

1 **Impact of Determinants of Healthcare Expenditure in India: The**
2 **ARDL Bound Testing Approach**

3

4 **Abstract**

5 Despite achieving stable economic growth in the last few decades, India continues to face
6 challenges in healthcare financing, consistently low public health expenditure, and a
7 disproportionately high out-of-pocket burden on households. This study analyses the impact
8 of determinants of per capita out-of-pocket healthcare expenditure and per capita total
9 healthcare expenditure in India from 1991 to 2023. Annual time-series data is analysed using
10 the Autoregressive Distributed Lag Bounds Testing Approach along with co-integrating
11 regression models for robustness check. The results confirm that per capita income,
12 secondary education enrolment, urbanization, inflation rate, life expectancy and per capita
13 total health expenditure have the significant impact both on per capita total health
14 expenditure and per capita out-of-pocket health expenditure in long-run. In case of per capita
15 total health expenditure life expectancy and education have the negative impact but in case of
16 per capita out of pocket expenditure inflation rate, per capita income and urbanization have
17 the negative impact. These findings underscore the dualistic nature of India's health financing
18 system and the need for policies intervention that enhance public funding to ease household
19 financial pressure.

20 **Keywords:** Per Capita Out-of-Pocket Expenditure, Per Capita Total Healthcare Expenditure,
21 ARDL Model, Co-integration and Significant.

22 **JEL Classifications:** H50, H51, I11, I13 & I15.

23 **1. Introduction**

24 Globally, health expenditure reached 8.3 trillion dollars near about 10 percent of world GDP
25 in 2018. Public financing accounts for about 59 percent of total health spending (Logarajan et
26 al., 2022) but low & middle-income countries still rely heavily on private out-of-pocket
27 spending with over 40 percent of health spending in low & middle-income
28 countries. Consequently, reliance on out-of-pocket health spending in many low & middle-
29 income countries experience high, raises serious equity concerns, on the other hand,
30 healthcare in high-income countries is mainly financed through public funding. About 80
31 percent of the world's population living in low & middle-income countries accounts for only
32 about 20 percent of global health spending (Bein, 2020a). Empirical evidence showed
33 that increasing out-of-pocket expenditure forced households into debt and poverty (Haque &
34 Mohd, 2025). Conversely, many evidence showed higher public healthcare expenditure
35 improved health outcomes such as increased life expectancy and lower child mortality (Filmer
36 & Pritchett, 1999; Ray & Linden, 2020). However, the efficiency of spending varies from
37 different income group countries, increased public expenditure leads to significant health
38 outcomes in developing countries (low & middle income), whereas returns diminish in high-

39 income countries(Bein, 2020b). These trends show that increasing health expenditure is not
40 sufficient, but also how it is utilized.

41 In IndiaGovernment health expenditure has historically remained around 3 to 4 percent of
42 GDP(Jakovljevic & Milovanovic, 2015) far below global norms and the 5 percent benchmark
43 for developing countries. Therefore, households beararound 60 to 70 percent of total health
44 costs out-of-pocket, one of the highest out-of-pocket shares globally (World Bank). This
45 heavy reliance on households private spending causehouseholds to financial risk and worsens
46 inequalities in access to care. Empirical studies on Indian states indicate that greater public
47 health spending can improve outcomes like infant mortality& life expectancy although these
48 results depend on spending efficiency and equity in distribution. India's low public
49 expenditure and high out-of-pocketexpenditure reflect a dual financing structure that
50 continues gaps in infrastructure and coverage(Logarajan et al., 2022). Recent health policies
51 in India emphasizes increasing public health expenditure (India's National Health Policy
52 2017 set a target of 2.5 percent of GDP) and expanding financial protection, however the
53 progress remainedslow.

54 Despite a rich global literature on health expenditure determinants, there is a research gap in
55 country-specific analyses that integrate both public and private healthcare expenditure in a
56 unified framework(Buchanan et al., 2025; Pandey, 2024). In India's case, most existing
57 studies either focus on aggregate health expenditure or examine public spending impacts on
58 health outcomes (Behera et al., 2024; "Public Health Expenditure, Governance and Health
59 Outcomes in Malaysia," 2016) and it remained unclear that whether increase in public health
60 expenditure tends to crowd out or increase out-of-pocket expenditure in India. To address this
61 gap, we have explicitly modelled the interrelationship between per capita total health
62 expenditure and per capita out-of-pockethealth expenditureusing annual data from 1991 to
63 2023.We employ the ARDL bounds testing approach for cointegration, which is well-suited
64 for limited sample sizes and mixed integration orders(Murthy & Okunade, 2016). To check
65 the robustness of long-run coefficient estimates we used FMOLS, DOLS, and CCR
66 models(Murthy & Okunade, 2016; Pandey, 2024). Our analysis estimates two cointegrating
67 models; one for per capita total health expenditure and one for per capita out-of-pocket health
68 expenditure, each including the same set of explanatory variables (LE, BED, PCI, IR, SE,
69 UP) and the other expenditure component (per capita out-of-pocket expenditure or per capita
70 total health expenditure) to capture financing interaction. By separating the determinants of
71 public versus private health spending in India, this study offers new insights into how
72 socioeconomic and demographic factors affect health financing. (Ray & Linden, 2020).

73 **2. Literature Review**

74 Globally, health expenditure has grown to around 10 percent of world GDP but this average
75 is different for different income group countries. High-income countries spend roughly 8
76 percent of GDP on health whereas lower-middle-income countries like India spend only
77 around 4–5 percent. Such underinvestment in poorer economies corresponds with persistently
78 worse health outcomes. Cross-country evidence indicates that increasing health spending
79 tends to improve life expectancy and reduce mortality, though with diminishing returns at

80 higher income levels. (Bein, 2020b)observe that additional health expenditure yields
81 significant gains in low-income settings but much smaller benefits in wealthy countries.

82 A large body of research has identified income as the foremost determinant of health
83 expenditure. Newhouse's classic analysis showed that richer countries spend more on health
84 per capita(Samadi & Homaie Rad, 2013). Subsequent panel studies confirm GDP per capita
85 as a dominant driver(Baltagi & Moscone, 2010) found a long-run income elasticity below
86 unity for OECD countries, implying healthcare is a necessity rather than a luxury good.
87 Similarly,(Samadi & Homaie Rad, 2013) reported that in ECO countries health spending is
88 cointegrated with GDP and other factors like demographics and physician density, with
89 income elasticity also under 1.

90 Demographic and social factors play a significant role as well. Aging populations drive
91 higher health costs, as observed in Europe where an increasing elderly share correlates with
92 rising expenditures(Awais et al., 2021). Urbanization and healthcare capacity (e.g. more
93 physicians or hospitals per capita) are associated with greater health spending, reflecting
94 higher utilization and supply-side effects(Samadi & Homaie Rad, 2013).(Akca et al.,
95 2017)found that in OECD countries, besides income, life expectancy and the age dependency
96 ratio were key predictors of health spending levels. Technological progress and medical price
97 inflation (Baumol's cost disease) are also cited as drivers of expenditure growth in high-
98 income countries.

99 Health financing patterns are particularly crucial in developing countries. Many low- and
100 middle-income countries rely heavily on out-of-pocket spending due to limited public
101 expenditure. In India, about 60–70% of total health expenditure is paid out-of-pocket by
102 households, which puts many at risk of financial hardship. Studies show that boosting public
103 health spending can improve outcomes and reduce such risks.(Mohanty & Behera (2020),
104 n.d.)analysed Indian states, found that higher per capita total expenditure significantly
105 reduced infant mortality and improved life expectancy. Conversely, heavy out-of-pocket
106 burdens can worsen health outcomes, a time-series study in Malaysia showed that greater out-
107 of-pocket spending was associated with higher child mortality, whereas changes in public or
108 privately insured spending had no significant effect(Logarajan et al., 2022). These findings
109 underscore the importance of a strong health financing safety net (public funding or
110 insurance) for better health results.

111 Economic and fiscal conditions also shape health spending. Periods of robust economic
112 growth and higher government revenues generally enable greater health expenditure(Behera
113 & Dash, 2019). In a panel of Indian states, higher tax revenue was found to increase health
114 budget allocations, while heavy reliance on borrowing constrained health spending in the
115 long run. (Behera et al., 2024)observed that the structural changes around the early 2000s
116 (such as increased central transfers) led to shifts in health spending patterns in India(Behera
117 et al., 2024). (Awais et al., 2021)noted that personal remittance inflows can positively affect
118 health spending in developing countries, while environmental factors like pollution may
119 indirectly suppress health expenditure. Many researchers have used advanced econometric
120 timeseries methods like ARDL and cointegration models to capture long run and short run
121 relationships among the determinants(Samadi & Homaie Rad, 2013). (Murthy & Okunade,

122 2016) used an ARDL approach in African countries and confirmed income along with
123 external aid as key drivers of health spending.

124 Prior literature had shown that health spending is mainly influenced by a mix of economic
125 strength, population changes, and the quality of the health. However, most prior studies focus
126 on aggregate national spending. Few have disaggregated public versus private health
127 expenditures, especially in India's case of low public funding and high out-of-pocket burdens.
128 The present study addresses this gap by examining the distinct determinants of India's per
129 capita public and out-of-pocket spending, contributing new insights to the health financing
130 literature.

131 **3. Methodology and Data**

132 The paper draws upon the foundational framework of the health capital model introduced by
133 (Grossman, 1972), which views health as both an investment and consumption good,
134 accumulated through expenditures on healthcare, education, and nutrition, and depreciating
135 with age. (Arrow, 1978) welfare theory emphasizes that healthcare markets fail under
136 uncertainty and information asymmetry, necessitating state intervention. Additionally
137 (Mushkin, 1962) posited health as a form of human capital essential for economic
138 productivity, while (Barros et al., 2000) underscored the social returns to health investment.
139 Together, these perspectives justify a dual analysis of public and private health spending in
140 shaping long-term welfare. This study specifies the models as below:

141 **Model 1** $PCOOPE_t = F(BED_t, IR_t, LE_t, PCI_t, PCTHE_t, SE_t, UP_t)$

142 **Model 2** $PCTHE_t = F(BED_t, IR_t, LE_t, PCI_t, PCOOPE_t, SE_t, UP_t)$

143 Where PCOOPE (per capita out-of-pocket expenditure) refers to total out-of-pocket
144 expenditure done by households on health goods and services divided by the total population
145 each year.

146 PCTHE (per capita total health expenditure at time t) can be defined as total
147 public expenditure on health (generally given as percentage of GDP) divided by the total
148 population each year.

149 BED (number of hospital beds) refers to the total count of available inpatient beds in public
150 and private hospitals in a country each year, it represents the physical capacity of the
151 healthcare system (i.e. infrastructure).

152 IR (inflation rate) can be defined as the increased price of goods and services annually in an
153 economy can be reflected as loss in purchasing power of money, it captures the variations in
154 the cost of medical care, diagnostics, and healthcare services that can influence overall per
155 capita total health expenditure.

156 LE (life expectancy at birth) can be measured as the average number of years an individual
157 would live under prevailing mortality conditions and it serves as a summary measure of
158 population health.

159 PCI (per capita income) measures average economic output of nation or income per person.
160 Higher per capita income means better living conditions.

161 SE (secondary education enrolment) can be defined as total number of individuals enrolled in
162 secondary education regardless of their age

163 UP- (urban population) can be defined as the total population living in urban areas.
164 Urbanization influences health factors like infrastructure, healthcare access, and
165 environmental condition of urban areas.

166 Data cover annual observations from 1991 to 2023, collected from official sources. Life
167 expectancy, urban population, per capita income, out-of-pocket, secondary enrolment, and
168 inflation ratetaken from the World Bank Data. Hospital bed counts are obtained from the
169 EPW &Ministry of Health and supplementary reports. Population data collected from census.
170 Analysis is conducted in EViews 12 Student version. Using the data two empirical models
171 specified study how India's per-capita out-of-pocket expenditure and per-capita total health
172 expenditure are affected by the considered determinants.The above models have been
173 described as below:

174 **Model1** $PCOOP_{t-1} = \beta_0 + \beta_1 BED_t + \beta_2 IR_t + \beta_3 LE_t + \beta_4 PCI_t + \beta_5 PCTHE_t + \beta_6 SE_t + \beta_7 UP_t + \mu_t$

175 **Model2** $PCTHE_t = \beta_0 + \beta_1 BED_t + \beta_2 IR_t + \beta_3 LE_t + \beta_4 PCI_t + \beta_5 PCOOP_{t-1} + \beta_6 SE_t + \beta_7 UP_t + \mu_t$

176 Based on the literature, higher supply capacity measured by hospital beds may increase both
177 out-of-pocket spending and health care expenditure(Sakshi, S., & Sharma, J. N. (2025), n.d.),
178 as seen in panel studies on developing economies that link urbanization and supply indicators
179 to health expenditure levels. Evidence from ECO countries points to significant long-run
180 relationships between per-capita total health spending and income, demographic structure,
181 and urbanization, underscoring similar channels for India. (Samadi & Homaie Rad, 2013).
182 For inflation, recent OECD analysis highlights how high inflation complicates health
183 financing and raises cost pressures on public budgets, suggesting that inflation should
184 positively influence measured spending (OECD, 2023). Income is a core driver of health
185 spending across ARDL studies, including U.S. evidence where per-capita income and
186 technology showed long-run positive effects on health expenditure. (Murthy & Okunade,
187 2016). The inclusion of per capita out-of-pocket expenditure in the per capita public spending
188 equation and vice versa is motivated by the financial protection literature. Recent panel work
189 finds that high out-of-pocket burdens in developing settings create major financial hardship,
190 heightening the importance of understanding interactions with public financing(Sofi &
191 Yasmin, 2024).

192 Above models have to be specified in the long-run ARDL form as described below:

$$PCOOP_{t-1} = \alpha_0 + \sum_{i=1}^p \alpha_i PCOOP_{t-i} + \sum_{j=0}^{q_1} \beta_j BED_{t-j} + \sum_{k=0}^{q_2} \beta_k IR_{t-k} + \sum_{l=0}^{q_3} \beta_l LE_{t-l} + \sum_{m=0}^{q_4} \beta_m PCI_{t-m} \\ + \sum_{n=0}^{q_5} \beta_n PCTHE_{t-n} + \sum_{o=0}^{q_6} \beta_o SE_{t-o} + \sum_{p=0}^{q_7} \beta_p UP_{t-p} + \varepsilon_t$$

193

$$\begin{aligned}
 PCTHE_t = \alpha_0 + \sum_{i=1}^p \alpha_i PCTHE_{t-i} + \sum_{j=0}^{q_1} \beta_j BED_{t-j} + \sum_{k=0}^{q_2} \beta_k IR_{t-k} + \sum_{l=0}^{q_3} \beta_l LE_{t-l} + \sum_{m=0}^{q_4} \beta_m PCI_{t-m} \\
 + \sum_{n=0}^{q_5} \beta_n PCOOPe_{t-n} + \sum_{o=0}^{q_6} \beta_o SE_{t-o} + \sum_{p=0}^{q_7} \beta_p UP_{t-p} + \varepsilon_t
 \end{aligned}$$

194

195 The ECM representation of the ARDL model is given below:

$$\begin{aligned}
 \Delta PCOOPe_t = \alpha_0 + \sum_{i=1}^p \alpha_i \Delta PCOOPe_{t-i} + \sum_{j=0}^{q_1} \beta_j \Delta BED_{t-j} + \sum_{k=0}^{q_2} \beta_k \Delta IR_{t-k} + \sum_{l=0}^{q_3} \beta_l \Delta LE_{t-l} \\
 + \sum_{m=0}^{q_4} \beta_m \Delta PCI_{t-m} + \sum_{n=0}^{q_5} \beta_n \Delta PCTHE_{t-n} + \sum_{o=0}^{q_6} \beta_o \Delta SE_{t-o} + \sum_{p=0}^{q_7} \beta_p \Delta UP_{t-p} \\
 + \lambda ECM_{t-1} + \varepsilon_t
 \end{aligned}$$

196

$$\begin{aligned}
 \Delta PCTHE_t = \alpha_0 + \sum_{i=1}^p \alpha_i \Delta PCTHE_{t-i} + \sum_{j=0}^{q_1} \beta_j \Delta BED_{t-j} + \sum_{k=0}^{q_2} \beta_k \Delta IR_{t-k} + \sum_{l=0}^{q_3} \beta_l \Delta LE_{t-l} + \sum_{m=0}^{q_4} \beta_m \Delta PCI_{t-m} \\
 + \sum_{n=0}^{q_5} \beta_n \Delta PCOOPe_{t-n} + \sum_{o=0}^{q_6} \beta_o \Delta SE_{t-o} + \sum_{p=0}^{q_7} \beta_p \Delta UP_{t-p} + \lambda ECM_{t-1} + \varepsilon_t
 \end{aligned}$$

197 The complete ARDL models can now be described as below:

$$\begin{aligned}
 \Delta PCOOPe_t = \alpha_0 + \sum_{i=1}^p \alpha_i PCOOPe_{t-i} + \sum_{j=0}^{q_1} \beta_j BED_{t-j} + \sum_{k=0}^{q_2} \beta_k IR_{t-k} + \sum_{l=0}^{q_3} \beta_l LE_{t-l} \\
 + \sum_{m=0}^{q_4} \beta_m PCI_{t-m} + \sum_{n=0}^{q_5} \beta_n PCTHE_{t-n} + \sum_{o=0}^{q_6} \beta_o SE_{t-o} + \sum_{p=0}^{q_7} \beta_p UP_{t-p} \\
 + \sum_{i=1}^p \alpha_i \Delta PCOOPe_{t-i} + \sum_{j=0}^{q_1} \beta_j \Delta BED_{t-j} + \sum_{k=0}^{q_2} \beta_k \Delta IR_{t-k} + \sum_{l=0}^{q_3} \beta_l \Delta LE_{t-l} \\
 + \sum_{m=0}^{q_4} \beta_m \Delta PCI_{t-m} + \sum_{n=0}^{q_5} \beta_n \Delta PCTHE_{t-n} + \sum_{o=0}^{q_6} \beta_o \Delta SE_{t-o} + \sum_{p=0}^{q_7} \beta_p \Delta UP_{t-p} + \lambda ECM_{t-1} \\
 + \varepsilon_t
 \end{aligned}$$

$$\begin{aligned}
 \Delta PCTHE_t = \alpha_0 + \sum_{i=1}^p \alpha_i PCTHE_{t-i} + \sum_{j=0}^{q_1} \beta_j BED_{t-j} + \sum_{k=0}^{q_2} \beta_k IR_{t-k} + \sum_{l=0}^{q_3} \beta_l LE_{t-l} + \sum_{m=0}^{q_4} \beta_m PCI_{t-m} \\
 + \sum_{n=0}^{q_5} \beta_n PCOOPe_{t-n} + \sum_{o=0}^{q_6} \beta_o SE_{t-o} + \sum_{p=0}^{q_7} \beta_p UP_{t-p} + \sum_{i=1}^p \alpha_i \Delta PCTHE_{t-i} \\
 + \sum_{j=0}^{q_1} \beta_j \Delta BED_{t-j} + \sum_{k=0}^{q_2} \beta_k \Delta IR_{t-k} + \sum_{l=0}^{q_3} \beta_l \Delta LE_{t-l} + \sum_{m=0}^{q_4} \beta_m \Delta PCI_{t-m} \\
 + \sum_{n=0}^{q_5} \beta_n \Delta PCOOPe_{t-n} + \sum_{o=0}^{q_6} \beta_o \Delta SE_{t-o} + \sum_{p=0}^{q_7} \beta_p \Delta UP_{t-p} + \lambda ECM_{t-1} + \varepsilon_t
 \end{aligned}$$

198

199 The first step in the analysis is to check if there is a stable long-term relationship between the
200 variables. This is done by using ordinary least squares (OLS) and testing the F-statistic with a
201 Wald test under following hypothesis:

202 $H_0: \alpha_i = \beta_j = \beta_k = \beta_l = \beta_m = \beta_n = \beta_o = \beta_p = 0$ (No cointegration)

203 $H_a : \alpha_i \neq \beta_j \neq \beta_k \neq \beta_l \neq \beta_m \neq \beta_n \neq \beta_o \neq \beta_p \neq 0$ (Cointegration)

204

205 **Analysis of Results and Discussions:**

206 The various estimated results of the study have been analysed with discussion as below:

207 **Descriptive Statistics:**

208 Table 1 above shows the descriptive statistics for the variables taken in the models to be
209 estimated.

210 **Table 1: Descriptive Statistics**

Statistics	PCTHE	PCOOP	BED	IR	LE	PCI	SE	UP
Mean	19.58066	12.24848	13.45212	7.078788	65.59542	1172.859	97328444	3.50E+08
Median	17.42186	12.02012	16.00000	6.400000	65.80300	1069.247	95306729	3.42E+08
Maximum	43.44934	20.22219	19.50000	13.90000	72.00000	2270.905	1.44E+08	5.19E+08
Minimum	7.776550	6.194022	4.900000	3.300000	59.03200	531.8984	54180391	2.18E+08
Std. Dev.	8.769288	3.429271	4.587009	3.089878	3.909198	521.4399	29480837	90252272
Skewness	1.175962	0.415212	-0.215686	0.633318	-0.079709	0.524433	0.120148	0.256155
Kurtosis	3.893158	2.737263	1.402653	2.224193	1.779201	1.998034	1.544250	1.871756
Jarque-Bera	8.702764	1.043121	3.764199	3.033586	2.084176	2.893078	2.993308	2.111167
Probability	0.12889	0.593594	0.152270	0.219414	0.352717	0.235384	0.223878	0.347989
Sum	646.1618	404.1997	443.9200	233.6000	2164.649	38704.36	3.21E+09	1.15E+10
Sum Sq. Dev.	2460.813	376.3168	673.3008	305.5152	489.0186	8700787.	2.78E+16	2.61E+17
Observations	33	33	33	33	33	33	33	33

211

212 The results show that all series exhibit relatively low standard deviations, indicating stability
213 over the sample period, with positive skewness values for the variables PCTHE, PCOOP, IR, PCI, SE and UP. In case of BED and LE, there is negatively skewed distribution. The
214 Jarque-Bera probabilities confirm that all variables are normally distributed. The kurtosis
215 values show heterogeneity in the shapes of distribution of variables. PCTHE shows a
216 leptokurtic distribution, which suggest higher peak and heavier tails, whereas PCOOP is
217 approximately mesokurtic. On the other hand, remaining variables (BED, IR, LE, PCI, SE,
218 UP) showed platykurtic distributions, comparatively flatter distributions with fewer extreme
219 observations.

221 **Correlation Analysis:**

222 Table 2 presents the pair-wise Karl Pearson's correlation coefficients in case of all the considered
223 variables:

224 **Table 2 : Correlation Matrix**

Variable	PCTHE	PCOOPE	BED	IR	LE	PCI	SE	UP
PCTHE	1							
PCOOPE	0.930446	1						
BED	0.319394	0.228191	1					
IR	-0.357156	-0.386113	-0.239119	1				
LE	0.742969	0.664997	0.679783	-0.381444	1			
PCI	0.856229	0.715803	0.587696	-0.360007	0.950560	1		
SE	0.777664	0.658698	0.662347	-0.333306	0.974239	0.979028	1	
UP	0.838899	0.713316	0.635470	-0.370177	0.969097	0.990744	0.990306	1

225 It is clear that per capita out-of-pocket expenditure and per capita total health are very closely
 226 related (correlation = 0.93). Other variables like PCI, SE, LE and UP are also highly related to
 227 both health spending and each other. IR, on the other hand, tends to move in the opposite
 228 direction from all other variables.

229 **Unit Root Test:**

230 Table 3 and Table 4 report the estimates of unit root tests using the ADF and PP tests both at
 231 level and first difference respectively.

232 **Table 3: Stationarity: Unit Root Tests at Level**

Variables	ADF		PP	
	C	C & T	C	C & T
PCTHE	0.300 (0.974)	0.041 (0.995)	0.882 (0.993)	-0.830 (0.951)
PCOOPE	-1.686 (0.428)	-2.646 (0.264)	-1.376 (0.581)	-2.673 (0.253)
BED	-2.436 (0.140)	-2.992 (0.149)	-2.296 (0.179)	-2.966 (0.156)
IR	-3.374 (0.020)**	-3.448 (0.035)**	-3.245 (0.026)**	-3.241 (0.044)**
LE	-2.665 (0.0925)	2.279 (1.000)	-0.366 (0.903)	-4.227 (0.0111)**
PCI	2.766 (1.000)	-0.535 (0.975)	9.208 (1.000)	1.058 (0.999)
SE	0.269 (0.972)	-1.839 (0.661)	0.238 (0.970)	-1.921 (0.619)
UP	16.582 (1.000)	1.741 (1.000)	14.691 (1.000)	1.482 (1.000)

Asterisks indicate the level of statistical significance: ** for 5%.
 Values in parentheses are respective prob values of the test statistic.

233 Source: Author's calculations

234 The Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests both check whether a
 235 time-series has a unit root. Table 3 shows results at levels PCTHE, PCOOPE, BED, PCI, SE
 236 and UP all have large p-values and relatively small test statistics, so they remain
 237 non-stationary at level. The inflation rate (IR) & life expectancy (LE) had a low p-value,
 238 indicating stationarity.

239 The below Table 4 shows estimates of unit root tests in case of first difference. All variables
 240 except LE and IR become stationary at the 1% significance level based on both the ADF and
 241 PP tests, indicating integration of order one, I(1).

242 **Table 4: Stationarity: Unit Root Tests at First Difference**

Variables	ADF		PP	
	C	C & T	C	C & T
PCTHE (D)	-2.302 (0.0177)**	-7.004 (0.000)***	-6.697 (0.000)***	-7.090 (0.000)***
PCOOPE (D)	-7.664 (0.000)***	-7.569 (0.000)***	-7.745 (0.000)***	-7.650 (0.000)***
BED (D)	-7.837 (0.000)***	-7.765 (0.000)***	-8.439 (0.000)***	-8.644 (0.000)***
IR (D)	-7.403 (0.000)***	-7.362 (0.000)***	-7.627 (0.000)***	-7.452 (0.000)***
LE (D)	2.963 (1.000)	3.610 (1.000)	-21.318 (0.000)***	-21.345 (0.000)***
PCI (D)	-4.009 (0.004)***	-3.744 (0.037)**	-3.906 (0.005)***	-8.971 (0.000)***
SE (D)	-4.915 (0.000)***	-4.845 (0.002)***	-4.942 (0.000)***	-4.873 (0.002)***
UP (D)	0.211 (0.038)**	-3.827 (0.028)**	0.460 (0.0482)**	-3.847 (0.027)**

Asterisks indicate the level of statistical significance: *** for 1% and ** for 5%.

Values in parentheses are respective prob values of the test statistic.

243 Source: Author's calculations

244 On the basis of the observation of the estimates of unit root test, it can clearly be seen that the
 245 variables are of both I(0) and I(1) integration orders and none of the variables is I(2). So, it
 246 enables for the estimation of the ARDL model(Pesaran et al., 2001).Its ability to estimate
 247 cointegrating relationships in small samples makes it suitable for the 1991–2023 dataset.
 248 ARDL effectively captures both short and long-run dynamics.

249 **Optimum Lag Selection**

250 To capture dynamics, optimum lag selection procedure has been performed and the results are
 251 shown in Table 5. we estimate an ARDL model of the form (2,1,2,2,1,2,0,1) &
 252 (2,1,2,2,2,2,0,1)

253 **Table 5: Optimum Lag Selection**

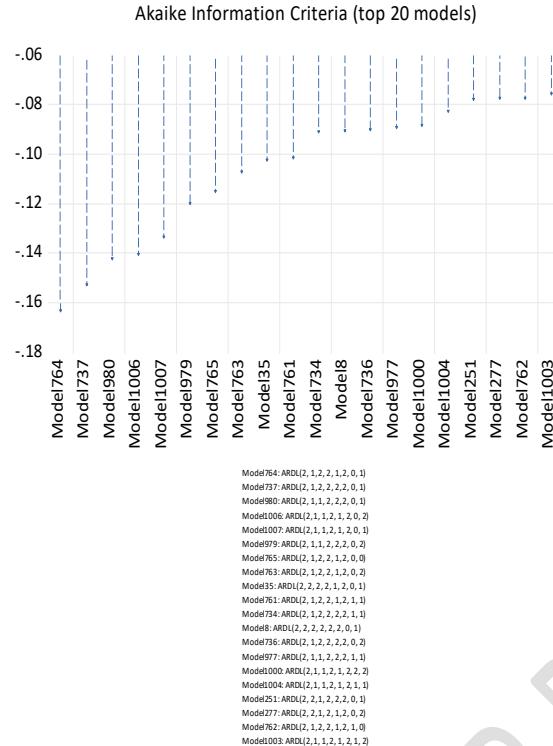
Lag	LogL	LR	FPE	AIC	SC	HQ
0	-1587.780	NA	7.12e+34	102.9535	103.3236	103.0742
1	-1298.719	410.2796	4.04e+28	88.43349	91.76404	89.51916
2	-1184.405	103.2513*	4.05e+27*	85.18743*	91.47847*	87.23815*

254 According to the Table 5, all the lag selection criteriasuggest 2 as the optimum lag length in
 255 case of both models. In this way to determine the optimal lag structure for the ARDL models
 256 with 33 observations,the Akaike Information Criterion has been used which reports the model

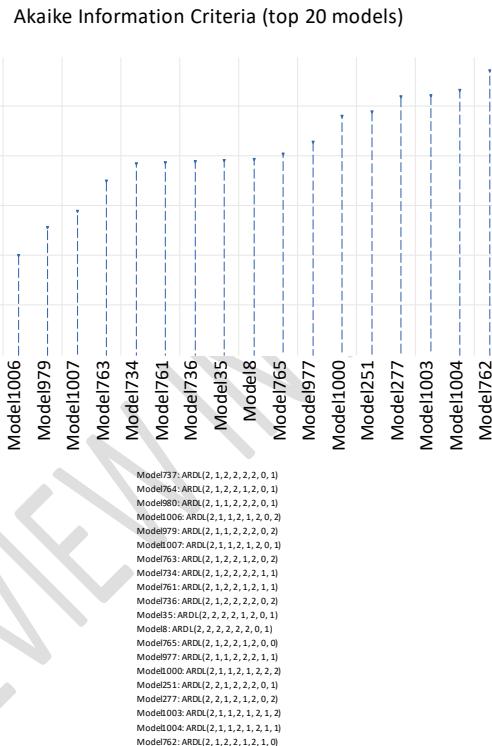
257 selection results as reported below in Figure 1. Clearly, in case of PCOOPE the selected lag
 258 order is (2,1,2,2,1,2,0,1) while in case of PCTHE it is (2,1,2,2,2,2,0,1).

259 **Figure 1: Model Selection**

260 PCOOPE model selection



PCTHE model selection



261

262 Bound Test

263 Table 6 reports the estimates of the Bound tests:

264

Table 6: Bound Test (Cointegration)

Test Statistic	PCOOPE	PCTHE		
F-Statistic	11.3557	12.6821		
K	7	7		
	ARDL	Critical Value	Lower Bound, I(0)	Upper Bound, I(1)
Dependent Variable: PCOOPE _t (Model 1) (2,1,2,2,1,2,0,1)				
Independent Variables: BED _t , IR _t , LE _t PCI _t , UP _t , SE _t , PCTHE _t	1%	2.96	4.26	
Dependent Variable: PCTHE _t (Model 2) (2,1,2,2,2,2,0,1)				
Independent Variables: BED _t , IR _t , LE _t PCI _t , UP _t , SE _t , PCOOP _t	1%	2.96	4.26	

265

266 Table 6, the bounds test cointegration, clearly shows that both models exhibit strong long-run
 267 cointegration as the F-statistics for PCOOP (11.36) and PCTHE (12.68) lie far above the 1%
 268 upper bound of 4.26. This confirms that per capita out-of-pocket and per capita total health-
 269 expenditure dynamics in India are not drifting randomly but are tied together through a stable

270 long-run equilibrium. The high F-values also validate the chosen lag structures, indicating
271 that short-run adjustments eventually converge to meaningful long-run relationships.

272 **Long-Run ARDL Model**

273 The estimates of long-run form of the ARDL models have been reported in Table 7.

274 **Table 7: Estimates of Long-Run ARDL Model**

Variable	Model 1 (PCOOPE)			Model 2 (PCTHE)		
	Coefficient	Std. Error	Prob.	Coefficient	Std. Error	Prob.
BED	0.0307	0.018828	0.1286	-0.0345	0.025205	0.1980
IR	-0.0849***	0.021048	0.0017	0.1088***	0.027711	0.0024
LE	1.5406***	0.069047	0.0000	-1.9700***	0.106701	0.0000
PCI	-0.0040***	0.000810	0.0003	0.0059***	0.001415	0.0014
PCTHE	0.7700***	0.029505	0.0000	-	-	-
PCOOPE	-	-	-	1.3091***	0.051376	0.0000
SE	1.68E-07***	2.38E-08	0.0000	-2.10E-07***	2.59E-08	0.0000
UP	-1.33E-07***	1.14E-08	0.0000	1.65E-07***	1.28E-08	0.0000

*Note: ***-significant at 1% level.*

275 Author's Calculation

276 Table 7 shows the long-run ARDL estimates which align with Grossman's health capital
277 theory according to which economic and demographic factors drive health spending. Both IR
278 and PCI have negative significant impact on PCOOPE and positive significant impact on
279 PCTHE, reflecting its status as a normal good. LE has a positive effect on PCOOPE ,
280 consistent with population aging and higher health investment(Grossman, 1972; Kofi
281 Boachie et al., 2018). The effect of IR indicatesincreasing cost pressures both on public and
282 out-of-pocket expenditures. By contrast, hospital capacity BED has no significant long-run
283 effect on both the health expenditures. Conversely,SE have opposite effects across both
284 expenditures, more secondary school enrolment lower per capita out-of-pocket burdens but
285 can increase overall public health spending. Similar results can be seen for UP,opposite
286 effects across both expenditures, as population in urban areas increases leads to crowd out-of-
287 pocket expenditure and increases public health expenditure. These results suggest an
288 improved public provision(Kazemi Karyani et al., 2015; Ssozi & Amlani, 2015). Finally,
289 greater investment public health expenditurecan reduce out-of-pocket expenditure in low &
290 middle-income countries, confirming a substitution effect in health financing (Logarajan et
291 al., 2022).

292 **Short-Run ARDL Model**

293 Table 8 shows the short-run ARDL results which reveal dynamic adjustment patterns in
294 health spending.

295 **Table 8: Estimated Short Run Coefficients**

Model	Model 1 (PCTHE)			Model 2 (PCOOPE)		
Variable	Coefficient	Std. Error	Prob.	Coefficient	Std. Error	Prob.

C	127.23***	9.901135	0.0000	-91.5660	7.6733	0.0000
D(PCOOPE(-1))				0.4060***	0.065747	0.0000
D(PCTHE(-1))	0.4059***	0.061380	0.0000			
D(BED)	0.0650***	0.012089	0.0002	-0.0450***	0.009104	0.0003
D(IR)	0.0740***	0.022927	0.0080	-0.0456**	0.017471	0.0227
D(IR(-1))	-0.0323	0.020132	0.1366	0.0261	0.015003	0.1065
D(LE)	-0.8740***	0.092282	0.0000	0.7952***	0.044526	0.0000
D(LE(-1))	1.1497***	0.129084	0.0000	-0.7585***	0.084545	0.0000
D(PCI)	0.0026**	0.000972	0.0189	-0.0018**	0.000720	0.0262
D(PCI(-1))	-0.0046**	0.001861	0.0290			
D(PCOOPE)	1.3351***	0.024663	0.0000			
D(PCOOPE(-1))	-0.5722***	0.088307	0.0000			
D(PCTHE)				0.7373***	0.013170	0.0000
D(PCTHE(-1))				-0.2966***	0.045947	0.0000
D(UP)	8.36E-08**	3.06E-08	0.0193	-8.47E-08***	1.87E-08	0.0007
CointEq(-1)*	-0.8375***	0.101568	0.0000	-0.9383***	0.110759	0.0000

Asterisks indicate the level of statistical significance: *** for 1%, ** for 5%.

296

297 Both short-run models PCOOPE and PCTHE showed consistent and significant lagged
 298 effects. The lagged dependent variables D(PCTHE(-1)) and D(PCOOPE(-1)) are positive and
 299 highly significant, indicating strong short-run adjustment (past spending strongly influence
 300 current spending), supporting fiscal inertia in health budgets(Ray & Linden, 2020). Life
 301 expectancy (LE) shows opposite short-run effects across models, D(LE) is negative for
 302 PCTHE and positive for PCOOPE, while D(LE(-1)) reverses sign, showing short term
 303 adjustment lags(Vyas et al., 2023), also highlighted demographic-driven fluctuations in
 304 spending.

305 Inflation (IR) affects the two models differently, a positive coefficient in PCTHE and negative
 306 in PCOOPE, reflecting increased public spending and decreased private spending, whereas
 307 lagged signed reverse in both the models. Similarly, urbanization (D(UP)) significantly affects
 308 both models with opposing sign, a positive coefficient for PCTHE and a negative coefficient
 309 for PCOOPE, suggesting that better public health services in urban areas(Mohapatra et al.,
 310 2024). Hospital beds (D(BED)) shows a positive & significant coefficient for PCTHE but
 311 negative PCOOPE(Kusunoki & Morita, 2025), who found that expanding health
 312 infrastructure can often shifts financial burden away from households.

313 Per capita income (PCI) shows opposite effects in both the models, D(PCI) is positive in
 314 PCTHE and negative in PCOOPE, while D(PCI(-1)) shows a lagged negative effect on
 315 PCTHE(Ssozi & Amlani, 2015). Finally, both models report significant and negative ECM
 316 terms (-0.8375 and -0.9383), indicating strong correction towards equilibrium(Logarajan et
 317 al., 2022).

318 **Robustness Check**

319 To study the robustness check of the model cointegrating regression equation have been
 320 estimated for the Fully Modified Ordinary Least Squares, Dynamic Ordinary Least Squares
 321 and Canonical (Cointegration Regression models. Results have been reported in Table 9.

322 **Table 9: Estimates of FMOLS, DOLS and CCR**

Model	Model 1 (PCOOPe)			Model 2 (PCTHE)		
	FMOLS	DOLS	CCR	FMOLS	DOLS	CCR
BED	-0.036058 (0.2313)	0.379437 (0.0040)***	-0.040467 (0.4136)	0.026800 (0.5366)	-0.508254 (0.0128)**	0.030898 (0.6685)
IR	-0.097646 (0.0084)***	-0.512520 (0.0034)***	-0.095751 (0.0172)**	0.137955 (0.00880)***	0.699153 (0.0107)**	0.139872 (0.0199)**
LE	0.909623 (0.0000)***	0.847903 (0.0281)**	0.917013 (0.0000)***	-1.324704 (0.0000)***	-1.086127 (0.0969)*	-1.333332 (0.0000)***
PCI	-0.008831 (0.0000)***	-0.001121 (0.0712)*	-0.008669 (0.0000)***	0.013122 (0.0000)***	0.000528 (0.5029)	0.013343 (0.0000)***
PCTHE	0.664764 (0.0000)***	0.857083 (0.0016)***	0.644807 (0.0000)***			
PCOOPe				1.391993 (0.0000)***	1.166302 (0.0065)***	1.428848 (0.0000)***
SE	1.88E-07 (0.0000)***	4.47E-07 (0.0044)***	1.78E-07 (0.0006)***	-3.16E-07 (0.0000)***	-5.81E-07 (0.0127)**	-3.16E-07 (0.0000)***
UP	-7.56E-08 (0.0000)***	-1.79E-07 (0.00710)***	-7.25E-08 (0.0019)***	1.28E-07 (0.0000)***	2.32E-07 (0.0248)**	1.26E-07 (0.0001)***

Asterisks indicate the level of statistical significance: *** for 1%, ** for 5%, and * for 10%.

323
 324 The above Table 9 confirms that the long-run cointegration results are stable across the
 325 models of FMOLS (Fully Modified Ordinary Least Squares), DOLS (Dynamic Ordinary
 326 Least Squares) and Canonical Cointegration Regression. Broadly, the results from these
 327 models confirm the robustness of earlier ARDL findings. Rising life expectancy and
 328 declining per capita income consistently increase PCOOPe and vice-versa. Grossman's view
 329 of health as a long-lived investment good and the income-expenditure nexus (Baltagi &
 330 Moscone, 2010; Grossman, 1972; Murthy & Okunade, 2016). Inflation has a negative and
 331 significant effect on PCOOPe, where as it has positive and significant effect on PCTHE,
 332 captures cost-push pressures on households in developing health systems (Jakovljevic &
 333 Milovanovic, 2015). There is strong two way relationship between PCTHE and
 334 PCOOPe reinforce evidence of substitution between public and private financing found for
 335 Malaysia and other middle-income economies (Logarajan et al., 2022; Samadi & Homaie
 336 Rad, 2013). Secondary school enrolment (SE) and urban population (UP) showed inverse
 337 effects between the two spending components, suggesting structural differences in access and
 338 utilisation across regions consistent with recent Indian state-level findings (Behera & Dash,
 339 2019). Overall, the consistency across estimators strengthens the credibility of the long-run
 340 cointegration relationship in both models.

341

342 **Diagnostic Tests:**

343 Various diagnostic tests have been applied on the estimated models to see whether these
344 models are suitable for policy making.

345 **Table 10: Model Diagnostics**

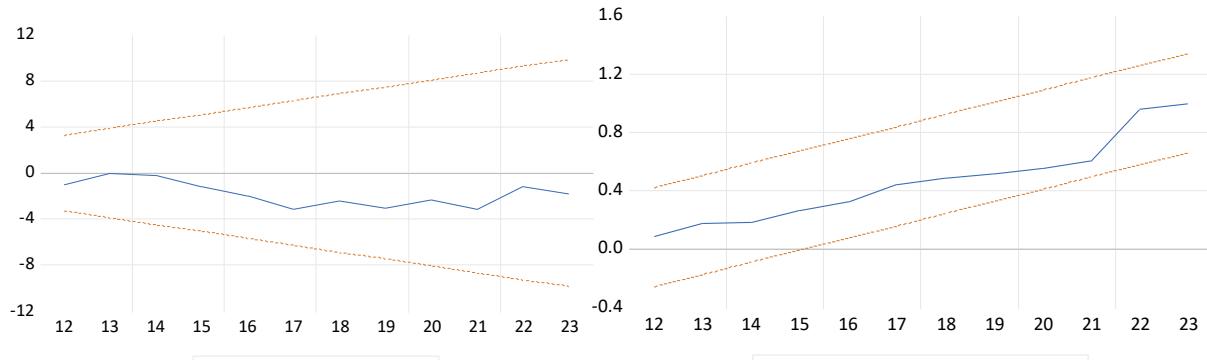
Test		F-stat	P-value	H ₀	Conclusion
Residual Diagnostics	Normality (Jarque-Bera)	(0.23) ¹ (0.92) ²	(0.888) ¹ (0.62) ²	Residuals are normally distributed	Normally distributed errors
	Heteroskedasticity (Breusch-pagan test)	(0.377) ¹ (0.341) ²	(0.969) ¹ (0.980) ²	The residuals are homoscedastic.	No-Heteroscedasticity
	Serial Correlation (Breusch-godfrey test)	(2.987) ¹ (1.631) ²	(0.096) ¹ (0.248) ²	There is no second order serial Correlation in the residuals.	No autocorrelation
Stability Diagnostics	Ramsey RESET Test	(1.029) ¹ (0.034) ²	(0.332) ¹ (0.856) ²	Model is correctly specified	No omitted variables & no non-linearities

Values indicated with superscript 1 correspond to Model 1 (PCOOP), while those with superscript 2 correspond to Model 2 (PCTHE)

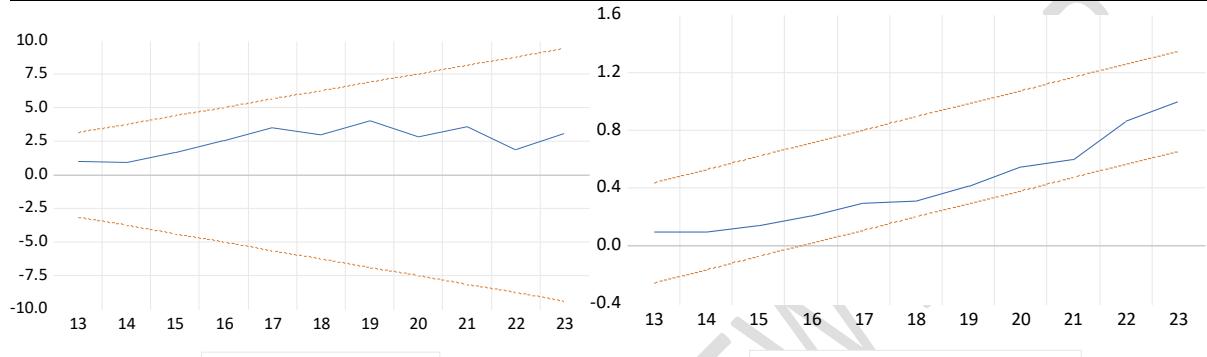
346

347 The diagnostic tests confirm that both models are statistically reliable. To check whether
348 residuals are normally distributed, Jarque-Bera test has been applied. Results show that
349 residuals are normally distributed. To check heteroscedasticity, Breusch-Pagan Godfrey test
350 has been applied and result shows no evidence of heteroscedasticity because null hypothesis
351 has been accepted. In case of serial correlation the test statistic has been found to be
352 significant revealing that there is no evidence of serial correlation in the estimated results.
353 Finally, the Ramsey RESET test validates correct model specification. The stability of the
354 estimated models has been studied with the help of CUSUM and CUSUMSQ as shown in the
355 below figures:

356 **Figure 2: Stability Diagnostics**



357



358

359 The CUSUM and CUSUMSQ plots demonstrate that the ARDL model remains stable across
 360 the entire study period. In both cases, the plotted cumulative residuals stay well within the
 361 5% critical boundaries, indicating no evidence of structural instability or parameter shifts.
 362 This consistency confirms that the estimated relationships-both long-run and short-run
 363 are valid throughout observed years.

364

4. Conclusion

365 This study provides fresh evidence on the long-run and short-run dynamics of healthcare
 366 financing in India. we examined the determinants of India's per capita out-of-pocket
 367 expenditure and per capita total health expenditure over 1991–2023 using ARDL, FMOLS,
 368 DOLS and CCR estimators, and the results showed a stable long-run relationship between
 369 health expenditures and key socioeconomic factors. Results indicate a structural reallocation
 370 of healthcare financing in India. Inflation, rising life expectancy, growing per capita income,
 371 increasing secondary school enrolment, and increasing urban population significantly shape
 372 public & private expenditures, with higher per capita total health expenditure systematically
 373 reducing per capita out-of-pocket burden on households, while greater reliance on household
 374 out-of-pocket spending increases overall public health expenditure. The opposite signs of
 375 variables across public and private expenditure confirm a strong substitution effect between
 376 the two-healthcare financing in India, whereas hospital bed capacity remains insignificant,
 377 suggesting that investment in infrastructure alone does not drive better long-term health
 378 outcomes and efficiency improvements.

379 As suggested by (Mushkin, 1962), health as a form of human capital essential for economic
 380 productivity and (Barros et al., 2000) underscored the social returns to health investment. The
 381 policymakers should not only focus on how muchexpenditureis done on health, but on how

382 effectively it is allocated. Mainly toward primary care and preventive services to maximize
383 health gains. Many researcher's evidence indicates that public health expenditure is more
384 effective at improving overall population health outcomes than out-of-pocket
385 spending(Rezapour et al., 2019) reinforcing the importance of strong public provision. A 10
386 percent increase in public health spending has been linked to a 1–7 percent decline in
387 mortality(Mays & Smith, 2011) though simply spending more is insufficient without
388 strengthening service delivery(Mays & Smith, 2011). Therefore, allocating resources toward
389 cost-effective interventions such as maternal, child health services, vaccination programs and
390 community-based care is likely to generate better outcomes and a more equitable health
391 system.

392 **References**

393 Akca, N., Sönmez, S., & Yılmaz, A. (2017). Determinants of health expenditure in OECD
394 countries: A decision tree model. *Pakistan Journal of Medical Sciences*, 33(6).
395 <https://doi.org/10.12669/pjms.336.13300>

396 Arrow, K. J. (1978). UNCERTAINTY AND THE WELFARE ECONOMICS OF MEDICAL
397 CARE. In *Uncertainty in Economics* (pp. 345–375). Elsevier.
398 <https://doi.org/10.1016/B978-0-12-214850-7.50028-0>

399 Awais, M., Khan, A., & Ahmad, M. S. (2021). Determinants of health expenditure from
400 global perspective: A panel data analysis. *Liberal Arts and Social Sciences
401 International Journal (LASSIJ)*, 5(1), 481–496.
402 <https://doi.org/10.47264/idea.lassij/5.1.31>

403 Baltagi, B. H., & Moscone, F. (2010). Health care expenditure and income in the OECD
404 reconsidered: Evidence from panel data. *Economic Modelling*, 27(4), 804–811.
405 <https://doi.org/10.1016/j.econmod.2009.12.001>

406 Barros, P. P., Culyer, A. J., Newhouse, J. P., Pauly, M. V., & McGuire, T. G. (2000).
407 *Handbook of health economics* (1st ed). Elsevier.

408 Behera, D. K., & Dash, U. (2019). Prioritization of government expenditure on health in
409 India: A fiscal space perspective. *Socio-Economic Planning Sciences*, 68, 100667.
410 <https://doi.org/10.1016/j.seps.2018.11.004>

411 Behera, D. K., Rahut, D. B., & Dash, U. (2024). Fiscal Policy Determinants of Health
412 Spending in India: State Versus Center. *Asian Development Review*, 41(02), 325–347.
413 <https://doi.org/10.1142/S0116110524500100>

414 Bein, M. (2020a). The association between medical spending and health status: A study of
415 selected African countries. *Malawi Medical Journal*, 32(1), 37–44.
416 <https://doi.org/10.4314/mmj.v32i1.8>

417 Bein, M. (2020b). The association between medical spending and health status: A study of
418 selected African countries. *Malawi Medical Journal*, 32(1), 37–44.
419 <https://doi.org/10.4314/mmj.v32i1.8>

420 Buchanan, B., Silvola, H., & Vähämaa, E. (2025). Sustainability and private investors. *The
421 European Journal of Finance*, 31(2), 174–201.
422 <https://doi.org/10.1080/1351847X.2024.2362282>

423 Chai, K.-C., Zhang, Y.-B., & Chang, K.-C. (2020). Regional Disparity of Medical Resources
424 and Its Effect on Mortality Rates in China. *Frontiers in Public Health*, 8, 8.
425 <https://doi.org/10.3389/fpubh.2020.00008>

426 Filmer, D., & Pritchett, L. (1999). The impact of public spending on health: Does money
427 matter? *Social Science & Medicine*, 49(10), 1309–1323.
428 [https://doi.org/10.1016/S0277-9536\(99\)00150-1](https://doi.org/10.1016/S0277-9536(99)00150-1)

429 Grossman, M. (1972). On the Concept of Health Capital and the Demand for Health. *Journal
430 of Political Economy*, 80(2), 223–255. <https://doi.org/10.1086/259880>

431 Haque, S., & Mohd, S. (2025). DETERMINANTS OF OUT-OF-POCKET HEALTH
432 EXPENDITURE FOR OUTPATIENT TREATMENT FOR CHILDREN UNDER 5
433 YEARS IN BANGLADESH: DETERMINANTS OF OUT-OF-POCKET HEALTH
434 EXPENDITURE FOR OUTPATIENT TREATMENT FOR CHILDREN UNDER 5
435 YEARS IN BANGLADESH: HOUSEHOLD INCOME AND EXPENDITURE

436 SURVEY, 2016. *International Journal of Business and Society*, 26(2), 490–510.

437 <https://doi.org/10.33736/ijbs.8077.2025>

438 Jakovljevic, M. B., & Milovanovic, O. (2015). Growing Burden of Non-Communicable

439 Diseases in the Emerging Health Markets: The Case of BRICS. *Frontiers in Public*

440 *Health*, 3. <https://doi.org/10.3389/fpubh.2015.00065>

441 Kazemi Karyani, A., Homaie Rad, E., Pourreza, A., & Shaahmadi, F. (2015). Democracy,

442 political freedom and health expenditures: Evidence from Eastern Mediterranean

443 countries. *International Journal of Human Rights in Healthcare*, 8(3), 187–194.

444 <https://doi.org/10.1108/IJHRH-01-2015-0001>

445 Kofi Boachie, M., Ramu, K., & Põlajeva, T. (2018). Public Health Expenditures and Health

446 Outcomes: New Evidence from Ghana. *Economies*, 6(4), 58.

447 <https://doi.org/10.3390/economies6040058>

448 Kusunoki, H., & Morita, H. (2025). *Reevaluating Hospital Bed Density in Japan: Toward*

449 *Sustainable and Regionally Responsive Healthcare Reform*. Public Health and

450 Healthcare. <https://doi.org/10.20944/preprints202507.0103.v2>

451 Logarajan, R. D., Nor, N. M., Sirag, A., Said, R., & Ibrahim, S. (2022). The Impact of Public,

452 Private, and Out-of-Pocket Health Expenditures on Under-Five Mortality in Malaysia.

453 *Healthcare*, 10(3), 589. <https://doi.org/10.3390/healthcare10030589>

454 Mays, G. P., & Smith, S. A. (2011). Evidence Links Increases In Public Health Spending To

455 Declines In Preventable Deaths. *Health Affairs*, 30(8), 1585–1593.

456 <https://doi.org/10.1377/hlthaff.2011.0196>

457 *Mohanty & Behera (2020)*. (n.d.).

458 Mohapatra, G., Arora, R., & Giri, A. K. (2024). Establishing the relationship between

459 population aging and health care expenditure in India. *Journal of Economic and*

460 *Administrative Sciences*, 40(3), 684–701.

461 <https://www.emerald.com/jeas/article/40/3/684/1215217>

462 Murthy, V. N. R., & Okunade, A. A. (2016). Determinants of U.S. health expenditure:

463 Evidence from autoregressive distributed lag (ARDL) approach to cointegration.

464 *Economic Modelling*, 59, 67–73. <https://doi.org/10.1016/j.econmod.2016.07.001>

465 Mushkin, S. J. (1962). Health as an Investment. *Journal of Political Economy*, 70(5, Part 2),

466 129–157. <https://doi.org/10.1086/258730>

467 OECD. (2023). *Health care financing in times of high inflation*.

468 <https://doi.org/10.1787/78c11b24-en>

469 Pandey, A. (2024). The role of public health expenditure in reducing infant mortality rate in

470 India: Insights from cointegration analysis. *International Journal of Health*

471 *Governance*, 29(4), 397–411. <https://doi.org/10.1108/IJHG-06-2024-0074>

472 Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing approaches to the analysis of

473 level relationships. *Journal of Applied Econometrics*, 16(3), 289–326.

474 <https://doi.org/10.1002/jae.616>

475 Public Health Expenditure, Governance and Health Outcomes in Malaysia. (2016). *Jurnal*

476 *Ekonomi Malaysia*, 50(1). <https://doi.org/10.17576/JEM-2016-5001-03>

477 Ray, D., & Linden, M. (2020). Health expenditure, longevity, and child mortality: Dynamic

478 panel data approach with global data. *International Journal of Health Economics and*

479 *Management*, 20(1), 99–119. <https://doi.org/10.1007/s10754-019-09272-z>

480 Rezapour, A., Mousavi, A., Lotfi, F., Soleimani Movahed, M., & Alipour, S. (2019). The

481 Effects of Health Expenditure on Health Outcomes Based on the Classification of

482 Public Health Expenditure: A Panel Data Approach. *Shiraz E-Medical Journal*,

483 20(12). <https://doi.org/10.5812/semj.88526>

484 Sakshi, S., & Sharma, J. N. (2025). (n.d.).

485 Samadi, A., & Homaie Rad, E. (2013). Determinants of Healthcare Expenditure in Economic
486 Cooperation Organization (ECO) Countries: Evidence from Panel Cointegration
487 Tests. *International Journal of Health Policy and Management*, 1(1), 63–68.
488 <https://doi.org/10.15171/ijhpm.2013.10>

489 Sofi, S. A., & Yasmin, E. (2024). Out-of-Pocket Health Expenditure and Associated Factors:
490 Insights From National Health Accounts (NHA) Using Panel Data Analysis.
491 *INQUIRY: The Journal of Health Care Organization, Provision, and Financing*, 61,
492 00469580241309903. <https://doi.org/10.1177/00469580241309903>

493 Ssozi, J., & Amlani, S. (2015). The Effectiveness of Health Expenditure on the Proximate and
494 Ultimate Goals of Healthcare in Sub-Saharan Africa. *World Development*, 76, 165–
495 179. <https://doi.org/10.1016/j.worlddev.2015.07.010>

496 Vyas, V., Mehta, K., & Sharma, R. (2023). The nexus between toxic-air pollution, health
497 expenditure, and economic growth: An empirical study using ARDL. *International
498 Review of Economics & Finance*, 84, 154–166.
499 <https://www.sciencedirect.com/science/article/pii/S1059056022002854>

500

501