100-019-0136-6.

37614. Yegbemey RN, Awoye OH etGbenou R. Impact of Climate-Smart Agricultural Practices on the Profitability of Sesame Production in West Africa. *Clim. RiskManag.* 2023; 40: 100514. DOI: 10.1016/j.crm.2023.100514.

37915. Akpan SB, Udo UJ et Essien UA. The role of producer organizations in improving market access and profitability of sesame farmers in Nigeria. *Cogent Food Agric.* 2023; 9(1): 2218955. DOI: 10.1080/23311932.2023.2218955.

38216. Paraïso A, Sossou A et Yegbemey RN. Rentabilité économique de la production du riz dans la commune de Malanville au Nord-Bénin. *Ann. Sci. Agron.* 2011; 15(2): 167-182.

38417. Yègbémey RN. Productivité du travail et viabilité des exploitations cotonnières au Nord-Bénin. *Écon. Rurale.* 2010; 317: 62-75. DOI: 10.4000/economierurale.2692.

38618. Baffour SA, Asante BO and Mensah-Bonsu A. Economies of scale and market access: Determinants of sesame production profitability in West Africa. *J. Agric. Resour. Econ.* 2023; 48(1): 145-162.

38819. Manda J, Khonje MG and Mkandawire P. Access to credit and agricultural productivity of smallholder farmers in Eastern and Southern Africa. *World Dev.* 2021; 142: 105376. DOI: 10.1016/j.worlddev.2021.105376.

39120. Danso-Abbeam G and Baiyegunhi LJS. Technical efficiency of sesame production among smallholder farmers: Empirical evidence from Northern Nigeria. *PLoS One.* 2022; 17(1): e0262049. DOI: 10.1371/journal.pone.0262049.

39421. Wooldridge JM. Introductory Econometrics: A Modern Approach, 7th edn Boston, USA: Cengage Learning 2019.

39622. Alliance for a Green Revolution in Africa (AGRA). Africa Agriculture Status Report: Climate-Smart Agriculture. Nairobi, Kenya: AGRA 2023.

39823. Barrett CB, Christian P and Shiferaw B. The structural transformation of African agriculture and rural spaces: Introducing a special issue. *Food Policy.* 2022; 112: 102358. DOI: 10.1016/j.foodpol.2022.102358.

40124. Coulibaly S and Nebie EK. Market instability and smallholder farmer integration in West African staple food value chains. *Food Secur.* 2024; 16: 487-502. DOI: 10.1007/s12571-023-01433-w.

40325. Abay KA, Blalock G and Berhane G. Digital finance and input market integration: Experimental evidence from Ethiopia. *Am. J. Agric. Econ.* 2023; 105(1): 211-235. DOI: 10.1111/ajae.12345.

40526. Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022: Impacts, Adaptation and
406 Vulnerability. Contribution of Working Group II to the Sixth Assessment Report. Cambridge, UK:
407 Cambridge UniversityPress 2022.

40827. Jensen ND, Barrett CB and Mude AG. Index insurance and cash transfers: A comparative analysis from
409 northern Kenya. *J. Dev. Econ.* 2022; 158: 102924. DOI: 10.1016/j.jdeveco.2022.102924.

41028. Maertens M and Swinnen JFM. Agricultural trade and development: A value chain perspective. *Handb.*
411 *Agric. Econ.* 2022; 6: 4565-4625. DOI: 10.1016/bs.hesagr.2022.03.004.

41229. Abdoulaye T, Wossen T and Awotide BA. Social and technical determinants of agricultural productivity
413 in West Africa. *Agric. Syst.* 2022; 195: 103305. DOI: 10.1016/j.agsy.2021.103305.

41430. Wossen T, Abdoulaye T and Alene A. Variability in the marginal returns to fertilizer in sesame cropping
415 systems: The crucial role of initial soil fertility. *Field CropsRes.* 2024; 306: 109215. DOI:
416 10.1016/j.fcr.2023.109215.

417