

1 **The Outcome of Pregnancy Following Bariatric Surgery in Women Attending
2 a Secondary Care Hospital**

3 **Abstract:**

4 **Background:** Bariatric surgery (BS) is widely regarded as the most effective intervention for obesity. It is
5 associated with long-term beneficial effects on weight loss and notable improvement of metabolic
6 comorbidities. Although BS leads to reduction of many obesity-related pregnancy complications, such as
7 gestational diabetes mellitus (GDM), pregnancy induced hypertension and fetal macrosomia; the
8 procedures undertaken during BS impose additional novel risks which might lead to adverse outcomes for
9 mothers and their babies such as nutritional deficiencies, anemia, altered maternal glucose metabolism,
10 small for gestational age babies and surgical complications related to different types of bariatric surgery.

11 **Aims:** To evaluate pregnancy outcomes in women post-bariatric surgery attending Hatta Hospital (HH), a
12 secondary care facility under the Dubai Health jurisdiction to enhance preconception counseling for
13 women planning pregnancy after BS and enable informed decision-making.

14 **Methods:** A retrospective evaluation of the medical records of pregnant women who attended Hatta
15 Hospital over the period from January 2019 to June 2024 was undertaken. Inclusion criteria comprised 71
16 women aged \geq 18 years, who underwent any type of bariatric surgery before pregnancy. Data collected
17 included participants' sociodemographic characteristics, past medical history and habits, medication
18 during pregnancy, routine blood analysis, gestational weight gain or loss, type of delivery, newborn
19 anthropometry, as well as fetal and maternal complications. An initial manual data analysis was followed
20 by multivariate analysis conducted by SPSS Statistics. The association of the time interval between BS
21 and to first pregnancy after BS with nutritional deficiencies and newborn weights was specifically
22 assessed.

23 **Results:** The cohort had a mean age of 33 years and a median parity of 3. Roux-en-Y gastric bypass
24 (RYGB) was the most common surgery type (38%). The mean interval from BS to pregnancy was 4
25 years, and the mean body mass index (BMI) at pregnancy was 31 kg/m². Iron deficiency was the most
26 prevalent nutritional deficiency (87.9%), followed by vitamin D deficiency (71.4%). Low ferritin was
27 observed in 77.2% of cases, with 55% requiring IV iron therapy. The prevalence of gestational diabetes
28 mellitus was 9%, hypertensive disorders in pregnancy 19%, and hyperemesis gravidarum 66%. Dumping
29 syndrome occurred in 1 case, and no surgical complications requiring intervention were reported during
30 pregnancy. The mean gestational age at delivery was 34 weeks, and the average birth weight was 2.46 kg.
31 In total, 47.5% of infants were below the 50th percentile for growth. No fetal abnormalities related to
32 bariatric surgery were identified. Statistical analysis did not reveal significant relation between surgery to
33 pregnancy interval (STP) and iron deficiency state as well as neonatal birth weights.

34 **Conclusions:** This cohort demonstrates that pregnancy following bariatric surgery is associated with
35 favorable metabolic disease reductions, notably, low GDM rates, but carries significant nutritional
36 deficiency risks, particularly iron and vitamin D. These deficiencies may contribute to fetal growth
37 restriction tendencies. With rigorous monitoring, supplementation, and multidisciplinary care, outcomes
38 can be optimized for both mother and baby.

39 **Keywords:** Bariatric surgery, Obesity, Nutritional deficiency, Neonatal outcomes, Maternal
40 complications.

41 **Main Text**

42 **Introduction:**

43 The significant increase in the prevalence of obesity has led to an increasing number of obese women
44 entering pregnancy. This is particularly pronounced in the Arab Gulf region. Obesity in pregnancy is

45 associated with adverse maternal and fetal outcomes such as hypertension, gestational diabetes mellitus
46 (GDM), thromboembolism, miscarriages, and fetal macrosomia. Conventional interventions such as diet,
47 exercise, and medication are not effective for weight reduction in morbid obesity (BMI of 40 kg/m² or
48 more). Consequently, bariatric surgery (BS) has emerged as the most effective treatment for obesity,
49 leading to significant weight loss and improvement in metabolic disorders. However, it poses unique
50 challenges for women of childbearing age, including risks of micronutrient deficiencies, anemia, altered
51 maternal glucose metabolism, hepatobiliary complications, dumping syndrome, internal hernias, and
52 small-for-gestational-age (SGA) babies [1,2].

53 The major impact on pregnant women is the development of nutritional deficiencies, particularly Iron,
54 vitamin D, and vitamin B12, and small for gestational age babies due to persistent weight loss, but this
55 can be minimized by adjusting the interval between BS and subsequent pregnancy to allow for
56 optimization of maternal nutritional status [3].

57 A pregnancy in a woman after bariatric surgery should be considered a high-risk pregnancy and taken
58 care of by a multidisciplinary team [4]. Good prenatal care, micronutrient supplements preconception, in
59 antenatal and postpartum periods, and close supervision from experts managing this pregnancy are
60 essential components to ensure a good outcome for the mothers and their newborns.

61 According to 2023 statistics from the Ministry of Health and Prevention of the UAE, 40% of women of
62 reproductive age are obese, and 59% underwent bariatric surgery, 82% of whom were local Emiratis. In
63 spite of the high prevalence of BS in UAE women, there is a scarcity of data regarding the perinatal
64 outcomes in this population from this region.

65 We are undertaking this study to evaluate the outcomes in pregnant women after BS who attended Hatta
66 Hospital, a remotely located multispecialty secondary care hospital under the Dubai Health Authority of
67 the United Arab Emirates(UAE).95% of pregnant women attending our hospital for antenatal care and
68 delivery are local Arabs with a similar cultural and nutritional background.

69 **Material and Methods:**

70 **Study design and setting:**

71 This study was conducted in the department of Obstetrics and Gynecology at Hatta Hospital, Hatta,
72 Dubai, UAE. It includes retrospective evaluation of pregnant women with prior BS who attended our
73 hospital over the period from January 2019 to June 2024 and delivered there. The BS was performed
74 elsewhere, but during the antenatal period, they were cared for by a multidisciplinary team, including an
75 obstetrician, dietitian, endocrinologist, and general surgeon. All were nonsmokers and received 5mg folic
76 acid periconception and supplements of iron, multivitamins, vitamin D, and calcium during the antenatal
77 and postnatal period. Intravenous iron infusion was administered in cases where ferritin level was
78 <15ng/ml. Screening for GDM was conducted by a laboratory glucose profile.

79 **Ethical Clearance** was obtained from the Dubai Scientific Research Ethics Committee (DSREC-
80 02/2025_29, approved on 25/02/2025)

81 **Consent**for inclusion in scientific research studies was already obtained from the women at the time of
82 registration for antenatal care, and separate written informed consent was not required. Confidentiality of
83 information was ensured throughout the study.

84 **Study population:**

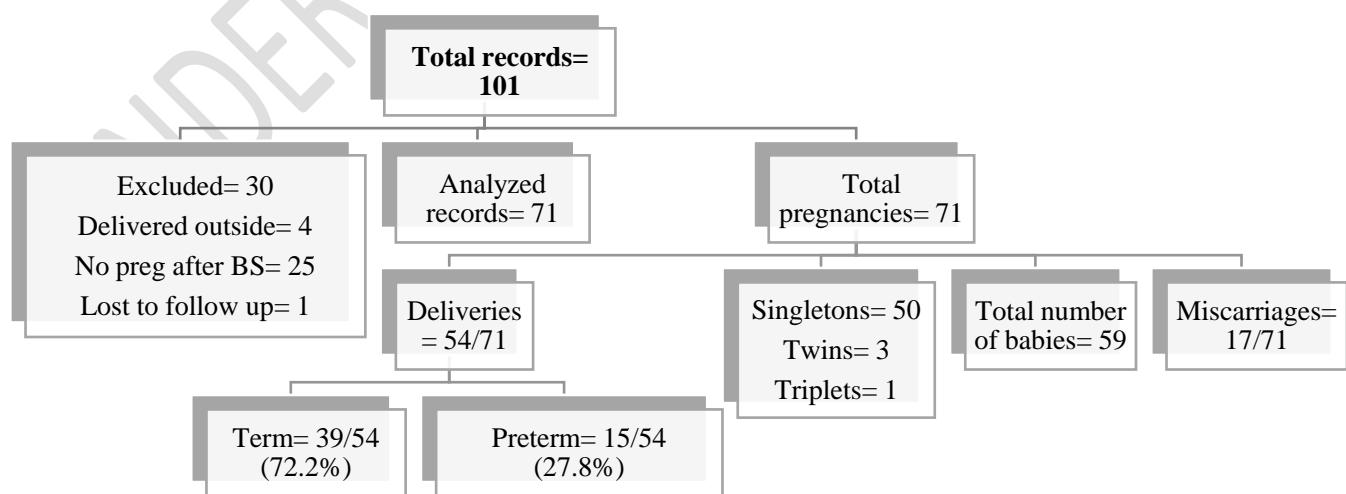
85 Participants included women ≥ 18 years old, who underwent any type of bariatric surgery before
86 pregnancy.

87 **Inclusion criteria:** Pregnant women who had a bariatric procedure before the index pregnancy and
88 attended antenatal care and delivery at the Dubai health facility.

89 **Exclusion Criteria:** Multiple pregnancies, Pregnancies with no history of bariatric surgery, Women with
90 bariatric surgery with preexisting medical illness like SLE, Chronic hypertension, or Autoimmune
91 diseases, and Women delivered outside of our facility with incomplete records.

92 **Sample size and technique:** All cases attending Hatta hospital in the study period (101 case records were
93 retrieved)

94 **Sources of Data:** case records of the pregnant women meeting the inclusion criteria.


95 **Collection of data:** was done in an Excel sheet/structured data collection tool manually from the Salama
96 system/EPIC. Information was collected regarding participants sociodemographic characteristics, BMI at
97 booking, type of bariatric procedure, Time interval between BS and first pregnancy, past medical history,
98 medication during pregnancy, Booking laboratory results of serum iron, ferritin, vitamin B12, vitamin D
99 and calcium, need for Iron infusion, gestational weight gain or loss, Mode of delivery, gestational age at
100 delivery, newborn weight and growth percentiles, fetal abnormalities and maternal complications
101 (medical -hyperemesis, gestational diabetes mellitus, pregnancy associated Hypertensive disorders and
102 surgical complications related to BS).

103 **Outcome measures:** primary objective was to assess (1) the prevalence of medical morbidities and
104 nutritional deficiencies in pregnancies after BS and (2) the Effect of BS on neonatal birthweight. The
105 secondary objective was to correlate the time interval from BS to pregnancy with iron deficiency and
106 newborn weight.

107 **Statistical analysis:** All data were coded and entered into Microsoft Excel and analyzed using SPSS
108 software version 29.0 (IBM Corp., Armonk, NY, USA; released 2023). Descriptive statistics were used to
109 summarize the data. Continuous variables were expressed as mean \pm standard deviation (SD) or median
110 (interquartile range, IQR), depending on distribution. Categorical variables were presented as frequencies
111 and percentages. The Kolmogorov-Smirnov test was used to assess the normality of data distribution. The
112 parameters that were not normally distributed were examined using the Mann-Whitney U-test.
113 Correlation analyses were conducted to assess whether time to conception was associated with neonatal
114 birthweight using Pearson's correlation coefficient and Spearman's rank correlation. $P < 0.05$ was
115 considered statistically significant.

116 **Results:**

117 **Fig.1 Flow chart of Study subjects:**

119 Records of 71 women who became pregnant after a bariatric surgery were analyzed. 17 (24%) ended in
120 miscarriage and 54 (76%) progressed till delivery. Amongst the 54 delivered, 50 were singleton
121 pregnancies, 3 twins and 1 triplet.

122 **Table 1** shows the Maternal Demographic features of the study Population.

123 **Maternal Age:**

124 The mean maternal age in the cohort was approximately 33 years, with a range spanning from 21 to 46
125 years. This distribution suggests a higher representation of older women undergoing bariatric surgery
126 prior to pregnancy.

127 **Parity:**

128 Parity among participants varied widely, ranging from 0 to 10, with a mean parity of three. Only 11% of
129 the women were primigravidae, while the majority were multiparous. This pattern indicates that bariatric
130 surgery was predominantly performed for cosmetic or metabolic indications rather than for fertility
131 enhancement.

132 **Body Mass Index (BMI) at Booking:**

133 The mean BMI at the time of booking was 31 kg/m², indicating that most women entered pregnancy
134 overweight or obese. The BMI values ranged considerably, from 20 to 44 kg/m², reflecting substantial
135 heterogeneity in maternal nutritional status.

136 **Weight Changes During Pregnancy:**

137 On average, women gained 8.5 kg during pregnancy; however, a mean weight loss of 3.7 kg was also
138 observed in some cases. The wide range of weight change, with a maximum weight loss of 7 kg and a
139 maximum gain of 18 kg, underscores significant variability among participants. This variability may be
140 attributable to the metabolic and absorptive effects of bariatric surgery as well as underlying nutritional
141 deficiencies.

142 **Gestational Age at Delivery:**

143 Gestational ages at delivery ranged from 24 to 42 weeks. Preterm deliveries, defined as births occurring
144 before 37 weeks of gestation, accounted for 27.8% of cases, while term deliveries comprised 72.2%. The
145 elevated rate of preterm birth in this cohort appears to be associated with multiple high-risk obstetric
146 factors rather than a direct consequence of bariatric surgery.

147 **Mode of Delivery:**

148 Cesarean deliveries predominated, comprising 68.5% of births, whereas vaginal deliveries accounted for
149 31.5%. The cesarean rate in this cohort exceeds global averages and primarily reflects obstetric
150 indications such as a history of two or more previous cesarean sections, fetal malpresentation, maternal

151 request, failure to progress in labor, and fetal distress. Importantly, these factors rather than bariatric
152 surgery itself appear to drive the high cesarean delivery rate.

153 **Table:1 Maternal Features**

Maternal demographic feature	Number of women=n(%)	Range	Mean ±S.D
<i>Age in yrs</i>			
21-30	23 (32.4)	21-46	33±5.7
31-40	39 (54.9)		
41-45	8 (11.3)		
>45	1 (1.4)		
total	71		
Parity			
P0-P3	51 (71.8)	P0-P10	3±2.3
P4-P7	15 (21.1)		
P8-P10	5 (7.1)		
total	71		
<i>Booking BMI (kg/m²)</i>			
20-25	15 (21.1)	20-44	31±5.5
26-30	22 (31.0)		
31-35	20 (28.2)		
36-40	11 (15.5)		
41-45	3 (4.2)		
total	71		
<i>Gestational weight gain in kg</i>			
1-5	15/54 (27.8)	1-18	8.56
6-10	18 (33.3)		
11-15	4 (7.4)		
16-20	9 (16.7)		
<i>Gestational weight loss in kg</i>			
1-5	7 (13)	1-7	3.75
6-10	1 (1.8)		
<i>Gestational Age at</i>			
<i>Delivery in weeks</i>			
24-28	1 (1.8)	24-42	34±8.2
29-36	14 (26)		
37-42	39 (72.2)		
<i>Mode of Delivery</i>			
Vaginal	17/54 (31.5)		
Cesarean section	37/54 (68.5)		

154

155

156 **Table 2** demonstrates the Bariatric Surgery Profile in the study group. The commonest surgery was
157 Roux-en-Y Gastric bypass (38% cases), followed by Sleeve gastrectomy (15.5%) and Gastric banding

158 (1.4%).10% cases had 2 types of procedure (SG and RYGB). In 35% cases the exact type of surgery
159 could not be obtained from the records. 2 cases underwent Abdominoplasty after their bariatric surgery. It
160 is an adjunctive procedure used by women after weight loss from BS to remove excess lax skin [5].

161 **Table 2: Type of Bariatric surgery**

Type of bariatric surgery	n/71	%
RYGB	27	38
Sleeve gastrectomy (SG)	11	15.5
Gastric band	1	1.4
2 types of surgeries	7	9.9
unclassified	25	35.2

162

163 **Table 3** shows the Interval Between Bariatric Surgery and ConceptionThe average interval was 4.4 years,
164 19% women conceived within one year of BS ,27% conceived in the recommended 2-year period while
165 others conceived beyond it.

166 **Table 3: Bariatric surgery to pregnancy interval**

Bariatric surgery to pregnancy interval in yrs	n/64	%	Range	Mean±S.D
0.3-1	12	18.8	0.3-12	4.4 ±3.07
1.1-3	17	26.6		
3.1-6	20	31.2		
6.1 -9	11	17.2		
9.1-12	4	6.2		
Not recorded	7			

167

168 **Table 4** shows the micronutrient deficiencies. Iron deficiency was the commonest (88%), followed by
169 Vitamin D (73%), Vitamin B12 (27%) and calcium (19%). Ferritin was low(<15ng/ml) in 77% cases
170 requiring intravenous iron infusion in 55% cases. These findings reveal important nutritional risks post-
171 bariatric surgery and during pregnancy.

172 **Table 4: Maternal Nutritional deficiencies**

Nutrient deficiency	n	%
Iron		
yes	58/66	87.9
no	8/66	12.1
Not Recorded	5	
Ferritin levels		
low	44/57	77.2
normal	13/57	22.8
Not Recorded	14	
Iv iron Therapy		
yes	38/69	55
no	31/69	45
Not Recorded	2	
Calcium		

yes	12/64	18.8
no	52/64	81.2
Not Recorded	7	
Vitamin D		
Yes	47/64	73.4
no	17/64	26.6
Not Recorded	7	
Vitamin B12		
Yes	17/64	26.6
no	47/64	73.4
Not Recorded	7	

173

174 **Table 5** shows the medical morbidities in pregnancies after BS. Significant numbers (66%) developed
 175 hyperemesis gravidarum. Pregnancy associated Hypertensive disorders (PIH, Preclampsia, eclampsia)
 176 were seen in 19% and GDM developed in 9%, relatively low compared to general populations, reflecting
 177 weight loss benefits after bariatric surgery.

178 **Table 5: Maternal medical complication during pregnancy**

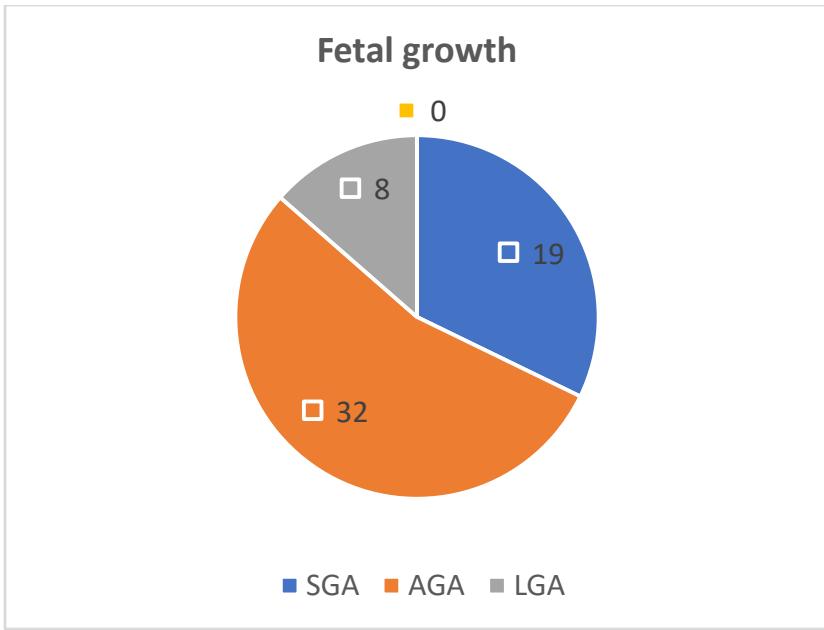
Medical condition	Yes	%	no	%	NR
Hyperemesis	43	66.1	22	33.8	6
Gestational diabetes	6	9	61	91	4
Pregnancy related Hypertensive disorders	13	19.1	55	80.9	3

179

180 **Table 6 and 7 shows** neonatal weight profiles. Birth weight ranged from 0.5 to 3.6 Kg with a mean of
 181 2.45 kg .32% of newborns were Small for gestational age, while 14% were large for gestational age.
 182 47% of neonates fell at or below the 50th percentile. This indicates a tendency toward small-for-
 183 gestational-age newborns, aligning with lower mean birthweights and high micronutrient deficiencies.

184 **Table 6: Birth weight of neonates**

Birth weight(kg)	n/59 (%)	Range	Mean± S.D
0.5-1	1(1.7)	0.5-3.6	2.456±0.71
1.1-2	13(22)		
2.1-3	31(52.6)		
3.1-4	14(23.7)		


185

186 **Table 7: Birth weight percentiles**

Percentile	n/59	%
<=10th	19	32.2
11-49th	9	15.3
50-89th	23	39
>=90	8	13.5

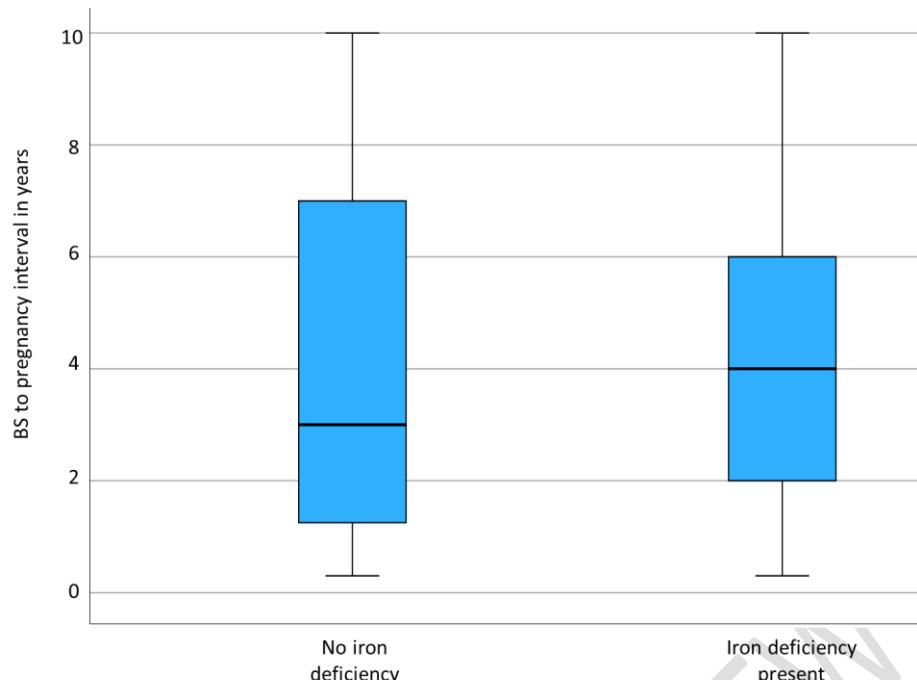
187

188 **Fig 2: Fetal growth profile**

189

190 **FetalAbnormalities:**

191 Fetal genetic disorders were detected in 4 cases/71(Trisomy 21+PDA=1, Triple X=1, Trisomy
 192 21=1^,47XXY=1) which are not related to BS. There were no fetal congenital malformations in this
 193 cohort.

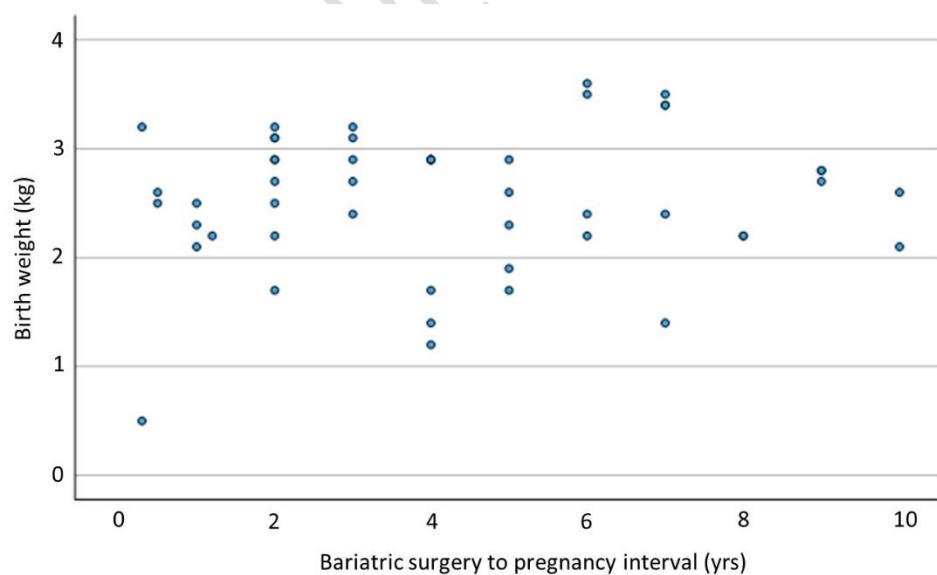

194 **Bariatric surgery related complications** were rare and Dumping syndrome was noted in 1/71cases.

195 **Relationship Testing and Correlations:**

196 **Fig 3: Box plot comparing Iron Deficiency vs. Time to Pregnancy**

197 The boxplot comparing the interval from bariatric surgery to conception between iron-deficient and non-
 198 deficient women shows broadly similar distributions across groups. Median time to pregnancy appears
 199 slightly higher among iron-deficient women, but the interquartile ranges overlap noticeably, indicating
 200 similarity in central tendency. Overall, the visual overlap between boxes supports the Mann-Whitney U
 201 test result,($p = .844$), which detected no statistically significant difference between groups, indicating that
 202 time to conception following bariatric surgery does not influence iron deficiency.

203



204

205 **Fig 4: Scatterplot (Birthweight vs. Time to Pregnancy)**

206 The scatterplot illustrates the relationship between neonatal birthweight and the interval from bariatric
 207 surgery to conception. This visual pattern is consistent with the Pearson and Spearman correlation
 208 outputs, which showed weakly positive, non-significant associations($p > 0.5$). Collectively, the scatterplot
 209 supports the conclusion that timing of conception after bariatric surgery does not meaningfully influence
 210 neonatal birthweight in this cohort.

211 These findings suggest that birthweight variation is likely driven more by micronutrient deficiency,
 212 maternal comorbidities, or procedural types rather than timing alone.

213

214

215 **Discussion:**

216 This study investigated the impact of bariatric surgery (BS) on the prevalence of nutritional deficiencies
217 during pregnancy, associated medical comorbidities, neonatal birth weights, and the relationship between
218 the interval from bariatric surgery to pregnancy (STP interval) with iron deficiency and neonatal
219 outcomes. Among the cases reviewed, 24% resulted in miscarriage, while 76% progressed to live births.
220 These findings are consistent with those reported by Bebber et al., who documented a miscarriage rate of
221 23% and a live birth rate of 69% [6]. Gestational weight gain (GWG) in our cohort exhibited considerable
222 variability, ranging from 1 to 18 kg, with 14% of women experiencing weight loss, likely attributable to
223 hyperemesis gravidarum and other nutritional factors. Currently, there is no established consensus
224 regarding optimal GWG following different bariatric procedures or across diverse metabolic profiles.
225 Consequently, gestational weight gain targets should be individualized to each patient's circumstances [7].
226 Notably, women conceiving within 18 months post-surgery tended to gain less weight during pregnancy
227 compared to those with longer intervals. The gestational age at delivery ranged from 24 to 41 weeks, with
228 28% preterm and 72% term births. The preterm delivery rate in our cohort exceeds that reported by Costa
229 et al., who observed a rate of 13% [8]. This elevated preterm birth incidence was primarily attributable to
230 high-risk obstetric factors, including preterm rupture of membranes and preterm contractions in women
231 with a history of two or more cesarean deliveries.

232 Cesarean section was the predominant mode of delivery, accounting for 68.5% of births in this study. This
233 rate parallels findings by Bebber et al., who reported a cesarean rate of 69% [6]. Importantly, this high
234 cesarean prevalence is linked to obstetric indications such as multiple prior cesareans, malpresentation,
235 maternal request, labor dystocia, and fetal distress rather than the bariatric surgery itself. Literature does
236 not support an inherent increase in cesarean delivery rates attributable to BS [9,10]. Nonetheless, it is
237 plausible that nutritional deficiencies arising from BS may contribute indirectly to increased labor
238 inductions and surgical interventions due to fetal growth restriction.

239 Bariatric procedures performed are classified into three categories: **A-malabsorptive** (Roux-en-Y gastric
240 bypass [RYGB], biliopancreatic diversion, and biliopancreatic diversion with duodenal switch), **B-**
241 *restrictive* (primarily laparoscopic sleeve gastrectomy and adjustable gastric banding), and **C-less invasive**
242 *methods* such as the intragastric balloon. In our cohort, RYGB was the most common surgery, followed
243 by sleeve gastrectomy and gastric banding. Although the sample size was insufficient to compare
244 outcomes by surgery type, existing literature indicates that malabsorptive procedures carry a higher risk
245 of nutrient deficiencies, fetal growth restriction, and surgical complications such as internal hernias
246 (reported in 2–12% of cases), which may require urgent intervention during pregnancy to prevent bowel
247 necrosis [6,7,11]. In contrast, restrictive surgeries tend to yield more favorable perinatal outcomes and are
248 generally preferred for women of reproductive age [12].

249 The influence of the surgery-to-pregnancy interval on maternal weight gain, nutritional status, and fetal
250 growth remains contentious in the literature [13]. Intervals shorter than 12 months may predispose to
251 hepatobiliary complications such as gallstones and biliary colic, likely due to rapid weight loss and altered
252 bile acid metabolism [2]. In this study, the mean interval was approximately four years, with 19%
253 conceiving within one-year post-surgery. Statistical analysis revealed no significant correlation between
254 the STP interval and the development of iron deficiency or neonatal birth weight. Despite this, current
255 guidelines recommend delaying conception for 12 to 24 months post-BS to allow for weight stabilization
256 and to mitigate the risks associated with rapid weight loss [14].

257 Substantial evidence supports the association between bariatric surgery—particularly malabsorptive
258 procedures—and nutritional deficiencies during pregnancy [3,7]. Common deficiencies include iron,
259 vitamin D, vitamin B12, and calcium [3]. Additional deficiencies reported in the literature encompass
260 vitamin B1, folate, fat-soluble vitamins (A, D, E, and K), selenium, phosphate, magnesium, and albumin
261 [1,7]. Such deficiencies can lead to anemia, fetal anomalies, and fetal growth restriction, especially when
262 protein intake is inadequate. In our cohort, iron deficiency was most prevalent (88%), followed by
263 vitamin D (73%), vitamin B12 (27%), and calcium (19%). Al Mansoori et al. found vitamin B12
264 deficiency to be most common in their population, followed by vitamin D and iron deficiencies [3].
265 Ferritin levels below 15 ng/ml were present in 77% of our cases, necessitating intravenous iron therapy in
266 55%. Similarly, Al Mansoori et al. reported low ferritin in 57% of cases, with half requiring IV iron
267 infusion. Their study also concluded that neither the type of BS nor the STP interval significantly affected
268 micronutrient status, although a higher proportion of women with longer (>18 months) STP intervals
269 exhibited iron deficiency anemia requiring infusion. In contrast, our study found no significant
270 association between STP interval and iron deficiency ($p = 0.844$). Routine monitoring of nutrient levels
271 preconceptionally, during each trimester, and postpartum is strongly recommended [15]. Personalized
272 nutritional counseling has been shown to improve maternal nutrient intake and is associated with higher
273 neonatal birth weights [16].

274 International studies demonstrate that bariatric surgery reduces the risk of gestational diabetes and
275 hypertensive disorders in pregnancy [17]. In our cohort, hypertensive disorders were observed in 19% of
276 cases and GDM in 9%. Gonzales et al. reported a GDM incidence of 3% without hypertensive
277 complications [11]. Diagnosing GDM post-BS is challenging because oral glucose tolerance tests are
278 contraindicated due to risks of hypoglycemia and glucose variability following the glucose load [18].
279 Alternative screening methods, such as seven-point capillary blood glucose monitoring or continuous
280 glucose monitoring (CGM) between 24 and 28 weeks gestation, are recommended [19].

281 Post-bariatric pregnancies exhibit altered glucose homeostasis, with dumping syndrome occurring in 19%
282 to 32% of cases depending on the surgical procedure [14,15]. Early dumping syndrome manifests within

283 60 minutes of food ingestion and includes symptoms such as dizziness, flushing, and palpitations.
284 Management involves dietary modifications including avoidance of rapidly absorbed carbohydrates and
285 delaying fluid intake by 30 minutes after meals to slow gastric emptying. Late dumping syndrome, or
286 postprandial hyperinsulinemic hypoglycemia (PHH), occurs 60 to 180 minutes postprandially,
287 characterized by neuroglycopenic symptoms and biochemical hypoglycemia, resolving upon carbohydrate
288 intake. Specific guidelines for managing PHH during pregnancy are lacking, though significant glycemic
289 fluctuations may impact fetal well-being [15]. In our study, dumping syndrome was documented in a
290 single case following gastric bypass surgery.

291 Hyperemesis gravidarum was reported in 66% of cases, a notably high prevalence that may be attributed
292 to reduced gastric capacity post-surgery. Globally, nausea and vomiting affect approximately 80% of
293 pregnant women, with hyperemesis gravidarum reported in 0.1% to 17% of pregnancies following
294 bariatric surgery, particularly restrictive procedures such as gastric banding. Given the potential
295 exacerbation of maternal and fetal nutritional deficiencies, prompt evaluation and management are
296 imperative [15]. In cases of severe vomiting, deflation of the gastric band may be warranted to prevent
297 complications and ensure adequate nutrient intake. For patients with RYGB, early medical attention is
298 critical upon the onset of abdominal symptoms to facilitate timely diagnosis and management of internal
299 hernias, thereby reducing adverse maternal and fetal outcomes [15].

300 Surgical complications post-BS, including gastric band slippage, erosion, internal herniation, intestinal
301 obstruction, gastric ulcers, and anastomotic leaks, have been documented and often necessitate urgent
302 laparoscopic or open surgical intervention to prevent bowel necrosis [20]. While ideally managed by
303 bariatric surgeons, emergency physicians and on-call surgeons must recognize and initiate appropriate
304 management for patients presenting with acute abdominal pain. During our study period, no surgical
305 complications requiring intervention were observed; however, other studies report an approximate 1.5%
306 incidence of surgical intervention for intestinal obstruction including diagnostic laparoscopy/laparotomy
307 [21].

308 Fetal abnormalities linked to maternal nutritional deficiencies after BS—such as neural tube defects,
309 microcephaly, and cerebral hemorrhage due to folate, vitamin A, and vitamin K deficiencies,
310 respectively—have been described [4]. In our cohort, no such anomalies were detected, likely reflecting
311 routine administration of 5 mg folic acid periconceptionally and multivitamin supplementation throughout
312 pregnancy.

313 Multiple studies have demonstrated that bariatric surgery influences fetal growth, with reductions in fetal
314 macrosomia but increased incidence of small-for-gestational-age (SGA) infants, reaching rates up to 40%
315 [1,4,7,14]. In our study, 32% of neonates were classified as SGA, while 14% were large for gestational

316 age. Overall, 47% of infants were at or below the 50th percentile for growth, underscoring the necessity
317 for regular antenatal surveillance and maternal nutritional optimization. Throughout pregnancy, these
318 women received multidisciplinary care involving obstetricians, nutritionists, and endocrinologists, with
319 supplementation of iron, vitamins, and calcium alongside close fetal growth monitoring.

320 Interestingly, the interval between bariatric surgery and pregnancy in our cohort did not correlate with
321 neonatal birthweight. This finding challenges the clinical assumption that delaying conception improves
322 fetal growth and aligns with emerging evidence suggesting that fetal growth post-bariatric surgery is
323 primarily influenced by maternal metabolic status, nutritional supplementation, placental function, and
324 individualized gestational weight gain trajectories [22].

325

326 CONCLUSIONS:

327 Bariatric surgery was predominantly performed in older, multiparous women within this cohort. Our
328 findings demonstrate that pregnancies following bariatric surgery are associated with favorable reductions
329 in metabolic complications, notably low rates of gestational diabetes mellitus (GDM). However, these
330 benefits are accompanied by significant risks of nutritional deficiencies, especially iron and vitamin D,
331 which may contribute to fetal growth restriction tendencies. The mode of delivery profile indicates a
332 higher rate of obstetric interventions, reflecting the complex clinical management required in these
333 pregnancies. Notably, the interval between surgery and conception did not significantly influence the
334 development of iron deficiency nor was it associated with neonatal birthweight. This suggests that
335 obstetric outcomes after bariatric surgery are shaped more by intricate nutritional and metabolic dynamics
336 than by isolated clinical markers or timing of conception. Larger, prospective multicenter studies are
337 needed to further clarify these relationships.

338 In order to balance the metabolic benefits of BS with the nutritional and fetal risks identified in the
339 literature, Preconception counselling, accurate documentation in medical records of type of BS
340 performed, specialized care by a multidisciplinary team, individualizing gestational weight-gain goals
341 according to type of BS undergone and immediate attention to abdominal pain due to hernia risk are
342 essential steps. Given that bariatric surgeries are usually conducted in tertiary centers while antenatal care
343 occurs in diverse settings, clinicians in primary and secondary care must be well-informed about the risks
344 associated with bariatric surgery and equipped to initiate appropriate management. Future research should
345 also focus on the long-term health effects in children born to mothers who have undergone bariatric
346 surgery [4].

347 Tables and Figures Legends:

348 **Fig.1 Flow chart of Study subjects**

349 **Fig 2: Fetal growth profile**

350 **Fig 3: Box plot comparing Surgery to pregnancy interval vs Iron Deficiency status**

351 **Fig 4: Scatterplot (Birthweight vs. Time to Pregnancy)**

352 **Table 1 shows the Maternal Demographic features of the study Population.**

353 **Table 2 demonstrates the Bariatric Surgery Profile in the study group**

354 **Table 3 shows the Interval Between Bariatric Surgery and Conception**

355 **Table 4 shows the micronutrient deficiencies**

356 **Table 5 shows the medical morbidities in pregnancies after BS**

357 **Table 6 and 7 shows neonatal weight profiles**

358 **References:**

1. Pg Baharuddin DM, Payus AO, Abdel Malek Fahmy EH, Sawatan W, Than WW, Abdelhafez MM, Oo Leik NK, Ag Daud DM, Mohd Daud MN, Ahmad ZNS. Bariatric surgery and its impact on fertility, pregnancy and its outcome: A narrative review. *Ann Med Surg (Lond)*. 2021 Nov 11;72:103038. doi: 10.1016/j.amsu.2021.103038. PMID: 34849219; PMCID: PMC8608888.
2. Zarni S, Oo M, Wai T (December 10, 2025) Pregnancy After Bariatric Surgery: Hepatobiliary Implications, Maternal Outcomes, and Clinical Considerations. *Cureus* 17(12): e98939. DOI 10.7759/cureus.98939
3. Al Mansoori A, Bataineh MF, Al Momani H, Ali HI. Micronutrient Status in Pregnant Women after Metabolic Bariatric Surgery in the United Arab Emirates: A Prospective Study. *Nutrients*. 2023 Dec 25;16(1):72. doi: 10.3390/nu16010072. PMID: 38201902; PMCID: PMC10781104.
4. Haseeb YA. A Review of Obstetrical Outcomes and Complications in Pregnant Women after Bariatric Surgery. *Sultan Qaboos Univ Med J*. 2019 Nov;19(4):e284-e290. doi: 10.18295/squmj.2019.19.04.003. Epub 2019 Dec 22. PMID: 31897311; PMCID: PMC6930040
5. Hafezi F, Nouhi A. Safe abdominoplasty with extensive liposuctioning. *Ann Plast Surg*. 2006 Aug;57(2):149-53. [PubMed]
6. Bebber FE, Rizzolli J, Casagrande DS, Rodrigues MT, Padoin AV, Mottin CC, Repetto G. Pregnancy after bariatric surgery: 39 pregnancies follow-up in a multidisciplinary team. *Obes Surg*. 2011 Oct;21(10):1546-51. doi: 10.1007/s11695-010-0263-3. PMID: 20820939.
7. Różańska-Wałędziak A, Walędziak M, Mierzejewska A, Skopińska E, Jędrzyk M, Chełstowska B. Nutritional Implications of Bariatric Surgery on Pregnancy Management-A Narrative Review of the Literature. *Medicina (Kaunas)*. 2023 Oct 19;59(10):1864. doi: 10.3390/medicina59101864. PMID: 37893582; PMCID: PMC10608240.
8. Costa MM, Belo S, Souteiro P, Neves JS, Magalhães D, Silva RB, Oliveira SC, Freitas P, Varela A, Queirós J, Carvalho D. Pregnancy after bariatric surgery: Maternal and fetal outcomes of 39 pregnancies and a literature review. *J ObstetGynaecol Res*. 2018 Apr;44(4):681-690. doi: 10.1111/jog.13574. Epub 2018 Jan 18. PMID: 29349843.
9. Shekelle PG, Newberry S, Maglione M, Li Z, Yermilov I, Hilton L, Suttorp M, Maggard M, Carter J, Tringale C, Chen S. Bariatric surgery in women of reproductive age: special concerns

387 for pregnancy. *Evid Rep Technol Assess (Full Rep)*. 2008 Nov;(169):1-51. PMID: 20731480;
388 PMCID: PMC4780974

389 10. ACOG practice bulletin no.105: bariatric surgery and pregnancy. *Obstet Gynecol*. 2009
390 Jun;113(6):1405-1413. doi: 10.1097/AOG.0b013e3181ac0544. PMID: 19461456.

391 11. González I, Rubio MA, Cordido F, Bretón I, Morales MJ, Vilarrasa N, Monereo S, Lecube A,
392 Caixàs A, Vinagre I, Goday A, García-Luna PP. Maternal and perinatal outcomes after bariatric
393 surgery: a Spanish multicenter study. *Obes Surg*. 2015 Mar;25(3):436-42. doi: 10.1007/s11695-
394 014-1387-7. PMID: 25125138.

395 12. Akhter Z, Rankin J, Ceulemans D, Ngongalah L, Ackroyd R, Devlieger R, Vieira R, Heslehurst
396 N. Pregnancy after bariatric surgery and adverse perinatal outcomes: A systematic review and
397 meta-analysis. *PLoS Med*. 2019 Aug 6;16(8):e1002866. doi: 10.1371/journal.pmed.1002866.
398 PMID: 31386658; PMCID: PMC6684044.

399 13. Brönnimann A, Jung MK, Niclauss N, Hagen ME, Toso C, Buchs NC. The Impact of Pregnancy
400 on Outcomes After Bariatric Surgery. *Obes Surg*. 2020 Aug;30(8):3001-3009. doi:
401 10.1007/s11695-020-04643-9. PMID: 32382960.

402 14. Falcone V, Stopp T, Feichtinger M, Kiss H, Eppel W, Husslein PW, Prager G, Göbl CS.
403 Pregnancy after bariatric surgery: a narrative literature review and discussion of impact on
404 pregnancy management and outcome. *BMC Pregnancy Childbirth*. 2018 Dec 27;18(1):507. doi:
405 10.1186/s12884-018-2124-3. PMID: 30587161; PMCID: PMC6307154.

406 15. Shawe J, Ceulemans D, Akhter Z, et al. Pregnancy after bariatric surgery: consensus
407 recommendations for periconception, antenatal and postnatal care. *Obes Rev*. 2019;20:1507–22

408 16. Araki S, Shani Levi C, Abutbul Vered S, Solt I, Rozen GS. Pregnancy after bariatric surgery:
409 Effects of personalized nutrition counseling on pregnancy outcomes. *Clin Nutr*. 2022
410 Feb;41(2):288-297. doi: 10.1016/j.clnu.2021.11.035. Epub 2021 Dec 2. PMID: 34999322.

411 17. Cornthwaite K, Prajapati C, Lenguerrand E, Knight M, Blencowe N, Johnson A, Draycott T,
412 Siassakos D. Pregnancy outcomes following different types of bariatric surgery: A national cohort
413 study. *Eur J ObstetGynecolReprod Biol*. 2021 May;260:10-17. doi: 10.1016/j.ejogrb.2021.02.031.
414 Epub 2021 Mar 3. PMID: 33706225.

415 18. Harreiter J, Schindler K, Bancher-Todesca D, Göbl C, Langer F, Prager G, Gessl A, Leutner M,
416 Ludvik B, Luger A, Kautzky-Willer A, Krebs M. Management of Pregnant Women after Bariatric
417 Surgery. *J Obes*. 2018 Jun 3;2018:4587064. doi: 10.1155/2018/4587064. PMID: 29973985;
418 PMCID: PMC6008727.

419 19. Deleus E, Van der Schueren B, Devlieger R, Lannoo M, Benhalima K. Glucose Homeostasis,
420 Fetal Growth and Gestational Diabetes Mellitus in Pregnancy after Bariatric Surgery: A Scoping
421 Review. *J Clin Med*. 2020 Aug 24;9(9):2732. doi: 10.3390/jcm9092732. PMID: 32847052;
422 PMCID: PMC75

423 20. Monkhouse SJ, Morgan JD, Norton SA. Complications of bariatric surgery: presentation and
424 emergency management--a review. *Ann R Coll Surg Engl*. 2009 May;91(4):280-6. doi:
425 10.1308/003588409X392072. Epub 2009 Apr 2. PMID: 19344551; PMCID: PMC2749388.

426 21. Stuart A, Källen K. Risk of Abdominal Surgery in Pregnancy Among Women Who Have
427 Undergone Bariatric Surgery. *Obstet Gynecol*. 2017 May;129(5):887-895. doi:
428 10.1097/AOG.0000000000001975. PMID: 28383368.

429 22. Atlihan U, Yavuz O, Ata C, Avsar HA and Erkilinc S (2025) Evaluation of pregnancy outcomes in
430 patients with a history of bariatric surgery. *Front. Med.* 12:1609344. doi:
431 10.3389/fmed.2025.1609344