

Chemical and Antimicrobial Characterization of Soap Produced from Rubber Seed Oil (*Hevea brasiliensis*) in Côte d'Ivoire

Abstract

5 Agricultural diversification is a major challenge for the economic sustainability of Côte
6 d'Ivoire, particularly through the valorization of by-products derived from industrial crops
7 such as rubber (*Hevea brasiliensis*). Rubber seeds, long considered agricultural waste, are
8 now recognized as an important source of vegetable oil suitable for soap production. This
9 study aimed to produce soap from rubber seed oil and to evaluate its physicochemical and
10 antimicrobial properties. The oil was extracted by mechanical pressing and characterized
11 using standardized analytical methods. Soap was formulated by cold saponification and
12 subjected to chemical analyses, contaminant screening, and antimicrobial tests against
13 *Staphylococcus aureus*, *Klebsiella pneumoniae*, and *Saccharomyces cerevisiae*.

14 Results showed that rubber seed oil exhibited a high saponification value (197.43 mg KOH/g)
15 and a low peroxide value (3 meq O₂/kg), indicating good suitability for soap making. The
16 resulting soap displayed a high total fatty matter content (91.0%), satisfactory foaming
17 capacity (586.30 mL), and low free alkali content (0.1%). No heavy metals or harmful skin-
18 lightening agents were detected. The soap also demonstrated significant antimicrobial
19 activity. These findings highlight the potential of rubber seed oil as a raw material for soap
20 production and emphasize its importance for agro-industrial diversification and sustainable
21 development.

Keywords: *Hevea brasiliensis*; rubber seed oil; soap; physicochemical properties; antimicrobial activity.

31 1. Introduction

32 Agricultural diversification policies implemented in Côte d'Ivoire have promoted the
33 development of alternative industrial crops, among which rubber (*Hevea brasiliensis*)
34 occupies a strategic position in the national economy [1,2]. Although latex remains the main

35 product of this sector, the processing of by-products, particularly seeds, represents a
36 promising pathway for value addition and income diversification for producers [3].

37 Rubber seeds, long considered agricultural waste, are rich in lipids and constitute a potential
38 source of vegetable oil that can be exploited in various industrial sectors, including soap
39 making, cosmetics, and biofuels [4,5]. Several studies have shown that rubber seed oil
40 possesses physicochemical properties compatible with industrial applications, particularly a
41 high saponification value favorable for soap production [6,7].

42 However, due to its generally high acid value, rubber seed oil is unsuitable for human
43 consumption. This characteristic nevertheless constitutes an advantage for non-food
44 applications such as soap production, where free fatty acids directly participate in the
45 saponification reaction [8,9]. Recent studies conducted in Côte d'Ivoire have also
46 demonstrated variability in the physicochemical properties of rubber seed oil depending on
47 the clone, confirming its strong agro-industrial valorization potential [10,11].

48 Soap remains an essential hygiene product whose effectiveness depends on both the type of
49 oil used and the saponification conditions [12]. Several authors have reported that soaps
50 formulated from vegetable oils may exhibit good cleaning properties as well as intrinsic
51 antimicrobial activity related to fatty acids and their salts [13,14]. However, in Côte d'Ivoire,
52 scientific studies focusing on soap production from rubber seed oil and the evaluation of its
53 properties remain limited.

54 This study therefore aimed to produce soap from rubber seed oil and to characterize its
55 physicochemical properties, chemical safety, and antimicrobial activity in order to contribute
56 to the sustainable valorization of this agricultural by-product.

57

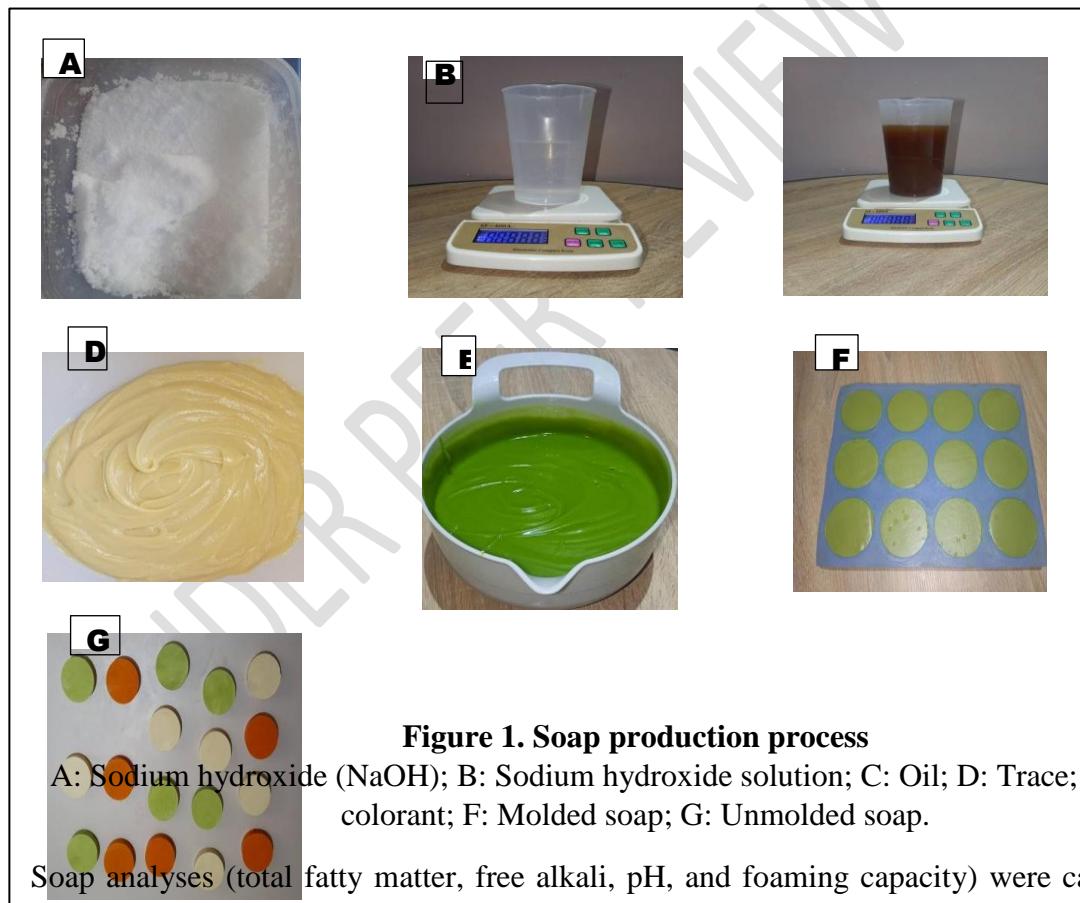
58 **2. Materials and Methods**

59 Rubber seeds were collected from plantations at the Bimbresso Research Station of the
60 National Center for Agronomic Research (CNRA), Côte d'Ivoire. The oil was extracted by
61 mechanical pressing after drying and roasting of the seeds, in accordance with procedures
62 described for tropical vegetable oils [4,6,8]. The physicochemical parameters of the oil
63 (density, pH, moisture content, unsaponifiable matter, iodine value, peroxide value, acid
64 value, and saponification value) were determined using standardized AOAC methods [12,13]
65 and international recommendations [16].

66 Soap production was carried out using the cold saponification method. Briefly, 300 g of water
67 were measured and poured into a container, followed by the addition of 140 g of sodium
68 hydroxide (NaOH), and the mixture was stirred slowly. The resulting solution was allowed to

69 cool. After dissolution of the sodium hydroxide in water, the alkaline solution was poured into
70 1000 g of oil and mixed until a thick consistency (trace) was obtained. Subsequently, 50 g of
71 colorants (green and orange) were added after reaching trace and mixed until a uniform
72 mixture was obtained. The soap paste was then scooped using a plastic ladle and poured into
73 molds, taking care to avoid the formation of air bubbles. After molding, the soap was left to
74 rest for 48 h in an isolated place and unmolded once hardened. The soap was then cured in a
75 dry and ventilated area for 4 to 6 weeks (Figure 1).

76


77

78

79

80

81

93 **Figure 1. Soap production process**

94 A: Sodium hydroxide (NaOH); B: Sodium hydroxide solution; C: Oil; D: Trace; E: Trace +
95 colorant; F: Molded soap; G: Unmolded soap.

96 Soap analyses (total fatty matter, free alkali, pH, and foaming capacity) were carried out in
97 accordance with ISO standards [14,15]. Antimicrobial activity was evaluated against
98 *Staphylococcus aureus*, *Klebsiella pneumoniae*, and *Saccharomyces cerevisiae* using methods
99 commonly applied for the assessment of hygiene products [10,11,19].

100 **3. Results**

101 **3.1. Physicochemical characterization of rubber seed oil**

102 The physical parameters of rubber seed oil are presented in Table I. The analysis showed that
103 rubber seed oil contains 0.45% unsaponifiable matter, a slightly neutral pH of 6.3 at a
104 temperature of 24.3 °C. The observed density was 0.92 at 25 °C, with a moisture and volatile
105 matter content of 0.29%. The refractive index was 1.47.

106 The chemical parameters of rubber seed oil are presented in Table II. The analysis indicates
107 that rubber seed oil has an iodine value of 171.77 g I₂/100 g, a measured peroxide value of
108 4.84 meq/kg, a saponification value of 197.43 mg KOH/g, an ester value of 133.65 mg/g, and
109 an acid value estimated at 63.78 mg KOH/g.

110 **Table I. Physical parameters of rubber seed oil**

Parameters	Unsaponifiable matter (%)	pH / Temperature (°C)	Density at 25 °C	Moisture and volatile matter (%)	Refractive index
Mean value	0.45	6.3 at 24.3 °C	0.9221	0.29	1.47394
Specifications (CXS 210-1999)	Specific to each oil	Specific to each oil	0.91–0.93	0.2%	Specific to each oil

111 **Table II. Chemical parameters of rubber seed oil**

Parameters	Iodine value I ₂ /100 g)	Peroxide (g value meq/kg)	Saponification value (mg KOH/g)	Ester value (mg/g)	Acid value (mg KOH/g)
Content	171.77	4.84	197.43	133.65	63.78
Specification (CXS 210-1999)	Specific to each oil	≤ 15	Determines amount of required	the alkali	Specific to each oil ≤ 4

112 **3.2.1. Chemical parameters**

113 The chemical parameters of the soap produced from rubber seed oil are presented in Table III.
114 The results indicate that the soap contains 11.4% ethanol-insoluble matter. The free caustic
115 alkali content, expressed as NaOH, is 0.1%, while the total fatty matter content is 91.0%. The
116 chloride content is 1.0%, and the unsaponified and unsaponifiable matter is 0.9%. The
117

119 analytical results also show that, at 22 °C, the soap has a pH of 10.3 and a foaming capacity of
120 586.3 mL.

Parameters	pH at 22 °C	Foaming capacity (mL)	Ethanol-insoluble matter (% m/m)	Free caustic alkali as NaOH (%)	Total fatty matter (%)	Chlorides (%)	Unsaponified and unsaponifiable matter (m/m)
Content	10.3	586.3	11.4	0.1	91.0	1.0	0.9
Specifications							
(NI 5517:2023)	4–8	500–700	≤ 17.8	≤ 0.15	≥ 60.0	≤ 1.0	≤ 1.1

121

122 **3.3. Heavy metal analysis in the soap**

123 The analytical results reveal that the soap produced from rubber seed oil does not contain
124 heavy metals, namely arsenic, mercury, copper, cadmium, and lead (Table IV).

125 **Table IV. Heavy metals in soap produced from rubber seed oil**

Parameter	Arsenic (µg/L)	Mercury (µg/L)	Copper (µg/L)	Cadmium (µg/L)	Lead (µg/L)
Results	< 1 LD	< 2.92 LD	< 1–5 LD	< 0.3 LD	< 1.85 LD

126 *LD:limit of detection*

127 **3.4. Analysis of skin-lightening additives**

128 The skin-lightening agents analyzed are presented in Table V. The analysis showed that the
129 soap produced from rubber seed oil does not contain skin-lightening agents such as kojic acid,
130 hydroquinone, or clobetasol.

131
132
133
134
135

136 **Table V. Skin-lightening agents in soap produced from rubber seed oil**

Parameter	Kojicacid	Hydroquinone	Clobetasol
Results	Absent	Absent	Absent

138 **3.5. Antimicrobial characterization**

139 The parameters of the microbiological analyses of the soap are presented in Table VI. The
 140 analysis revealed that the soap produced from rubber seed oil exhibits intrinsic inhibitory
 141 activity (–) against the tested strains (*Staphylococcus aureus* ATCC 25923, *Klebsiella*
 142 *pneumoniae* ATCC 13883, and *Saccharomyces cerevisiae* ATCC 9763).

143 **Table VI. Action of soap produced from rubber seed oil on microorganisms**

Tested strains	<i>Staphylococcus aureus</i> ATCC 25923	<i>Klebsiella pneumoniae</i> ATCC 13883	<i>Saccharomyces cerevisiae</i> ATCC 9763
Results	(–)	(–)	(–)

144 (+): *Absence of intrinsic inhibitory activity, growth of the microbial strain in the vicinity of*
 145 *the sample*

146 (–): *Presence of intrinsic inhibitory activity, no growth of the microbial strain in the vicinity*
 147 *of the sample*

148 **4. Discussion**149 **Physicochemical properties of rubber seed oil**

150 The high saponification value recorded in this study (197.43 mg KOH/g) is characteristic of
 151 oils rich in medium- and long-chain fatty acids and indicates good suitability for the
 152 saponification reaction. Similar values have been reported for rubber seed oil by Devi et al.
 153 [8], Abdulkadir et al. [9], and more recently by Okoma et al. [12,13], confirming the
 154 compatibility of this oil with soap-making and oleochemical processes.

155 The relatively low peroxide value (4.84 meq O₂/kg) indicates acceptable oxidative stability of
 156 the oil, well below the maximum limit recommended by the Codex Alimentarius for
 157 vegetable oils [17]. This low level of primary oxidation products is comparable to values
 158 reported in other studies on rubber seed oil and suggests that the extraction process and
 159 storage conditions helped limit oxidative rancidity phenomena [8,10].

160 In contrast, the high acid value observed (63.78 mg KOH/g) confirms that rubber seed oil is
 161 not suitable for human consumption, as also reported by Aigbodion et al. [9] and Maliki and
 162 Ifijen [18]. This high acidity is generally attributed to the action of endogenous lipases during
 163 seed storage prior to extraction, promoting the hydrolysis of triglycerides into free fatty acids
 164 [10]. However, this characteristic does not constitute a drawback for soap production; on the
 165 contrary, the presence of free fatty acids can facilitate the saponification reaction and improve
 166 process efficiency [14].

167 The high iodine value (171.77 g I₂/100 g) classifies rubber seed oil among drying oils,
168 comparable to linseed oil, which are known for their richness in unsaturated fatty acids [17].
169 This composition explains both the oil's sensitivity to oxidation and its relevance for various
170 industrial applications, including soap making, biofuels, and certain cosmetic formulations
171 [6,7,12].

172 **Physicochemical quality of soap produced from rubber seed oil**

173 The soap formulated from rubber seed oil exhibited a high total fatty matter content (91.0%),
174 well above the minimum value recommended by the Ivorian standard NI 5517:2023. This
175 result reflects effective saponification and is comparable to those obtained for soaps based on
176 tropical vegetable oils such as palm kernel, cottonseed, or jatropha oils [15,19]. High total
177 fatty matter content is generally associated with good emollient properties and improved skin
178 protection.

179 The low free caustic alkali content (0.1%) observed is an important indicator of soap quality.
180 It reflects an appropriate oil-to-alkali ratio and limits the risk of skin irritation, as reported in
181 several studies on artisanal and industrial soaps [14,20]. This value complies with regulatory
182 specifications and is comparable to those reported for high-quality vegetable oil-based soaps.

183 The high foaming capacity (586.30 mL) meets normative requirements (500–700 mL) and is
184 comparable to that of soaps formulated from vegetable oils rich in unsaturated fatty acids
185 [15]. Foaming ability is a property highly valued by consumers and contributes to the
186 perceived effectiveness of the soap during cleaning.

187 The alkaline pH of the soap (10.3), although outside the range recommended by certain
188 standards (4–8), remains characteristic of traditional solid soaps. Similar values have been
189 reported for several commercial and artisanal soaps without major adverse effects,
190 particularly when the soap contains superfat or glycerin [21]. Nevertheless, future
191 optimization of the formulation, through increased superfatting or incorporation of natural
192 moisturizing agents, could improve skin tolerance, especially for sensitive skin.

193 **Chemical safety and antimicrobial activity**

194 The absence of heavy metals (arsenic, mercury, copper, cadmium, and lead) and harmful skin-
195 lightening agents represents a major result in terms of sanitary safety. These substances, often
196 found in some uncontrolled artisanal soaps, may pose significant toxicological risks to human

197 health [22]. The results obtained therefore confirm the chemical safety of soap produced from
198 rubber seed oil.

199 Microbiological assays revealed intrinsic inhibitory activity of the soap against
200 *Staphylococcus aureus*, *Klebsiella pneumoniae*, and *Saccharomyces cerevisiae*. This
201 antimicrobial activity is consistent with the findings of Hamlat et al. [15] and Yakoubi et al.
202 [16], who reported that vegetable oil-based soaps can exert antimicrobial effects through
203 disruption of microbial cell membranes by fatty acids and their salts. These results confer
204 particular interest to the studied soap for hygienic applications, especially in rural areas where
205 access to industrial hygiene products may be limited.

206 Conclusion and Perspectives

207 This study demonstrated the potential for valorizing rubber seeds (*Hevea brasiliensis*) through
208 the production of soap from extracted oil. The results showed that despite its high acidity,
209 which makes the oil unsuitable for human consumption, its physicochemical properties—
210 particularly a high saponification value and acceptable oxidative stability—make it highly
211 suitable for soap-making applications.

212 The soap produced from this oil exhibited physicochemical characteristics that largely comply
213 with regulatory requirements, including high total fatty matter content, satisfactory foaming
214 capacity, and low free caustic alkali content, indicating effective saponification and good
215 product quality. Although the soap showed an alkaline pH, this feature remains comparable to
216 many traditional solid soaps and could be improved through formulation optimization,
217 particularly by increasing superfat content or incorporating natural moisturizing agents.

218 The absence of heavy metals and harmful skin-lightening agents constitutes a major
219 advantage in terms of chemical safety, while the observed antimicrobial activity against
220 *Staphylococcus aureus*, *Klebsiella pneumoniae*, and *Saccharomyces cerevisiae* enhances the
221 soap's relevance for hygienic applications. These findings reinforce the importance of local
222 transformation of rubber seeds into value-added products, contributing to agro-industrial
223 diversification and reduction of waste from the rubber sector.

224 In perspective, further studies could focus on optimizing oil refining conditions to reduce acid
225 value, improving soap formulation for better skin tolerance, and conducting dermatological
226 evaluations and consumer acceptability studies. In the long term, the establishment of local
227 processing units for rubber seed soap production could represent a sustainable economic
228 opportunity, particularly for rubber-producing rural areas in Côte d'Ivoire.

229 **References**

230 [1] Kéli, Z. J. (2003). La filière hévéa en Côte d'Ivoire : enjeux et perspectives. *Économie*
231 *Rurale*, 273, 33–44. <https://www.persee.fr/collection/ecoru>

232 [2] Kouassi, K. J. (2018). Diversification agricole et développement rural en Côte d'Ivoire.
233 *Afrique Contemporaine*, 266(2), 89–102. <https://www.cairn.info>

234 [3] Ahoba, A. (2011). Valorisation des sous-produits agricoles en Côte d'Ivoire. *Revue*
235 *Ivoirienne des Sciences Agronomiques*, 6(2), 45–58.

236 [4] Devi, K. S., et al. (2003). Chemical characteristics of rubber seed oil. *Journal of the*
237 *American Oil Chemists' Society*, 80(6), 567–572. <https://doi.org/10.1007/s11746-003-0744-x>

238 [5] Kannika, S., et al. (1981). Studies on rubber seed oil. *Journal of the Science Society of*
239 *Thailand*, 7, 45–52.

240 [6] Silpi, U., et al. (2006). Rubber seed oil: potential and industrial uses. *Industrial Crops and*
241 *Products*, 24(1), 89–97. <https://doi.org/10.1016/j.indcrop.2006.03.004>

242 [7] Rodrigo, V. H. L., et al. (2011). Rubber cultivation and by-product valorization.
243 *Experimental Agriculture*, 47(3), 455–468. <https://doi.org/10.1017/S0014479711000306>

244 [8] Abdulkadir, A., et al. (2014). Physicochemical properties of rubber seed oil for industrial
245 applications. *Industrial Crops and Products*, 56, 1–6.
246 <https://doi.org/10.1016/j.indcrop.2014.02.021>

247 [9] Aigbodion, A. I., et al. (2001). Evaluation of rubber seed oil for soap production. *Journal*
248 *of the Chemical Society of Nigeria*, 26(1), 60–64.

249 [10] Ebewele, R. O., et al. (2010). Rubber seed oil: properties and applications. *Industrial*
250 *Crops and Products*, 31, 1–7. <https://doi.org/10.1016/j.indcrop.2009.09.010>

251 [11] Maliki, M., & Ifijen, I. H. (2020). Acid value and industrial potential of rubber seed oil.
252 *Nigerian Journal of Chemical Research*, 25, 45–52.

253 [12] Okoma, D. M. J., et al. (2025a). Physicochemical properties of rubber seed oils from
254 Ivorian clones. *International Journal of Biochemistry Research & Review*, 34(6), 138–147.
255 <https://doi.org/10.9734/ijbcrr/2025/v34i61072>

256 [13] Okoma, D. M. J., et al. (2025b). Comparative analysis of rubber seed oils under Ivorian
257 conditions. *World Journal of Analytical Chemistry*, 10(2), 58–63.
258 <https://doi.org/10.12691/wjac-10-2-3>

259 [14] Mixon, T. (2014). *Soap Manufacturing Technology*. Elsevier, Oxford.

260 [15] Hamlat, N., et al. (2018). Antimicrobial activity of vegetable oil-based soaps. *Journal of*
261 *Surfactants and Detergents*, 21(3), 401–409. <https://doi.org/10.1002/jsde.12145>

262 [16] Yakoubi, S., et al. (2020). Antimicrobial soaps and skin hygiene. *Journal of Cosmetic*
263 *Dermatology*, 19(2), 456–462. <https://doi.org/10.1111/jocd.13089>

264 [17] Codex Alimentarius Commission. (1999). *Standard for Vegetable Oils (CXS 210-1999)*.
265 FAO/WHO. <https://www.fao.org>

266 [18] Novidzro, K. M., et al. (2019). Physicochemical characterization of vegetable oils.
267 *Journal of Applied Sciences*, 19(4), 312–320.

268 [19] ISO 685:2020. *Soap – Determination of total fatty matter*. International Organization for
269 Standardization, Geneva.

270 [20] ISO 673:1981. *Soap – Determination of matter insoluble in ethanol*. International
271 Organization for Standardization, Geneva.

272 [21] Baranda, L., et al. (2002). Correlation between pH and irritant effect of soaps. *Contact
273 Dermatitis*, 46, 21–27. <https://doi.org/10.1034/j.1600-0536.2002.460105.x>

274 [22] Dione, J. (2005). Métaux lourds et produits cosmétiques : risques sanitaires. *Revue
275 Africaine de Santé Publique*, 7, 45–52.

276