

MANAGEMENT SYSTEM FOR THE EXCHANGE OF EXEMPLARY PROJECTS OF CIVIL SERVANTS

Manuscript Info

Manuscript History

Received: xxxxxxxxxxxxxxxx
Final Accepted: xxxxxxxxxxxxxxx
Published: xxxxxxxxxxxxxxxx

Key words:-*digital transformations, lifelong learning, Best First Search, exemplary companion model.*

Abstract

In the context of a "shift in understanding" of today's unprecedented opportunities, problems, and challenges for everyone, there is a change in thinking, understanding and explanation of the best digital transformations, literacy and competencies based on the adoption, alignment and integration of the achievements of various scientific disciplines and digital technologies in different areas of application and territories. The common goal, problem of our research is the promotion of sustainable development of arrow theory, innovative approaches, models and a pilot project as a practical means of their comprehensive verification. The main principle of arrow theory in natural language — People should not "run" after samples but vice versa, samples should "run" after people. One of the possible ways, solutions, is the implementation and use of a new object — an Exemplary double, the management of which will allow all interested parties to best personally manage the exchange of exemplary solutions and the end result of will be people armed with the best competencies of the 21st century in a timely manner. Exchange covers many different defined processes and events patterns, templates such as lifelong learning, joint sensing, measurement, collection, cleaning, processing, storage, visualization of information, evaluation, providing feedback based on the Real Time Analytics. The article presents an arrow approach to modeling an Exemplary double, the *conceptual* idea, principles, the Metaphorical task register model and Management model of samples for project teams. The basic scientific disciplines of are mathematics, psychology, linguistics, lifelong learning, pedagogy, computer science, project management. The basic metaphor system for the Exemplary double is Exemplary companion (Fellow traveler, voyager) among Best First Search trajectories of digital transformations project groups. The main evaluation criterion is the degrees of use of innovative projects for Civil servant's project teams.

- 1
- 2
- 3 **Introduction:-**
4 The acceleration and spread of digital transformations (DT) and artificial intelligence technologies (AI) creates
5 unprecedented opportunities, problems and challenges for everyone. Modeling the targeted development of mass
6 learning in the era of DT, AI and unprecedented acceleration of changes at all levels in the digital and traditional
7 worlds requires solving many complex scientific and practical problems, tasks, such as understanding and

8 explanation, adoption, management, forecasting, control, evaluation, leadership, evolution or revolution,
9 variability, complexity, scalability, property protection and confidentiality, reliability, elimination of uncertainty,
10 compatibility, harmonization with existing official and actual standards, laws. In the conditions of the “shift of
11 understanding” the current scientific and practical problem is the change of thinking and understanding and
12 explanation based on the integration of scientific and technical achievements of various disciplines in various fields
13 of application, territories.

14
15 The common goal, проблем of our research is the promoting sustainable development of arrow theory, innovative
16 approaches, models and a pilot projectas a practical means of their comprehensive verification. One of the possible
17 ways, solutions, is the introduction and application of a new object — an Exemplary double, the management of
18 which will allow all interested parties to best personally manage the exchange of exemplary solutions and the end
19 result of will be people armed with the best competencies of the 21st century in a timely manner. Exchange covers
20 many differen defined processes and events patterns, templates such as lifelong learning, joint sensing,
21 measurement, collection, cleaning, processing, storage, visualization of information, evaluation, providing feedback
22 based on theReal Time Analytics.. Of particular importance is the exchange of questions and answers in order to
23 improve the search for valuable information samples, patterns, insights, regularities. The criteria for selecting the
24 target audience are mass appeal, social significance of the right decisions, high motivation and attitude towards
25 improving leadership competence.The main principle of sustainable development of arrow theory in natural
26 language — People should not “run” after samples but vice versa, samples should “run” after people. All arrow
27 patterns are made as person-centered, metaphorical, known, practical as possible, and move in a timely manner with
28 the best practices. The content of the main principle is revealed and interpreted by the of mathematized principles.
29 The principle of "Duality". This is the famous mathematical principle of Duality
30 ([https://en.wikipedia.org/wiki/Duality_\(mathematics\)](https://en.wikipedia.org/wiki/Duality_(mathematics)): If there is an entity, then there is usually its double (and vice
31 versa), which is represented in convenient forms. The construct Double is defined in a formalized dictionary with
32 the meanings Contextual Double. Psychological, Mathematical Double, Metaphorical Double. Digital Double,
33 Artificial Double, etc.

34
35 The article presents an arrow approach to modeling an Exemplary double. Content:**Arrow approach:**Background
36 and knowledge gap, The problem, The *conceptual* idea and principles, The Metaphorical task register model, The
37 Management model of samples for project teams;**Results;****Conclusion;****References:** 60+.

38 39 **Arrow approach:-**

40 **Background and knowledge gap:-**

41 Common, fashionable concepts and objects in the era of increasingly rapid DT and advanced AI have many different
42 definitions, meanings and explanations that dynamically change in different contexts from the perspective and
43 perspectives of fundamental scientific disciplines. Moreover, this is a complex problem. For example, modern
44 linguistics, having realized that the object of its research — language — is evolutionary, has an informational
45 nature, and in the objective sense is a carrier of intelligence, faced a cardinal problem for itself: to realize and
46 understand at the fundamental level the nature of the emergence and formation of connections between language and
47 the natural and AI and vice versa (Shirokov, 2022).

48 Examples of fragments from our learning-oriented Glossary. One way people communicate with each other about
49 their separate and different experiences in the world is by using figurative language to describe or understand one
50 thing in terms of another. The three most common metaphorical systems that stakeholders use to describe their
51 learning experiences are: “learning is construction,” “learning is growth,” and “learning is movement (Manak0¹,
52 2025)In psychology, **metaphor**: a figure of speech (figurative language) in which a word or phrase is applied to an
53 object, person, or action that it does not literally denote (e.g., a life path) in order to create a strong, energetic, and
54 powerful (forceful) analogy. **Conceptual metaphor**: a cognitive process that expresses and shapes new concepts,
55 and without which new knowledge is impossible; iceberg metaphor: the notion that conscious events, like the
56 proverbial tip of the iceberg, represent only a small and accessible aspect of a larger domain of unconscious
57 psychological functioning. Although this metaphor is commonly attributed to Sigmund Freud, it appears nowhere in
58 his published works (APA, 2018).**Arrow approach:**a systematic approach defined in the constructs of arrow
59 patterns, , insights to improve understanding and use of the **Best FIrst Search (BFS)** method, problem-solving
60 strategies; an analytical practice tool, approach in the form of arrow patterns for understanding and using BFS and
61 problem-solving strategies. Different possible solutions are evaluated in terms of the state in which they are likely to
62 be successful, and the path, trajectory, that is considered most promising is tried first. Different possible solutions

63 are made by a person taking into account reliable recommendations of the AI system and are evaluated according to
64 established criteria. Our arrow approach is based on determinism as a fundamental assumption, empiricism as a
65 basic directive, experimentation as a basic strategy, repetition, the necessary requirement of reliability, parsimony as
66 its conservative value, and philosophical doubt as its guiding conscience. It is implemented step by step, combining
67 adaptation and digital transformation of scientific and technical solutions with sustainable value addition using an
68 adapted Agile approach. Agile: is a way of thinking and philosophy, which corresponds to a set of approaches
69 (Scrum, Kanban, XP, Lean) and management methods. Agile methodology is a project management framework that
70 breaks projects down into several dynamic phases, commonly known as sprints. The Agile framework is an iterative
71 methodology. After every sprint, teams reflect and look back to see if there was anything that could be improved so
72 they can adjust their strategy for the next sprint (Agile. 2025).

73 **Reduction:** rewriting an abstraction (intention, design) or its implementation (expression) into a simpler form;
74 (complexity), transforming one problem into another; simplifying data to facilitate analysis; a technique for reducing
75 the size of the state space that a model checking algorithm needs to search; reduction strategy, the use of rewriting
76 systems to eliminate condensed expressions. The arrow **reduction** procedures are performed as a **Defined processess**
77 in the constructions of our theory.

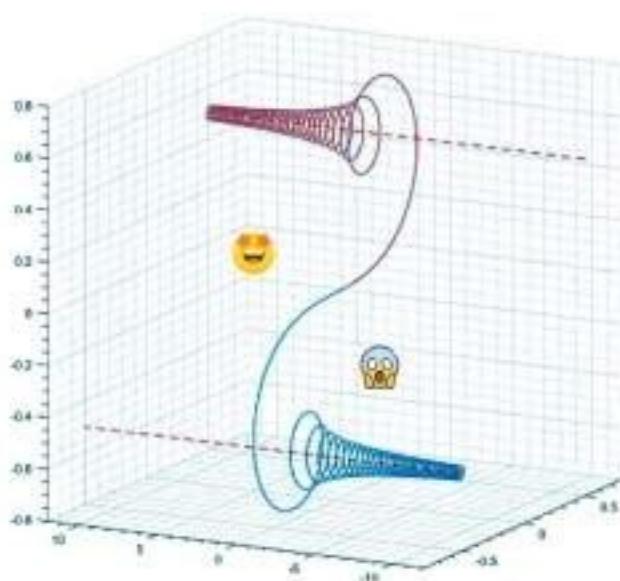
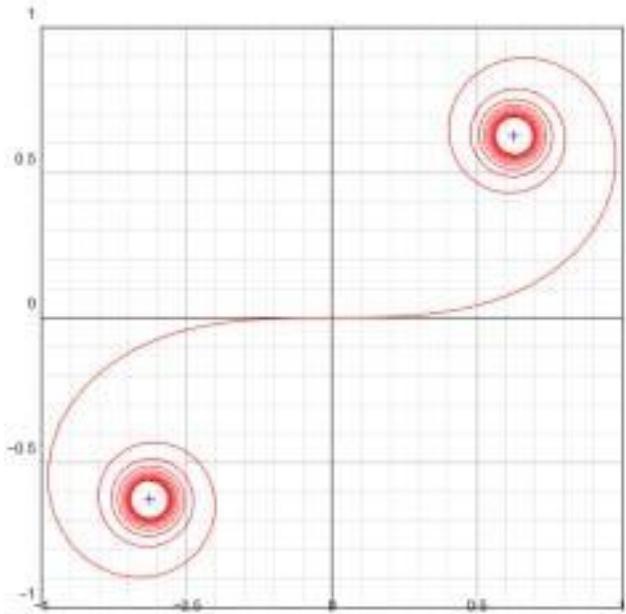
78 **Defined Process (DP):** A process (Process, project area) that can be used step by step to achieve a defined
79 aggregation (combinations, sets) of IGT objects (IGT: <IGT-content>, <I-content>, <G-content>); I-content:
80 Content that defines one or more conceptual idea; T-content: Content that defines one or more I Tasks; C-content:
81 Content that defines one or more goals. **Step:** Structure of work process tasks such as Regulations, Automated
82 conversion of structures, Testing and evaluation; Information processing, Real Time Analytics, Export-Import, Self-
83 assessment, Interaction-communication; Visualization of patterns and clusters; Ensuring evolvability,
84 interoperability, scalability, protection and confidentiality. A structure of activities that is defined to aggregate IGT
85 objects. Explanation of the definition and understanding of the concept of "DP step": 1). Definition of one or more
86 activity structures described within the established model; 2). Value chain in the organization; 3). Current best
87 practice understanding of the essence of the steps: value adding and e-knowledge sharing network; 4).
88 Establishment of a clear strategic framework that is implemented step by step. Example of the goal of building our
89 system: Satisfied People with AI skills and competencies for lifelong learning, work, socialization. DP resources:
90 guidance materials (rules, standards, methodology, strategy, best practices, guidelines); procedures, training, tools,
91 services, methods; - role structure. Roles can be performed by a person and/or a machine (e.g. a service). The key
92 conceptual understanding of the role structure is that a person is described and viewed as a virtual entity that can
93 perform roles that are actually performed by a group, organizational units, organization as a whole, etc. The term
94 organization is used in the sense of ISO standards. High-level roles in a certain hierarchy of roles are used in
95 reference metadata sets to describe resources: Creator, Contributor, Publisher - an entity responsible for making a
96 resource available in a given form. Examples of values: a person, an organization or a service. The performance of
97 roles is improved on the basis of lifelong learning, acquired experience and critical thinking.

98 **Process, project area:** a set of related practices , entities that, when implemented together, satisfy a set of goals that
99 are considered essential for improving and optimizing a process, project. Where practice: an activity (functions,
100 work, operations) that contributes to the goals or outputs of a process, project or increases its capabilities; acquired
101 experience, a set of skills, specific knowledge in a certain field of activity. A process, project area is also a means of
102 grouping activities (inputs-outputs, works, activities, functions, operations, etc.) according to their contribution to
103 the possibility, potential, maturity of the process, project. A **area** is a basic construct of the description <Y>: a set of
104 related entities, events, practices that, when carried out together, satisfy a set of goals, tasks that are considered
105 essential for improving something. An example of a practice: an activity (function, work, operation) that contributes
106 to the goals (outputs, results) of a process or increases its capabilities; acquired experience, a set of skills, specific
107 knowledge in a certain context. A **area** is a means of grouping and focusing activities, scenarios of events, options
108 for arrow trajectories, inputs and outputs, works, activities, functions, operations, etc., in order to improve something
109 and increase potential; this basic construct is an effective mechanism for focusing on improving the process,
110 increasing the quality level of specific products, services.

111 **Task:** goal-oriented activity undertaken by an individual or a group. When such an activity is the subject of
112 observation in an experimental setting (e.g., in problem-solving and decision-making studies), the researcher may
113 set particular objectives and control and manipulate those objectives, stimuli, or possible responses, thus changing

114 task parameters to observe behavioral adjustments. See also *search* (APA, 2018). **Project:** A unique process
115 consisting of a set of coordinated and controlled activities with start and end dates, performed to achieve a goal that
116 meets specific requirements and that has limitations in terms of time, cost, and resources (Agile. 2025).

117
118 Examples of detailed descriptions of concepts: arrow theory (Manako, 2006); artificial intelligence (apolitical.
119 2025); assessment (ISO, 2023); best first search, BFS (Koenig, 2004); concept (Goguen, 2005). consciousness,
120 intelligence (Cleeremans, 2025), (Futurepedia, 2025) (Wrike, 2025), (Vieriu, 2025); best practice (Howard, 2019),
121 (Lopes, 2024); deep learning (Mehta, 2024); digital transformation (Varlejs, (2016). IFLA (2018), (Gong, 2021, p.
122 10) , (Farrell, 2024), (Radu, 2024); Leadership(Fotso. (2021).), lifelong learning (SEC, 2000), (Nygren, 2019),
123 (Webb. 2019); literacy and competencies (Council, 2018), (Fotso,2024), (OECD, 2022), (Vuorikari, 2022);
124 mathematical object (Sharma, 2024); metadata (ISO 2025); metaphor (Cakhnyuk, 2019), (Pappas; 2023); modeling
125 (EML. 2007), (Kritz, 2023), (Vieira, 2023); project, program (ISO, 2021), (Dawood, 2017), (Endres 2019); project
126 management structures (ISO. 2023); project-based learning (Condliffe.2017), (Hart, 2019), (Howard, 2019),
127 (PBLWork, 2025); psychological object (Brock, 2015); Real-Time Analytics, RTA (Chen, 2023); status quo (Haas,
128 2023). (Zuurmond, 2024). Verificatio (xVerify, 2025); vision paper (Hodgins, (2000). (See also
129 <https://dictionary.apa.org/>; <https://leadschool.in/school-owner/edtech-glossary/>; <https://glossary.sil.org/term/l>; <https://dictionary.cambridge.org/ru/plus/>;
130 <https://www.britannica.com/Science-Tech> ; <https://uis.unesco.org/en/glossary>).



131
132
133 In our arrow theory, “System for the manage exchange of exemplary DT using AI (*S*)” is an evolutionarily complex
134 decision-making system, which is represented from the perspective of fundamental scientific disciplines in different
135 natural languages, cultural environments and spaces. The key subsystems are Virtual Research Laboratories, Master
136 classes learning and Trainings using situations and contexts simulators, as well as a Real Time Analytics of unique
137 personal projects. The basic scientific disciplines of representation *S* are mathematics, psychology, linguistics,
138 lifelong learning, pedagogy, computer science, project management. The mathematized representation of *S* is written
139 as:
140

$$\langle S \rangle = \langle \langle Smat \rangle \leftrightarrow \uparrow \rangle \langle Sint \rangle,$$

141 $\langle Smat \rangle$ i $\langle Sint \rangle$: mathematized representation of *S* and its meaningful interpretations in the form of content
142 aggregations; $\langle \rangle$ is the designation of the combination of what these brackets contain. A general example of a
143 modeling construct $\langle \rangle$: these are concepts, ideas; visualizations; arrow shapes: “ \rightarrow , or with the opposite direction
144 \leftarrow ”; a set $\langle \rangle$, the brackets of which have the properties “existing, new, mixed. For example, not quite accurate or
145 defined”; the arrow “person” has or may have a set of arrows, called an e-portfolio with the history and plans of the
146 person’s practices or experiences in time and space; “arrow content”: structured information about the existing or
147 imagined properties of the arrows, which is presented as an “Information Model”; at a higher level of abstraction, $\langle S \rangle$ is defined using a mathematical theory of categories, often called “arrow theory” and “arrow sets”, which are
148 described in the RDF language for presenting information about resources on the web (resource: something that can
149 be identified by a URL). RDF conceptual idea: using sets of simple statements (subject, predicate, or object) about
150 (a resource, a resource property, or a property value) to describe things. Thenotation $X \rightarrow Y$, where X, Y denote the
151 ends of the arrow, expresses the relative presence of the properties of object X in the properties of object Y . In
152 particular, that in the relations “form-content”, “subject-object” from the old, progressive, successful has passed into
153 the new or, conversely, during the life of the subject or from standards, etc. Examples of visual forms of the arrow
154 object: straight, arc, dash-dotted, thick, colored, with sound. Examples of other interpretations of the arrow object:
155 relation, reflection, Cartesiansquare., function, functor, operator, procedure, algorithm, process, event, activity,
156 arrows from traffic rules, on the streets or from a monograph.
157

158
159 The basic constructs of the arrow representation, for example, are: representation in the form of triangles with
160 arrows between the vertices. For example, Δ with the vertices $\langle Stakeholder \rangle$, $\langle Task \rangle$, $\langle Metaphor \rangle$, and ideally all
161 Δ are commutative., i.e., any result of traversing the vertices will be the same; \square square with arrows between the
162 vertices. For example, with the vertices $\langle Stakeholder \rangle$, $\langle Task \rangle$, $\langle Metaphor \rangle$, $\langle AI \rangle$, and if any result of traversing
163 the vertices will be the same, then this is a Cartesian square. Ideal case: all squares are Cartesian. Catastrophe:
164 valuable squares are missing or not identified or not taken into account. If the Stakeholder makes a decision without
165 AI, then this is described in the Escalator by a triangle, and if with AI, then by a square.

166 The arrow \leftrightarrow denotes the transition from one representation (state) to another at a given level of abstraction
167 (intention, design) or its implementation (expression of design), manifestation (the implementation of the design
168 becomes available to users) and instances of manifestation - just like a unique personal project. The arrow \uparrow denotes
169 the transition between these representation s in the directionAbstraction-Implementation and vice versa
170 The arrow $\leftrightarrow \uparrow$ denotes proposed method of horizontal and vertical reduction procedures. These procedures are
171 performed as a Defined procesess in the constructions of our theory.
172 In the arrow theory at the highest level of abstraction, the axiomatic method of formalization is used to construct
173 $\langle S_{mat} \rangle$, and the rules of inference and logic are explicitly introduced. Viewing S as a certain type of mathematical
174 category expands the possibilities of the modeling method, gives a unified view of the concept of a model. Note that
175 there is a certain selection of approaches for the axiomatization of the minimal formalized structure and construction
176 "category". In particular, in the work of (Hatcher, 1968), a simple approach was proposed, the essence of which is to
177 replace category objects with single arrows, i.e. all individuals (predicate letters) are recognized as arrows (in
178 contrast to approaches in which two types of variables are introduced: one for objects, and the other for category
179 arrows).
180
181 The first steps of our Strategy (long-term action plan) for solving the above problems and sustainable development
182 of our arrow theory, innovative approaches, models and a pilot project:
183 • Data analysis models of the subject's lifelong learning consisting of: a general model, inheritance models and a
184 Task Register in order to improve the understanding of the properties and qualities of ways, patterns and
185 making informed decisions by stakeholders based on the toolkit of data analysis of the subject's learning using
186 an management system (Manako, 2024);
187 • Paradigmatic model of understanding and using artificial intelligence in lifelong learning" consisting of a model
188 of learning metaphors and artificial intelligence, a model of paradigms of academician V.M. Glushkov and
189 psychology (Behaviorism (Body, Mind); Information processing and cognitive psychology; Individual
190 constructivism; Social constructivism and situational learning), model of "Action. Task Register" (Manako1,
191 2025);
192 • One of the ways, methods, and means of promoting sustainable development of stakeholdersss is our "System
193 for the manage exchange of exemplary DT using AI (S)" (Manako2, 2025), (Manako3, 2025). The best
194 strategy, long-term plan is the balanced implementation of personally-centric projects with the support of a
195 powerful ecosystem and scientific and educational infrastructure of management systems, including: the
196 evolutionary, RTA on the sustainable development of projects, patterns, insights, regularities; Complex system
197 S contened of Virtual laboratories with Virtual schools, Master classes learntng and training with smart
198 Simulators of environments, situations, scenarios, procedures, which are sustainably improved on the basis of
199 existing packages of international and national guidance documents, laws, and standards.
200 The paper (Manako3, 2025) describes the formulation of the hypothesis, the *conceptual idea*, categories of arrow
201 criteria for the evaluation models, the general statement of the problem, arrow strategy for problem solving, arrow
202 principles. Metafor arrow Escalator task register model and indicators of pilot project scope. [Figure 1](#) showthe
203 simple visualization example ehe metaphor of an escalator in the form of an Euler spiral (Levien, 2008), various
204 visualizations that represent and explain the trends of the impact of rapid change on a stakeholder, group and in
205 general in different status quos, from different points of view and perspectives. But there is no ability or means to
206 timely consider, evaluate, monitor, and predict personal best trajectories.
207

208
209
210
211
212
213

Figure 1 Euler spiral visualizations

of
Re
sea
rch
in
Ma
na
ge
me
nt
&
Bu
sin
ess

Lo
nd
on
Jo
ur
nal

214

215 Figure 2.Chinese dragon visualizations (https://en.wikipedia.org/wiki/Chinese_dragon).

216

217 The dragon scales are different commutative triangles or Cartesian squares of arrows. Examples of vertices: points
218 in the digital, learning and innovation space; points in the conceptual and physical (visual) spaces; in the conceptual
219 internal and external user space.

220

221 Despite significant achievements and potential in basic sciences, DT and their applications, there is still no
222 comprehensive solution to these problems for each stakeholder from different points of view, perspectives and
223 contexts. Among them are such as conceptual uncertainty even in verbal form, for all and each participant: the
224 evolutionary set of competencies of the 21st century; a scaled personal strategy for managing digital transformation;
225 timely alignment of the impact of current and perceived changes; and contexts and a number of similar ones. These
226 issues are complicated by the fact that their separate, local solution at each step of vertical and horizontal reduction
227 generates a number of complex new problems. Therefore, there is a need to formulate a generalized representation

228 of the set of technologically implemented S and an effective and as universal as possible toolkit for their
229 construction, starting from a higher level of abstraction.

230 “We all have a skills gap, all the time.

231 When new knowledge is created at a rate faster than workers can learn it, a shortage results, no matter what the
232 subject matter. This is not a problem that we need to fix. The skills gap is a ubiquitous characteristic of life in the
233 future we envision, because everyone will have needs for new technology(and other) skills. Creating support for
234 lifelong learning in a variety of forms is imperative to successfully addressing this fact”. (Hodgins, 2000).

235 **Research question:** “How can we best overcome this barrier and knowledge gap?”

237 **The problem:-**

238 Example of arrow sets $\langle S \rangle$: arrows from the monograph [22—23] and its foreign-language editions; arrows from
239 textbooks; arrows on the streets or at traffic rules courses; concepts, their forms and content; a means of constructing
240 successful scenarios for the development of educational events, options, trajectories, measures to improve skills,
241 communications “Stakeholder is an object”; artificial neuron, deep machine learning neural network, a set of a AI
242 educational tools or services “arrow is an educational unit”: didactic method, step, situation, resource, measurement,
243 stimulus, reaction, experience of practices, result, educational task, test (question, answer), exam, stage, change,
244 section of educational space or environment, lesson, triangle teacher-stakeholder-class, square, polygon, pyramid,
245 pattern, function, taxonomy, forecast, input-output, means of survival or not (catastrophe); a means of improving life
246 or not.

247
248 General Model S is written as: $\langle S \rangle = \langle\langle \text{Metaphor} \rangle \langle \text{Paradigm} \rangle \rangle$, where: $\langle \rangle$ — denotes a set of arrows. Metaphor
249 of knowledge gap:

250 “In order for a person to be able to grasp mentally; understand even a single word
251 (= $\langle\langle \text{Exemplary Double} \rangle \rangle$, ED), the entire language as a whole (= all ED representations
252 of $\langle S \rangle$; $\langle\langle \text{EDmath} \rangle \leftrightarrow \uparrow \rangle \langle \text{EDint} \rangle \rangle$ all its relationships must already be embedded in
253 him” (Wilhelm von Humboldt).

254 Metaphorical representation of the $\langle \text{Paradigm} \rangle$ system. Metaphors of learning” [28—30]. One way people
255 communicate with each other about their separate and different experiences in the world is by using figurative
256 language to describe or understand one thing from the perspective of another thing. The three most common
257 metaphorical systems that students use to describe their learning experiences are: “learning is construction”,
258 “learning is growth”, and “learning is movement”.

259
260 Infinite or finite set of arrows for ED? An example of an answer is the Löwenheim-Skolem theorem — any
261 consistent first-order theory that has an uncountable model also has a countable model. This is a statement from
262 model theory: if a set of sentences in a countable first-order language has an infinite model, then it has a countable
263 model. That is, this means that an infinite set of arrows $\langle S \rangle$ has a countable set of arrows — a mode $\mathbf{l}\langle S \rangle$ that
264 contains all the information (Kolmogorov, 1987) about the infinite set of arrows $\langle S \rangle$. An example of understanding
265 concepts. **Information**, in its most general sense, is a measure of the heterogeneity and distribution of matter and
266 energy in space and time, a measure of the changes that accompany all processes occurring in the world (Glushkov,
267 1964). **Information** available to a computing machine consists of some data about reality — such data that are
268 considered relevant to the task at hand and from which, as is assumed, the desired result can be obtained (Virt,
269 1985). **Information:** 1. knowledge about facts or ideas gained through investigation, experience, or practice; 2. in
270 information theory, a message that reduces uncertainty; that is, information tells us something we do not already
271 know. The bit is the common unit of information in information theory (APA, 2018); **Metadata:** data about data or
272 information that describes other information; the difference between data and metadata is not absolute and arises
273 mainly from their application — the same resource can be interpreted as both data and metadata (Norris, 2003),
274 (IEEE, 2020).

275 **The problemformulation:** How purposefully to improve representations of a DT and L21 way, path, a trajectory for
276 everyone?

277 **The hypothesis formulation:** The status quo S has a basic arrow metaphor. The mathematical metaphor we have
278 developed is simple – it is the “ $\langle\langle \text{Exemplary Double} \rangle \rangle$, EDthe promotion of of sustainable development of unique
279 human-centric projects”, which represents the individual trajectories of project participants relative to the

280 established planned results and tasks. It is defined in the mathematical constructs of our arrow theory (Cartesian
281 square, commutative arrow triangle) and ensures the implementation of the BFS exemplary solution in practice.

282 **The conceptual idea and principles:-**

283 What do we see in the context of DT and L21? Example:

284 “A classic and historical problem in most approaches to education and training has been to understand
285 learning as something complete in itself, as an activity that is designed and learned independently of
286 the learner and, most importantly, independently of the entire system within which it operates....
287 There is a shift from education and training to knowledge management ...The future isn’t just
288 happening to us any more; we make decisions every day that determine what decisions we will be able
289 to make tomorrow ... None of us is as smart as all of us - That’s good, because the problems we face
290 are too complex to be solved by any one person or any one discipline”. (Hodgins, 2000).

291 Within the framework of our arrow theory, the conceptual idea is proposed: <Exemplary Double >, ED of
292 sustainable development of unique human-centric projects is a personal decision-making system. Constructive
293 properties of representations of VLE, ED systems:

- 294 1. A VLE, ED are represented by a stack of fundamental arrow elements – projects DT and L21 in a
295 problematical, metaphorical and innovative spaces.
- 296 2. A VLE system instance includes all ED system instances (and vice versa), each of which has all the
297 information about the entire system based on Real Time Analytics.
- 298 3. The promotion of sustainable development of ED is carried out on the basis of arrow principles, criteria and
299 a common arrow Strategy.
- 300 4. VLE, ED systems function in the form of adaptive virtual organizations.
- 301 5. The metaphor of VLE, ED is the arrow Exemplary companion, which is represented by aggregations of
302 commutative triangles, Cartesian squares in a problematical, metaphorical and innovative spaces.

303 The main principle of VLE, ED is formulated in verbal form: It is not the subject that “runs after exemplary DT, L21
304 and AI ” but on the contrary – they should run after the client, the user”. All arrow patterns VLE, ED are made as
305 person-centered, metaphorical, known, practical as possible, and move in a timely manner with the best practices.
306 The content of the main principle is revealed and interpreted by the following arrow principles.

307 The “MiniMax” principle. This is the principle of unity of close and distant goals sustainable development of *VLE*,
308 *ED*. It is practically implemented by the method of integrating the results of horizontal and vertical reduction
309 method according to rules such as: Minimal options are implemented top-down, starting from the maximum; And
310 vice versa, Maximum options are implemented bottom-up, starting from the minimum. Given the acceleration of DT
311 and their impact on change, it is advisable to update projects in real time.

312 The principle of "Personal-centricity": The minimum unit of projects is a unique personal project of each participant
313 in a joint project; AI is an additional reliable means of survival and sustainable development. The decision is made
314 by a person. All arrow patterns are timely made as personally-centric, metaphorical, known, practical as possible
315 and timely "run" after individuals with best practices, samples.

316 The principle of "BFS based on best practices". An example of a verbal definition of **Best First Search, BFS**: an
317 process or arrow strategy based on best practices in which various possible paths to a solution are evaluated in terms
318 of the likelihood that they will prove successful and the path judged most promising is attempted first; a search
319 algorithm that works according to a certain rule and uses a priority queue and heuristic search. It is ideally suited for
320 computers to estimate the appropriate and shortest path through a maze of possibilities. An example of a
321 mathematized definition of BFS in constructs of arrow theory: a search algorithm on a graph whose edges are
322 arrows. **Search**: the process or task by which the Doubles attempts to find the correct answer or best solution from
323 among a range of alternatives in a problematical, metaphorical and innovative spaces by arrow strategy the
324 systematic evaluation of status quo or states. **Heuristic search**: a mental process of the search through a
325 problematical, metaphorical and innovative spaces that is optimized by the use of arrow Strategies that reduce
326 the number of possible paths to a solution that need to be attempted. Examples of approaches to the search:
327 backtrack search, depth-first search, breadth-first search.

328
329 The principle of "Duality". This is the famous mathematical principle of Duality
330 ([https://en.wikipedia.org/wiki/Duality_\(mathematics\)](https://en.wikipedia.org/wiki/Duality_(mathematics))): If there is an entity, then there is usually its double (and vice
331 versa), which is represented in convenient forms. The construct Double is defined in a formalized dictionary with
332 the meanings: Contextual, Digital, Mathematical, Metaphorical, Artificial, Psychological, etc.

333 The principle of "Partial understanding". If something is not defined, then it refers to something more generalized.

334 **The Metaphorical Task Register Model (MTRM):0**

335 The basic Task Register model is defined as follows:
336 $\langle\text{MTRM}\rangle = \langle\langle\text{S}\rangle\langle\text{MS}\rangle\langle\text{PROC}\rangle\langle\text{PS}\rangle\langle\text{CR}\rangle\rangle,$
337 $\langle\text{S}\rangle = \langle\langle\text{Metaphor}\rangle\langle\text{Paradigm}\rangle\rangle$
338 MS—the metaphorical representation associated with S;
339 PS—the representation of the statement associated with S;
340 PROC — the procedure (operator, algorithm, process, etc.) that calculates the value of PS and can be performed
341 (calculated) by a person or automatically by a device;
342 CR — the criterion associated with the task.
343 Solving the task means determining the procedure PROC that calculates PS and satisfies the criterion CR. If a set of
344 PROC procedures is created, it turns into a task of selecting a PROC or a set of procedures with $\langle\text{PROC}\rangle$ according
345 to the criteria CR. Example CR: selection of a search algorithm for calculating the extremum of a certain objective
346 function or quality function. The definition and use of additional structures for PS objects and their elements
347 provides many opportunities to define and describe various classes of tasks in the MTRM, as well as to interpret
348 them in an appropriate way. Example CR, Levels of assessment of sets of sections: experimental set; controlled set;
349 exemplary set (proven, optimized, best practice); changes (innovations) of the process are managed; the process is
350 optimized. Process improvement indicator (IND): a discrete measure (degree) of process improvement in a
351 predefined set of process areas, in which all goals from the set are achieved. To determine the IND, it is necessary to
352 establish the appropriate CR criteria and sets of areas. Let the following IND gradations and names be established:
353 IND1 — experimental, IND2 — controlled, IND3 — typified, IND4 — predicted; IND5 — exemplary (proven,
354 optimized).
355 Model of representation n of the MTRM as an input—output, a decision—making system".
356 $\langle\text{MTRM}\rangle = \langle\langle\Delta\rangle\langle\langle\text{MScon}\rangle\langle\text{MSint}\rangle\langle\text{MSext}\rangle\rangle$ (conceptual, internal, external):
357 $\langle\langle\text{metaphor generator}\rangle\leftrightarrow\Delta\rangle\leftrightarrow\langle\langle\text{metaphor receiver}\rangle\rangle$
358 $\langle\Delta\rangle$ (commutative triangles): defined process area of cycles:
359 $\langle\langle\text{DT}\rangle\leftrightarrow\langle\langle\text{visualization}\rangle\leftrightarrow\langle\langle\text{assessment}\rangle\rangle\rangle$;
360 $\langle\text{DT}\rangle$ — a set of current or planned projects; narrowing down sets of events such as observations, adaptation,
361 creation of new variables, functions from existing variables, or calculation of a set of summary statistics, decision-
362 making, feedback;
363 $\langle\text{assessment}\rangle$ — a representation of actions or events of making a judgment about something; assessment. threats.
364 achievements and progress.
365 $\langle\text{visualization}\rangle$: 1. a defined process of providing answers (reactions, to questions (stimuli) or new questions about
366 projects in convenient visual forms; 2. an interactive metaphorical dashboards, a metaphorical object constructed
367 using defined templates of actions and events — a user interface based on predefined flows of measured data and data
368 exchange, to which the end user can apply filters and graphical display methods to improve (understand, optimize)
369 activities (functions, works, operations) to achieve set goals (results, outputs) and which is suitable for regular use
370 with minimal training. Explanation of $\langle\text{dashboards}\rangle$ in a virtual laboratory: this is a user interface of a specific process
371 $\langle\text{monitoring}\rangle$, designed for long—term tracking by users of various indicators related to distributed processing of
372 registry units and their structural elements; the user interface of the $\langle\text{communication}\rangle$ process, designed to
373 document interactions between users, in particular, provides for adding, processing, storing, filtering comments
374 (explanations) to registry entries, creating and providing messages (corrective actions). Examples of explanation of
375 the essence of $\langle\text{visualization}\rangle$, the use of which contributes to the definition and assessment of sustainable
376 development, the impact of changes, since various images, animations, videos are easier and better understood by
377 end users intuitively or logically than verbal or mathematical descriptions in the context of basic disciplines.
378
379 **The Management model of samples for project teams:-**
380 **Research question:** How to better identify and manage of samples for project teams?
381 An example of presenting examples of competencies. Let $\langle\text{Sc}\rangle$ be all combinations of competences that are known
382 to project teams in the current status quo S. Then the competence space $\langle\text{Sc}\rangle = \langle\langle\text{Sc1}\rangle\langle\text{Sc2}\rangle\dots\langle\text{Sci}\rangle\rangle$, $i = 1,$
383 $2, \dots, n$. Each Sc_i has its own discrete scale of various metrics, such as a partially or linearly ordered set of values. The
384 order of these values is determined by a certain class of relations, events such as is-part-of; has-part, is-based-on; is-
385 basis-for, requires; is-required-by. Competencies are then defined in the form of $\langle\text{Sc}\rangle \rightarrow \text{Sci}$ based on current best
386 practices, guidance materials, standards and laws, which are also rapidly changing.
387
388 An example of presenting instances of project teams (pt). Let's define the manifestation (representation) S, the
389 resources of which were or can be accessed by end users. The starting manifestation of S is usually determined

390 taking into account the established context of S, in particular, scope, goals, etc. Let $Spt(k)$ be the description of
391 entities (objects, processes, components) of k manifestations of S. Then the next manifestation of $Spt(k+1)$ is
392 defined as follows:

393 $\langle Spt(k) \rangle = \langle\langle Spt1 \rangle\langle Spt2 \rangle \dots \langle Spti \rangle \rangle, i = 1, 2, \dots, m(k); \langle Spt(k) \rangle \rightarrow Spt(k+1)i;$
394 $\langle Spt(k) \rangle_{ij} \rightarrow Spt(k+1), i = 1, 2, \dots, m(k), j = 1, 2, \dots, e(k)$

395 where: $Spt(k+1)i$ is a representation of the i-entity of (k+1) manifestation; $Spt(k)ij$ is the representation of j-
396 manifestation i of entity in (k) manifestation S; \rightarrow dreflection (the process of forming a description). All entities
397 with $Spt(k+1)i$ representations are integrated, i.e., inherited in (k+1) manifestations of S. An example of entity
398 definition is processes, people, virtual organizations that are used to represent a specific service. The implementation
399 of entity with its access points to the service is called a component of the integration process S.

400 An example of the process of **inheritance** of the input-output system, decision-making $\langle S \rangle = \langle\langle Spt \rangle\langle STpt \rangle \rangle$,
401 $STpt$ is a set of problems associated with Spt . If the pairs $(\langle\langle Spt \rangle\langle STpt \rangle, \leq)$, where \leq is a relation of partial
402 order, satisfy the conditions of reflectivity, transitivity and antisymmetric, then the set $X \subseteq \langle S \rangle$ is "inherited" if it is
403 closed during the movement "up" with respect to \leq , that is, if $x \in X$ and $x \leq y$ imply that $y \in X$.

404
405 Sample management in $\langle S \rangle$ is carried out to achieve the multiple goals of various project teams. A certain
406 goal is considered achieved if a certain set of problems (tasks) Z associated with it is solved. Then, to define
407 a **strategy (long-term plan)** for sustainable development S, it is appropriate to mathematically represent it in
408 the form of hierarchical structures, which may not be the best in a certain context or situation, but the crucial
409 thing is that they are much easier for people to understand and use. The **idea**: to define and use an
410 evolutionary Stack Register S. Examples of stacks: innovative, unexplored or obsolete designs, long-term or
411 short-term project teams. Let $\{O, Z\}$ be the set of stacks S, where $\{O\}$ is the set of objects S, and $\{Z\}$ is the
412 set of tasks S. If we analyze examples of problems S, then their typical components are the following
413 processes, events:

414 a) For a given set of problems Z^* with $\{Z\}$, construct the entire set of objects O^* that are necessary
415 and sufficient to solve Z^* . Mathematical definition using the inference operator (a procedure called a fuzzy
416 inference system):

$$417 B \subseteq Z \rightarrow B^+ = \{o \in O \mid (o, z) \subseteq (O, Z, P) \quad \forall m \in B\} \quad (1)$$

418 This derivation operator is computed to establish a correspondence between a set of problems B and the set of all
419 objects from O that are necessary and sufficient to solve B;

420 b) For a given set of objects O^+ , compute the set of all problems Z that are common to O^+ . Mathematical
421 definition using the derivation operator:

$$422 A \subseteq O \rightarrow A^+ = \{z \in Z \mid (o, z) \subseteq (O, Z) \quad \forall o \in A\} \quad (2)$$

423 This derivation operator is computed to establish a correspondence between a set of objects A and the set of all tasks
424 associated with each object A. Applying the derivation operators (1)–(2) twice, i.e. A^{++} , and vice versa, i.e. B^{++} ,
425 allows us to compute the closure of the operators (1)–(3) on $\{O, Z\}$. The concept of stacks on $\{O, Z\}$ is the pair (A, B) ,
426 where (1)–(2) on $\{O, Z\}$. The concept of stacks on $\{O, Z\}$ is the pair (A, B) , where $A \subseteq O, B \subseteq Z$ and $A^+ = B, B^+ = A$.
427 Between the concepts (A, B) on $\{O, Z\}$, \leq -subconcept-superconcept relations with partial hierarchical order are
428 established:

$$429 (A1, B1) \leq (A2, B2) \Leftrightarrow A1 \subseteq A2 \Leftrightarrow B2 \subseteq B1 \quad (3)$$

430 The set of all stacks on $\{O, Z\}$, which are ordered by the relation (3) subconcept–superconcept in lattice theory is
431 called a lattice of concepts. Thus, the application of concept lattices on a certain complex of concepts S in the form
432 of an evolutionary Register of stacks S allows us to define the exchange of exemplary projects of civil servants in
433 the form of a hierarchy of combinations of objects and tasks S.

434

435 **RESULTS:-**

436 “We all have a skills gap, all the time.

437 When new knowledge is created at a rate faster than workers can learn it, a shortage results, no matter what the
438 subject matter. This is not a problem that we need to fix. The skills gap is a ubiquitous characteristic of life in the
439 future we envision, because everyone will have needs for new technology (and other) skills. Creating support for
440 lifelong learning in a variety of forms is imperative to successfully addressing this fact”. (Hodgins, 2000).

443 How purposefully to improve DT and lifelong learning for mass project teams in conditions of multilingualism,
444 multidisciplinary, cultural diversity and the impact of increasingly rapid change at all levels? — In the context of a
445 "shift in understanding" of today's unprecedented opportunities, problems, and challenges for everyone, there is a
446 change in thinking, understanding and explanation of the best DT, literacy and competencies based on the adoption,
447 alignment and integration of the achievements of various scientific disciplines and digital technologies in different
448 areas of application and territories. One of the possible ways, solutions, is the introduction and application of a new
449 evolutionary object — the Exemplary double, the management of which will allow all interested parties to best
450 personally manage the exchange of exemplary solutions and the end result of will be people armed with the best
451 competencies of the 21st century in a timely manner. The main result of this research is defined of the evolutionary,
452 science-based complex system and pilot project for Civil Servants teams from the point of view of basic disciplines
453 (such as mathematics, psychology, digital pedagogy, lifelong learning, linguistics, computer science, project
454 management). Proposed the arrow approach and basic arrow models starting from the highest level of abstraction to
455 the level of engineering implementations. See details: **Arrow approach**: Background and knowledge gap, The
456 problem, The *conceptual* idea and principles, The Metaphorical task register model, The Management model of
457 samples for project teams.

458

459 **CONCLUSION:-**

460

"None of us is as smart as all of us.' That's good, because the problems we face

461

are too complex to be solved by any one person or any one discipline" (Hodgins, 2000).

462

The acceleration and spread of digital transformations (DT) and artificial intelligence technologies (AI) creates unprecedented opportunities, problems and challenges for everyone. Modeling the targeted development of mass lifelong learning in the era of DT, AI and in the digital and traditional worlds requires solving many complex scientific and practical problems, tasks, such as understanding and explanation, adoption, management, forecasting, control, evaluation, leadership, evolution or revolution, variability, complexity, scalability, property protection and confidentiality, reliability, elimination of uncertainty, compatibility, harmonization with existing official and actual standards, laws. In the conditions of the "shift of understanding" the current scientific and practical problem is the change of thinking and understanding and explanation based on the integration of scientific and technical achievements of various disciplines in various fields of application, territories. In the context of a "shift in understanding" of today's unprecedented opportunities, problems, and challenges for everyone, there is a change in thinking, understanding and explanation of the best DT, digital literacy and competencies based on the adoption, alignment and integration of the achievements of various scientific disciplines and digital technologies in different areas of application and territories.

475

476

Our research is the promotion of sustainable development of arrow theory, innovative approaches, models and a pilot project as a practical means of their comprehensive verification. **The overall goal, the problem** of our evolutionary science-based project "Virtual Laboratory of Exemplary Double of lifelong Learning using AI for Civil Servants teams (VLEDL1)—How can we best promote the sustainable development of VLEDL1 in conditions of multilingualism, multidisciplinary, and cultural diversity and the impact of increasingly rapid change? Integrated VLEDL1 subsystems: Virtual laboratories of research, learning, training with simulators of situations and context, evolutionary Real Time Analytics on unique projects of persons. Each participant of VLEDL1 is a consumer and contributor, co-author of the entire project. We are interested in current research and projects with the participation of international parties, as well as involving project partners or experts in psychology, project management, etc. in our Scientific Council.

486

487

How purposefully to improve DT and lifelong learning for mass project teams for Civil Servants teams under conditions unprecedented acceleration of changes at all levels? One of the possible ways, solutions, is the introduction and application of a new object, complex system — the Exemplary Double of project teams (ED), the management of which will allow all interested parties to best personally manage the exchange of exemplary solutions and the end result of will be people armed with the best competencies of the 21st century in a timely manner. Exchange covers many different defined processes and events patterns, templates such as lifelong learning, joint sensing, measurement, collection, cleaning, processing, storage, visualization of information, evaluation, providing feedback based on the Real Time Analytics. The presents an arrow approach to modeling ED, the conceptual idea, principles, the Metaphorical task register model and Management model of samples for project teams.

497

498 Within the framework of arrow theory, is proposed the conceptual idea of personal decision-making system <ED>,
499 for sustainable development of unique human-centric projects. The main principle of arrow theory in natural
500 language — People should not “run” after samples but vice versa, samples should “run” after people. Constructive
501 properties of Virtual Laboratories of Exemplary exchange (VLE) and ED systems:

- 502 1. A VLE, ED are represented by a stack of fundamental arrow elements – projects DT and lifelong learning
503 in a problematical, metaphorical and innovative spaces.
- 504 2. A VLE system instance includes all ED system instances (and vice versa), each of which has all the
505 information about the entire system based on Real Time Analytics.
- 506 3. The promotion of sustainable development of ED is carried out on the basis of arrow principles, criteria and
507 a common arrow Strategy.
- 508 4. VLE, ED systems function in the form of adaptive virtual organizations.
- 509 5. The metaphor of VLE, ED is the arrow Exemplary companion, which is represented by aggregations of
510 commutative triangles, Cartesian squares in a problematical, metaphorical and innovative spaces.

511 The basic scientific disciplines of are mathematics, psychology, linguistics, lifelong learning, pedagogy, computer
512 science, project management. The basic metaphor system for the Exemplary double is Exemplary companion
513 (Fellow traveler, voyager) among Best First Search trajectories of DT project groups. The main evaluation criterion
514 is the degrees of use of innovative projects for DT project groups

515 The main steps, the goal of the current research and development: completion of the construction of user interface
516 models and commissioning of the project website demonstrator for Civil servant project teams (vled1.org).

517

518 **References:-**

- 519 1. Agile. (2025). What is the Agile methodology? <https://asana.com/resources/agile-methodology>
- 520 2. APA. (2018). APA Dictionary of Psychology. <https://dictionary.apa.org>.
- 521 3. apolitical. (2025). Artificial Intelligence Basics for Civil Servants: Opportunities, Risks, and Strategies
<https://apolitical.co/microcourses/en/ai-fundamentals-for-public-servants-opportunities-risks-and-strategies/>
- 522 4. Avigad, J. (2010). Mathematical Simplicity. Carnegie Mellon
523 University. <https://www.andrew.cmu.edu/user/avigad/Talks/simplicity.pdf>
- 524 5. Brock, A. C. (2015). The history of psychological objects. In J. Martin, J. Sugarman, & K. L. Slaney (Eds.),
525 *The Wiley handbook of theoretical and philosophical psychology: Methods, approaches, and new directions for
526 social sciences* (pp. 151– 165). Wiley Blackwell. <https://awsprntest.apa.org/record/2015-56271-010>.
- 527 6. Cakhnyuk O.S. (2019). Theories of metaphor. *Scientific notes of the National University «Ostroh
528 Academy»: series «Philology»*. Publication of NaUOA, Ostrog, 2019, Vol. 6 (74), 30–33.
- 529 7. Chen., (2023). Chen et all. Real-Time Analytics: Concepts, Architectures, and ML/AI Considerations
530 July 2023. *IEEE Access* 11:71634-71657 DOI:10.1109/ACCESS.2023.3295694 Authors
- 531 8. Cleeremans A, Mudrik L and Seth AK. (2025) Consciousness science: where are we, where are we going,
532 and what if we get there? *Front Sci* (2025) 3:1546279. doi: 10.3389/fsci.2025.1546279
- 533 9. Condilffe B. (2017). Project-Based Learning: A Literature Review. Working Paper.
534 <https://files.eric.ed.gov/fulltext/ED578933.pdf>.
- 535 10. Council of the European union recommendation. (2018). Key competences for lifelong learning. *Journal of
536 the European Union*. Text with EEA relevance (2018/C 189/01).
- 537 11. Dawood, F. (2022). The possibility of applying the international standard (ISO 10006:2017) To manage the
538 quality of the project in the Directorate of the municipality of Dhuluya *Journal for Educators, Teachers and
539 Trainers*, Vol. 13(5). 514-530. <https://doi10.47750/jett.2022.13.05.047>
- 540 12. Farrell, R. (2024). What is digital transformation?. <https://www.digitaltransformationinstitute.ie/what-is-digital-transformation>.
- 541 13. Fotso. (2021). Leadership competencies for the 21st century: a review from the Western world literature
542 *European Journal of Training and Development* (2021) 45 (6-7): 566–587. <https://doi.org/10.1108/EJTD-04-2020-0078>
- 543 14. Fotso. (2024). Generational difference on the leadership competencies for the 21st century: a literature
544 review. *Int. J. Work Innovation*, Vol. 5, No. 1, 2024.
- 545 15. Gassabis. (2025). Athens Innovation Summit by Endeavor
<https://www.youtube.com/watch?v=RmZlMYmWlJU&t=2946s>.
- 546 16. Glushkov, V. M. (1964). About cybernetics as a science.” In: Cybernetics, Thinking, Life. Moscow: Nauka,
547 1964. 53 p.

552 17. Goguen, J. (2005). "What is a Concept?". *Conceptual Structures: Common Semantics for Sharing*
 553 Knowledge. Lecture Notes in Computer Science. Vol. 3596. pp. 52–77. doi:10.1007/11524564_4. ISBN 978-3-540-
 554 27783-5.

555 18. Haas. (2010). The Power of Questioning the Status Quo How the first of the four Berkeley Haas Defining
 556 Leadership Principles gets to the heart of changemaking.. <https://executive.berkeley.edu/thought->
 557 leadership/blog/power-questioningstatusquo

558 19. Hart. (2019). Interdisciplinary project-based learning as a means of developing employability skills in
 559 undergraduate science degree programs. *Journal of Teaching and Learning for Graduate Employability*, vol. 10, no.
 560 2, pp. 50-66, 2019. <https://doi.org/10.21153/jtlge2019vol10no2art827>.

561 20. Hatcher . (1968). Hatcher William S. Foundations of Mathematics. *W.B. Sounders Co.* 1968.

562 21. Hodgins. (2000). Into the Future: A Vision Paper. https://learnativity.com/into_the_future2000/

563 22. Howard N. R. (2019). EdTech Leaders' Beliefs: How are K-5 Teachers Supported with the Integration of
 564 Computer Science in K-5 Classrooms? *Technology, Knowledge and Learning*, v. 24, n. 2, p. 203-217, 2019.
 565 <https://doi.org/10.1007/s10758-018-9371-2>.<https://edtech-class.com/projectbased-learning/>

566 23. Endres, H., Huesig, S., Pesch, R. (2022). Digital innovation management for entrepreneurial ecosystems:
 567 services and functionalities as drivers of innovation management software adoption. *Rev Manag Sci* 16, 135–
 568 156.<https://doi.org/10.1007/s11846-021-00441-4>.

569 24. EML. (2007). Educational Modeling Languages: A Conceptual Introduction and a High-Level
 570 Classification /I.L Martinez Ortiz, P. Moreno-Ger, J.L. Sierra. *Computers and Education* 2007, pp. 27—40.

571 25. IEEE. (2020). Standard for Learning Object Metadata,» in *IEEE Std 1484.12.12020*, vol., no., pp.1—50, 16
 572 Nov. 2020, doi: 10.1109/IEEEESTD.2020.9262118

573 26. IFLA (2018). Building Strong LIS Education: A Call to Global and Local Action – *An IFLA BSLISE*
 574 *Working Group White Paper. University of Cape Town Libraries.* doi: <http://dx.doi.org/10.15641/0-7992-2542-6>

575 27. ISO. (2021). ISO 21500:2021. Project, programme and portfolio management — Context and concepts.
 576 <https://www.iso.org/ru/standard/75704.html>

577 28. ISO (2023). ISO/IEC TS 30105-9:2023 Information technology — IT Enabled Services-Business Process
 578 Outsourcing (ITES-BPO) lifecycle processes — Part 9: Guidelines on extending process capability assessment for
 579 digital transformation <https://www.iso.org/ru/standard/82368.html>

580 29. ISO (2025). ISO/IEC 4932:2025 Information Technology — Learning, education and training — Access
 581 for All (AfA) metadata for accessibility core propertie <https://www.iso.org/standard/80519.html>

582 30. ISO. (2023). 27026:2023 Space systems — Programme management — Breakdown of project
 583 management structures<https://cdn.standards.iteh.ai/samples/86543/a3e21ff68420470b8c6ad8111deda888/ISO-14300-1-2023.pdf>

585 31. Kapitonova, Yu. V., and Letichevsky, A. A. (2011). "Paradigms V.M. Glushkova."
 586 <http://ogas.kiev.ua/en/glushkov/paradygmy-glushkova>

587 32. Koenig, S. (2004). A Comparison of Fast Search Methods for Real-Time Situated Agents. Proceedings of
 588 the Third International Joint Conference on Autonomous Agents and Multiagent Systems - Volume 2 (pp. 862-871).
 589 Washington, DC: IEEE Computer Society.

590 33. Kolmogorov, A. N. (1987). "Three approaches to defining the concept of «amount of information».
 591 *Information theory and algorithm theory*, pp. 213—223.

592 34. Kritz M (2023). Modelling as a process. *Computational and Applied Mathematics*, 2023 [Accessed 15 Dec.
 593 2023]. <https://doi.org/10.1007/s40314-023-02308-8>

594 35. Levien R. (2008) The Euler spiral: a mathematical history. Electrical Engineering and Computer Sciences.
 595 University of California at Berkeley. Technical Report No. UCB/EECS-2008-111.
 596 <http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS2008-111.htm>

597 36. Lopes Y. M. (2024). What are edtechs? A systematic literature review *REAd. Rev. eletrôn. adm. (Porto*
 598 *Alegre)* 30 (2). <https://doi10.1590/1413-2311.405.135580>.

599 37. Manako A.F., Manako V.V. (20003). Electronic learning and educational objects. *Kazhan Plus*, Kyiv, 2003,
 600 334 p.

601 38. Manako A. F. (2006). Framework for building MANOK systems // Bionics of the intellect. – 2006. – № 2
 602 (65). – C. 77–82.

603 39. Manako A.F. (2022) Systematic Investigation of Continuous E-Learning as a Complex Information
 604 System. *Control Systems and Computers*, 2022, Issue 3, 53–62. <https://doi.org/10.15407/csc.2022.03.053>

605 40. Manako A. F., Manako V. V. (2024). Models of data analysis of the subject's learning throughout life.
 606 *Control systems and computers*. № 2. 48-64. <https://doi.org/10.15407/csc.2024.02.048> (in Ukr.).

607 41. Manako¹ A. F., Manako V. V. (2025). Paradigmatic model of understanding and using artificial
 608 intelligence in education. *Information Technologies and Systems*. 1(1). 59–76.
 609 <https://doi.org/10.15407/intechsys.2025.01.059> (in Ukr.).

610 42. Manako², V., & Manako , D. (2025). A online laboratory for exchange exemplary digital transformations
 611 and artificial intelligence means. *Isagoge - Journal of Humanities and Social Sciences*, 5(1), 453–478.
 612 <https://doi.org/10.59079/isagoge.v5i1.273>

613 43. Manako³, V., & Manako , D. (2025). Modeling the Management Metaphor of Projects Deep Learning
 614 using ArtificialIntelligence. *London Journal of Research in Management & Business*. Volume 25, Issue 9, 1-17.
 615 https://journalspress.com/journalpreview/Journal_Preview_LJRMB_Vol_25_Issue_9.pdf

616 44. Mehta. (2024). Commentary: Leading for deeper learning: why a human vision of schooling demands a
 617 human vision of leadership. *Journal of Educational Administration*. January 2024. 62(1):173-177.
 618 <https://doi10.1108/JEA-01-2024276>.

619 45. Norris, D., Mason, J., & Lefrere, P. (2003). Transforming e-Knowledge, *Society for College and University
 620 Planning*: Ann Arbor, USA. 168 p.

621 46. OECD. (2022) New AI Literacy Framework to Equip Youth in an Age of AI.
 622 <https://oecdudedtoday.com/new-ai-literacy-framework-to-equip-youth-in-an-age-of-ai/>

623 47. Pacala F. A. (2025). "Enhancing science teachers' science process skills using technology-driven
 624 interdisciplinary project-based learning", *ITLT*, vol. 107, no. 3, pp. 207–221, Jun. 2025,
 625 <https://doi10.33407/itlt.v107i3.5903>.

626 48. Pappas C. (2023). 7 Tips To Use Visual Metaphors In eLearning. URL: <https://elearningindustry.com/7-tips-use-visual-metaphors-in-elearning>.

627 49. PBLWorks. (2025). Research & Evidence Strategic Priority Plan 2025.
 628 <https://www.pblworks.org/sites/default/files/2025-08/R%26E%20Strategic%20Priority%20Plan%202025%20Public%20%281%29.pdf>

631 50. Sharma, Kaushal, Maheshwari, Aditya, Kulkarni. (2024). A note on mathematical objects. *Texas*,
 632 <https://dx.doi.org/10.2139/ssrn.5068798>.

633 51. Shirokov V., Manako V. (2001). Organization of resources of the national dictionary base. –
 634 *Movoznavstvo*, 2001, No. 5. (in Ukr.).

635 52. Shirokov V. A. & Manako V. V. (2009). Mathematical constructions for the formal description of the
 636 fundamental academic lexicographic system "Dictionary of the Ukrainian language" //Illustrative linguistics and
 637 linguistic technologies: MegaLing'2008: Collection. of science pr. - K.: Trust. – 2009. – P. 161–167Shirokov

638 53. Shirokov V. & Manako V. et al. (2018). Vol. 3: Interpretive lexicography. Kyiv. *Ukrainian Language and
 639 Information Fund of the NAS of Ukraine*. 2018. <https://doi10.33190/978-966-028683-2/8687> . (in Ukr.)-

640 54. Shirokov V. A. (2022). Changing the paradigmatic vector of modern linguistics: some methodological
 641 considerations/ SSN 0027-2833. *Linguistics*, 2022, 6. <https://doi10.33190/0027-2833-327-2022-6-001>.

642 55. SEC. (2000) *A memorandum on life-long learning* (2000). Commission staff working paper. Brussels,
 643 SEC, No 1832, 36 p.

644 56. Varlejs, J. (2016). IFLA Guidelines for Continuing Professional Development: Principles and Best
 645 Practices. *IFLA*. <https://www.ifla.org/files/assets/cpdwl/guidelines/ifla-guidelines-forcontinuing-professional-development.pdf>

647 57. Vieriu A. M., Petrea. G. (2025) The Impact of Artificial Intelligence (AI) on Students' Academic
 648 *Development Educ. Sci.* 15(3), 343; <https://doi.org/10.3390/educsci15030343>.

649 58. Virt, N. (1985). Algorithms + data structures = programs. M.: Mir, 1985. 406 p.

650 59. Vuorikari, R., Kluzer, S., Punie, Y. (2022). DigComp 2.2, The Digital Competence framework for citizens
 651 – With new examples of knowledge, skills and attitudes, *Publications Office of the European Union*,
 652 <https://doi10.2760/115376>.

653 60. UNESCO. (2024). Understanding the impact of artificial intelligence on skills.
 654 https://unevoc.unesco.org/pub/understanding_the_impact_of_ai_on_skills_development.pdf

655 61. Webb S., Holford J., Hodge S., Milana M., Waller R. (2019). Conceptualising lifelong learning for
 656 sustainable development and education 2030. *International Journal of Lifelong Education*, 2019, Vol. 38 (3), 237–
 657 240. <https://doi.org/10.1080/02601370.2019.1635353>.

658 62. Wrike, (2025). Discover the future of work with Wrike AI. <https://trial.wrike.com/lproject-management/>

659 63. Zuurmond A. (2024). Learning to question the status quo. Critical thinking, citizenship education and
660 *Bildung* in vocational education. *Journal of Vocational Education & Training* Volume 76, 2024. Issue 5. Pages
661 1185-1204. <https://doi.org/10.1080/13636820.2023.2166573>.

662 64. xVerify, (2025) : Generalized Formal Model-Verifier: A Formal Approach for Verifying Static Models
663 <https://arxiv.org/abs/2504.10481#:~:text=We%20propose%20xVerify%2C%20an%20efficient%20answer%2>

UNDER PEER REVIEW IN JAR