

Anthocyanin content, lipid peroxidation inhibition and anti-salmonellosis activity of *Vitelaria paradoxa* Gaertn and *Parkia biglobosa* (Jacq.) Benth bark extracts.

5 ABSTRACT

In a context where antimicrobial resistance limits the effectiveness of conventional treatments, the study of knowledge and practices related to anti-ulcer plants appears essential for exploring new therapeutic avenues of natural origin. The objective of this study is to determine the total anthocyanin content, the lipid peroxidation inhibition capacity and to evaluate the antimicrobial activity of *Vitellaria paradoxa* Gaertn. and *Parkia biglobosa* (Jacq.) Benth stem bark extracts on salmonella strains. *Salmonella* spp isolated at the CNHU bacteriology unit from blood and stool samples. The results reported that total anthocyanins were only quantifiable in extracts of *V. paradoxa* bark, with high levels ranging from 31.17 ± 17.13 to 66.79 ± 8.34 mg/g of plant powder. Ethanolic extracts of *V. paradoxa* showed strong inhibition of lipid peroxidation (54.43–65.46%), significantly higher than that of *P. biglobosa* extracts (32.01–43.90%) and comparable or higher than that of ascorbic acid (38.56%), with the Vp50 and Vp97 extracts showing statistically higher activity than ascorbic acid. Sensitivity tests show that the vast majority of bacterial strains tested are highly sensitive to *V. paradoxa* and *P. biglobosa* bark extracts (≈ 85 –95% and $>90\%$, respectively), reflecting the strong overall antimicrobial activity of all extracts. MICs ranged from 3.125 mg/mL to 50 mg/mL, while MBCs ranged from 12.5 mg/mL to 50 mg/mL. Each *P. biglobosa* extract showed bactericidal activity with MBC/MIC ratios between 0.5 and 4. *V. paradoxa* bark extracts showed predominantly bactericidal effects, accounting for approximately 72 to over 95% of responses for most solvents, particularly ethanol and ethyl acetate extracts, reflecting strong lethal antimicrobial activity. In contrast, *P. biglobosa* bark extracts showed more variable profiles depending on the solvent, with a predominance of bactericidal effects for ethanol and acetone extracts, but a higher proportion of undetermined effects, particularly with highly polar solvents, indicating more heterogeneous antibacterial activity.

6 **Keywords:** Natural compound, biological activities, plant extracts, Benin

7 1. Introduction

8 *Salmonella enterica* is a major zoonotic disease transmitted via the faecal-oral route
9 through animals and the environment, causing gastroenteritis and typhoid fever in
10 humans (Silva et al., 2014). Its serovars are increasingly posing a persistent public
11 health challenge due to the recurring phenomenon of antimicrobial resistance
12 (Nagpala et al., 2025; Sarkodie-Addo et al., 2025; Ugbo et al., 2025).

13 We note with astonishment that AMR is proving to be more deadly than pathologies
14 that have been decried throughout history, and recent statistics estimate that by
15 2050, it will have claimed the lives of 39 million people (Naghavi et al., 2024; Institute
16 for Health Metrics and Evaluation, 2024). In 2019, antimicrobial resistance (AMR)
17 was responsible for 4.95 million deaths, including 1.27 million directly attributable to
18 bacterial AMR, with a particularly high mortality rate in sub-Saharan Africa (27.3
19 deaths per 100,000 inhabitants) (Murray et al., 2022).

20 Antimicrobial resistance (AMR) in *Salmonella* remains an urgent global health
21 challenge, with an upward trend in resistance to key antibiotics such as
22 fluoroquinolones, tetracyclines and beta-lactams observed in humans, animals, food
23 and the environment (Wang et al., 2022; Wang et al., 2025, Lv et al., 2025). Recent
24 data for 2025 indicate high rates of multidrug resistance (MDR) exceeding 50% in
25 Asia, alongside increasing resistance to nalidixic acid in *Salmonella enteritidis* from
26 poultry and non-susceptibility to ciprofloxacin in egg and poultry-related outbreaks
27 (Song et al., 2025). WHO surveillance between 2018 and 2023 showed an increase
28 in resistance in more than 40% of pathogen-antibiotic combinations monitored for
29 non-typhoidal *Salmonella*, complicating the treatment of infections such as those of
30 the urinary tract, gastrointestinal tract and bloodstream (World Health Organisation:
31 WHO, 2025).

32 There is little recent specific data on *Salmonella* AMR in Benin at the end of 2025,
33 but studies point to widespread resistance in the poultry and agropastoral sectors
34 (Deguenon et al., 2019).

35 In this global context of increasing antimicrobial resistance in *Salmonella* spp., the
36 search for natural alternatives is essential. *Vitellariaparadoxa* and *Parkiabiglobosa*
37 are two African plants widely reported for their ethnopharmacological benefits,
38 particularly in the treatment of gastrointestinal diseases such as stomach pain, ulcers
39 and diarrhoea in traditional medicine systems, and their extracts have shown
40 gastroprotective, antioxidant and anti-inflammatory activities in modern experimental
41 models. (Compaoré et al., 2024; Dangnon et al., 2024; Saleh et al., 2021). The
42 various biological activities described above, particularly antimicrobial activity, clearly
43 demonstrate the therapeutic potential of *Vitellariaparadoxa* and *Parkiabiglobosa*,
44 justifying their traditional use and supporting their interest as sources of alternative
45 bioactive agents. (Compaoré et al., 2024; Dangnon et al., 2025).

46 Although screening data have been reported, most studies have focused on
47 quantifying total polyphenols, total flavonoids and tannins. Specific anthocyanins
48 (aglycones: cyanidin, delphinidin, pelargonidin, etc.) are rarely quantified, and even
49 less so in bark.

50 However, the anthocyanin class of natural flavonoid pigments has been associated
51 with multiple bioactive activities, including antimicrobial and anti-biofilm properties,
52 with recent data highlighting their potential to interfere with biofilm formation and

53 quorum sensing systems in pathogenic bacteria (Jeyaraj et al., 2023). Furthermore,
54 these compounds exert potent antioxidant and anti-inflammatory activities,
55 contributing to the modulation of oxidative stress and inflammatory responses in
56 various biological models (Lakshmikanthan et al., 2024; Sadowska-Bartosz&Bartosz,
57 2024). These effects make anthocyanins increasingly interesting for prophylactic and
58 therapeutic applications in bacterial infections and inflammatory disorders, including
59 potentially gastroprotective properties via the reduction of inflammation and tissue
60 oxidation. Oxidative stress, marked by lipid peroxidation (LPO), plays a key role in
61 inflammatory and infectious diseases (Al-Kufaishi& Al-Musawi, 2025). Several
62 experimental studies have shown that anthocyanins have a significant ability to inhibit
63 lipid peroxidation (LPO) in vitro, thanks to their ability to trap free radicals such as
64 hydroxyl radicals ($\cdot\text{OH}$) and superoxides ($\text{O}_2\cdot^-$) (Sadowska-Bartosz&Bartosz, 2024).
65 These antioxidant mechanisms rely on the transfer of electrons or hydrogen atoms
66 from anthocyanins to reactive oxygen species, thereby reducing oxidative damage to
67 membrane lipids. Several in vitro experimental models have recorded significant
68 inhibitions of LPO (sometimes exceeding 60% depending on the compound and
69 system used) (Sadowska-Bartosz&Bartosz, 2024).

70 This study quantitatively assesses the total anthocyanin content (TAC), lipid
71 peroxidation (LPO) inhibition capacity and anti-bacterial activity against *salmonella* of
72 extracts from the bark of *V. paradoxa* and *P. biglobosa*.

73 **2. Material and Methods**

74 **2.1. Collection of plant material**

75 The bark of *V. paradoxa* and *P. biglobosa* stems was collected in February 2023 in
76 the village of Sèmèrè, Donga Department, in northern Benin ($9^{\circ}33'19.444''\text{N}$,
77 $1^{\circ}22'5.992''\text{W}$). These organs were dried at $20\pm2^{\circ}\text{C}$ for 15 days at the Laboratory of
78 Biology and Molecular Typing in Microbiology at the University of Abomey-Calavi
79 (UAC) in Benin before being ground into powder.

80 **2.2. Preparation of extract**

81 Methanol, ethyl acetate, acetone, methanol +1%HCl and ethanol (50%, 70% and
82 97%) were used as extraction solvents. The powdered bark of *V. paradoxa* and *P.*
83 *biglobosa* (50 g) was extracted by maceration according to the protocol described by

84 Phrompittayarat et al. (2007) with slight modifications. The dried plant material was
85 macerated in 500 ml of solvent for 72 hours with stirring at room temperature and
86 filtered through filter paper (Whatman No. 1). The filtrate obtained was evaporated in
87 a rotary evaporator and dried in an oven at 40°C. The residue collected was stored
88 for further analysis. Although all extracts obtained from different solvents were
89 evaluated for their antibacterial activity, particular attention was paid to ethanol
90 extracts due to their ability to effectively extract a wide range of bioactive secondary
91 metabolites and their better biological acceptability. Thus, ethanol extracts were used
92 for anthocyanin assay and lipid denaturation inhibition testing.

93 **2.3. Determination of the Total Anthocyanin Content of *Vitelariaparadoxa*and
94 *Parkiabiglobosastem* bark extracts**

95 The Total Anthocyanin Content of extracts of *V. paradoxa* and *P. biglobosa* stem
96 bark was measured by the pH differential method presented by Lee et al. (2005) and
97 used by Taghavi et al. (2022) with slight modification. Briefly, 0.4mL of extract were
98 mixed thoroughly separately with 2.6mL of pH 1.0 (0.225 M potassium chloride
99 buffer) in triplicate and 2.6mL of pH 4.5 (0.4 M sodium acetate buffer) and then
100 incubated for 15 min at room temperature and centrifuged at 4°C and 7000 rpm for
101 15 min. The supernatant was then removed, and the absorbance was read at 520
102 and 700 nm with Helios Gamma UV-Visible Spectrophotometer (Thermo). The
103 following formula (5) was used to calculate the anthocyanin concentration.
104 TAC (A × V)/M

105 Where: A = (A520 nm – A700 nm) pH 1.0 – (A520 nm – A700 nm) pH 4.5; V =
106 volume of extract (mL) and M = fresh mass of the sample (g).

107 **2.4. Lipid peroxidation inhibition activity of *V. paradoxa* and *P. biglobosa* stem
108 bark extract**

109 The lipid peroxidation inhibition activity of the extract was performed according to the
110 method of Vamanu and Nita (2012).

111 In short, 1 mL of fowl egg yolk emulsified with phosphate buffer (pH 7.4) to obtain a
112 final concentration of 25 g/L was mixed with the dilution of sample and 100 µL of
113 1mM FeCl₂. The mixture was incubated at 37°C for 1 h before being treated with 0.5
114 mL of freshly prepared 15% trichloroacetic acid (TCA) and 1.0 mL of 1%
115 thiobarbituric acid (TBA). The reaction tubes were further incubated in a boiling water

116 bath for 10 min. Once cooled to room temperature, the assay tubes were centrifuged
117 at 3500 g for 10 min to remove precipitated protein. The absorbance at 532 nm was
118 determined spectrophotometrically (Helios Gamma UV-Visible Spectrophotometer
119 (Thermo)). Ascorbic acid was used as standard. The percentage of inhibition (I%)
120 was calculated from the following equation (12):

121
$$\text{inhibition (I\%)} = [(AAbb - AAss)/AAbb] \times 100$$

122 (12)

123 where: $AAbb$ is the absorbance of the blank without the extract or ascorbic acid and
124 $AAss$ is the absorbance in the presence of the extract or ascorbic acid

125 **2.5. Evaluation of the antibacterial activity of extracts from the bark of**
126 ***Vitellariaparadoxa* and *Parkiabiglobosa*.**

127 **2.5.1. Acquisition, confirmation and purification of bacterial strains.**

128 A total of 22 clinical strains of *Salmonella* spp. isolated at the CNHU bacteriology unit
129 from blood and stool samples were obtained with the consent of patients suffering
130 from gastro-duodenal ulcers and confirmed using the specific *Salmonella Shigella*
131 Agar medium.

132 **2.5.2. Susceptibility of *Salmonella* strains to some commonly used antibiotics**

133 The Bauer and Kirby method recommended by the WHO (World Health
134 Organisation) was used to assess antibiotic resistance (Hudzicki, 2009). It is based
135 on diffusion from antibiotic-impregnated discs onto Mueller-Hinton agar previously
136 seeded by flooding with the bacterial suspension. The seeded plates containing the
137 antibiotic discs were incubated for 24 hours at 37°C. After incubation, the results
138 were read by measuring the diameter of the inhibition zones around each antibiotic
139 disc. The results were interpreted according to the standard published by the
140 Antibiogram Committee of the French Society of Microbiology (SFM, 2024). The
141 following antibiotics were tested: Ceftriaxone (30 µg), Augmentin (30 µg), Telekinetic
142 (10 µg), Erythromycin (5 µg), Ciprofloxacin (5 µg), Nitrofurantoin (300 µg),
143 Tetracycline (30 µg), Amoxicillin with Clavulanic Acid (30 µg).

144 **2.5.3. Evaluation of the antibacterial activity of extracts from *V. paradoxa* and *P.***
145 ***biglobosa***

146 The evaluation of antimicrobial activity consisted firstly of testing the sensitivity of the
147 extracts on 22 clinical strains of *Salmonella* spp isolated at the CNHU bacteriology
148 unit from blood and stool samples. The second step involved determining the
149 antibacterial parameters, namely the Minimum Inhibitory Concentrations (MIC) and
150 Minimum Bactericidal Concentrations (MBC) from an extract concentration of 20
151 mg/ml.

152 **2.5.3.1. Susceptibility test**

153 The Muller Hinton (MH) solid medium diffusion method described by Hudzicki (2009)
154 was used to test the sensitivity of microbial strains to extracts of *V. paradoxa* and
155 *P. biglobosa*. A bacterial pre-culture (1 colony in 1 mL of liquid Muller-Hinton) from the
156 previous day was diluted to obtain a turbidity of 0.5 on the McFarland scale (i.e. 10^8
157 CFU/mL) and reduced to 10^6 CFU/mL in sterile distilled water. This bacterial
158 suspension (1000 μ L) was used to flood a Petri dish containing Mueller-Hinton agar
159 medium (Bio Rad, France) (SFM, 2024). Using a punch, 6 mm diameter paper discs
160 were made. The sterile discs were placed under aseptic conditions on plates
161 previously flooded with the bacterial culture. Under aseptic conditions, 30 μ L of the
162 extract to be tested was inoculated onto the discs. For each extract, the experiment
163 was duplicated and a negative control was performed with the solvent instead of the
164 extract. The plates were then left for 15-30 min at room temperature before being
165 incubated at 37 °C in an incubator for 24 h and 48 h (Adesokan et al., 2007). The
166 inhibition diameters were measured using a graduated ruler (Doughari et al., 2007)
167 after incubation times of 24 hours and 48 hours.

168 The sensitivity of the 22 strains to the different extracts was characterised according
169 to the scale of sensitivity of microorganisms to extracts established by Ganfon et al.,
170 (2019) (Table 1).

171 **Table 1:** Standard used for reading the results of antibiogram tests on plant extracts
172 (Ganfon et al., 2019)

Determination of the inhibition zone (Δ)	Degree of microbial susceptibility
---	------------------------------------

$\Delta < 7 \text{ mm}$	Insensitive
$7 \text{ mm} \leq \Delta < 8 \text{ mm}$	Sensitive
$8 \text{ mm} \leq \Delta < 9 \text{ mm}$	Fairly sensitive
$\Delta \geq 9 \text{ mm}$	Highly sensitive

173

174 **2.5.3.2. Determination of the Minimum Inhibitory Concentration (MIC)**

175 The minimum inhibitory concentration (MIC) was determined in this study using the
 176 liquid microdilution method (Semeniuc et al., 2018) with iodo-dinitro-tetrazolium (INT)
 177 as a cell viability indicator. 96-well plates (8 rows of 12 wells) were used. A range of
 178 concentrations (50 to 0.0977 mg/mL) of the extracts were tested on 22 clinical strains
 179 of *Salmonella* sp isolated at the CNHU bacteriology unit from blood and stool
 180 samples. One hundred μL of sterile distilled water was distributed across all wells
 181 (from wells 2 to 10) of the plate. Next, 100 μL of each extract at a concentration of
 182 200 mg/mL was added to wells 1 and 2 of the plate. Successive 1:2 dilutions were
 183 then performed from well 2 to well 10, and 100 μL from the last well was discarded.
 184 In addition, 100 μL of bacterial inoculum (10^6 CFU/mL) was added to all wells 1 to 10.
 185 The plate was then covered and incubated at 37°C for approximately 18 hours. After
 186 incubation, 10 μL of iododinitrotetrazolium (INT) solution was added to the wells and
 187 returned to the incubator at 37°C for 30 minutes. The MIC corresponds to the first
 188 well in which no red/pink colouration is observed, starting from the last well.

189 **2.5.3.3. Determination of the Minimum Bactericidal Concentration (MBC)**

190 The Minimum Bactericidal Concentration (MBC) was determined based on the results
 191 obtained from the MIC determination. To do this, after identifying the MIC, using a
 192 loop, all the other wells starting from the MIC towards the high concentrations were
 193 seeded on Petri dishes containing MH agar medium. The dishes were examined after
 194 24 hours of incubation at 37°C. Upon observation, the concentration of the extract
 195 where no bacterial growth was observed corresponded to the MBC (Moroh et al.,
 196 2008). The antimicrobial effect of the extracts was determined by calculating the
 197 MBC/MIC ratio. If the ratio is less than or equal to 4, the extract is said to be
 198 bactericidal, and if it is greater than 4, the extract is said to be bacteriostatic
 199 (Ouattara et al., 2017).

200 **2.5.3.4. Data processing and statistical analysis**

201 The data obtained were entered into an Excel spreadsheet. The average total
202 anthocyanin content was calculated and expressed as a mean \pm standard deviation.
203 The lipid peroxidation inhibition assay data were processed using GraphPad Prism
204 10, and vertical bar graphs were produced using an ANOVA test coupled with
205 Tukey's post-hoc test.

206 The antibacterial activity data were also analysed using GraphPad Prism 10
207 software, vertical and/or stacked bar graphs were produced for the resistance rates
208 of the clinical *Salmonella* strains studied, and the inhibition diameters of the *V.*
209 *paradoxa* and *P. biglobosa* extracts were expressed as mean \pm standard deviation.
210 The MBC/MIC ratio (MBC/MIC) was calculated to assess the bactericidal and
211 bacteriostatic activity of the extracts on the different strains tested.

212 **3. Results**

213 **3.1. Total Anthocyanin Content (TAC) of stem bark of *V. paradoxa*and *P.*
214 *biglobosa*extracts**

215 The total anthocyanin content was determined for the different extracts and the
216 results obtained are presented in Table 2. Total anthocyanins were only quantifiable
217 in the *V. paradoxa* bark extracts. The *V. paradoxa* extracts have a high content. In
218 ascending order, Vp97, Vp50 and Vp70 contained 31.17 ± 17.13 mg/g plant powder,
219 50.65 ± 36.67 mg/g plant powder and 66.79 ± 8.34 mg/g plant powder, respectively.

220 **Table 2: Total anthocyanin content of the various extracts**

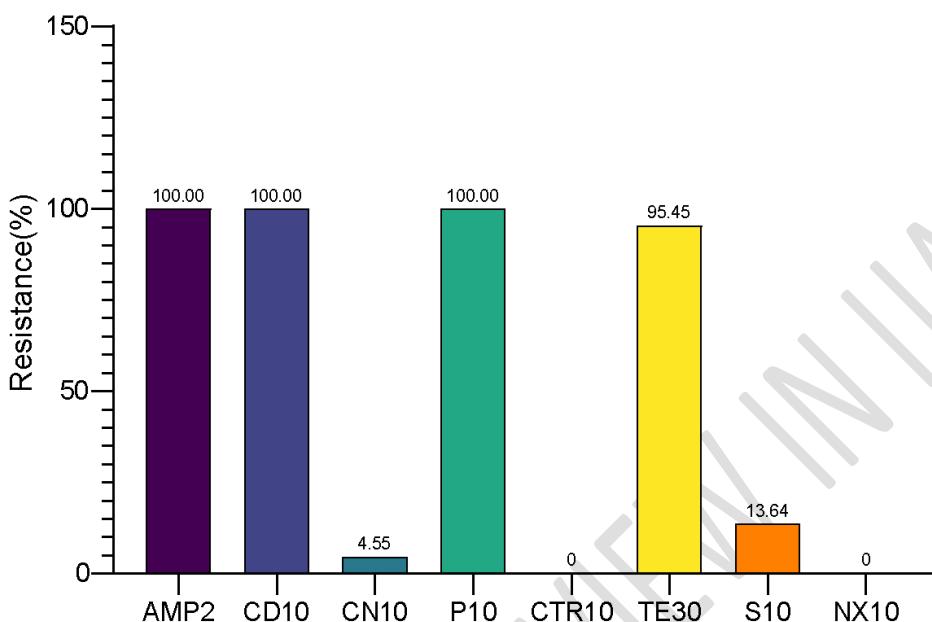
Average TAC (mg/g of extract)					
Vp50	Vp70	Vp97	Pb50	Pb70	Pb97
50.65 ± 36.67	66.79 ± 8.34	31.17 ± 17.13	<LOQ	<LOQ	<LOQ

221 LOQ: Limit of quantification

222
223

224 **3.2. Lipid peroxidation (LPO) [(i); (I')] inhibition of ethanolic extract of stem bark**
 225 **of *V. paradoxa* and *P. biglobosa***

226 Figure 1 shows the results of the lipid peroxidation inhibitory activity of the ethanolic
 227 extracts of *V. paradoxa* and *P. biglobosa* bark. All ethanolic extracts (Vp50, Vp70 and
 228 Vp97) showed a lipid peroxidation inhibitory capacity of 65.46%, 54.43% and
 229 63.68%, respectively, while the Pb50, Pb70 and Pb97 extracts showed lipid
 230 peroxidation inhibitory activity of 32.01%, 41.49% and 43.90%, respectively. The lipid
 231 peroxidation inhibition capacity of ascorbic acid was 38.56% (i). Tukey's one-way
 232 analysis of variance was used to compare the means and revealed that, with the
 233 exception of Vp50 and Vp97, which showed a statistically higher mean inhibition of
 234 lipid peroxidation than ascorbic acid, the inhibitory activity of the other extracts was
 235 statistically identical to that of ascorbic acid (i').

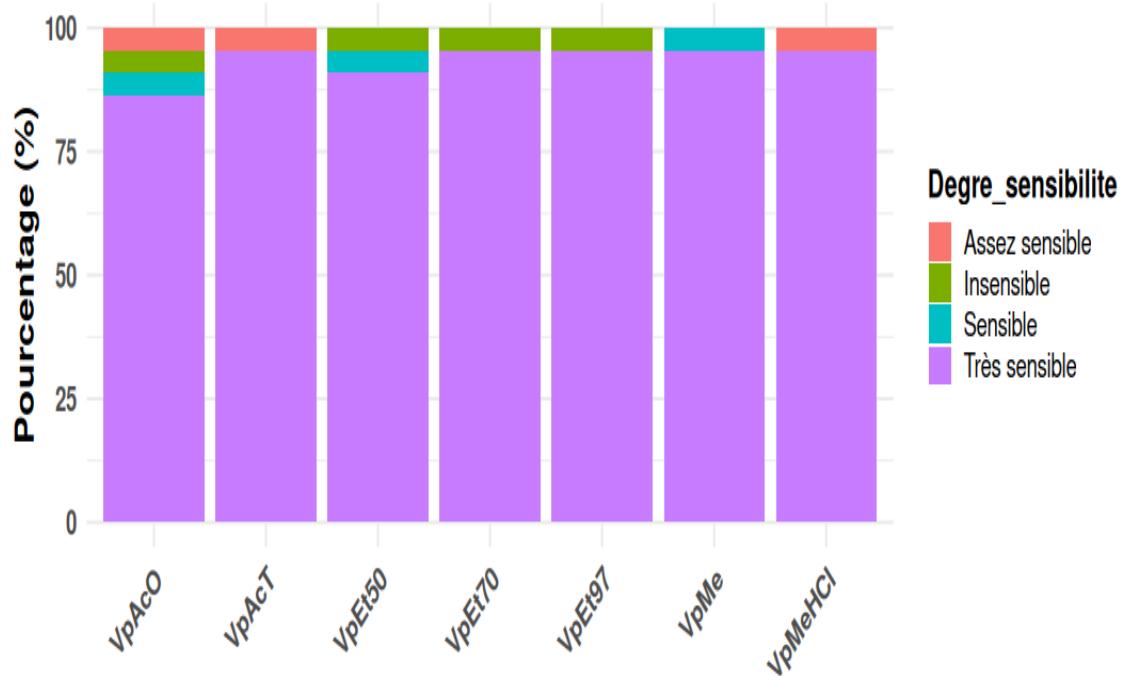

Figure 1:Lipid peroxidation (LPO) [(i); (I')] inhibition of ethanolic extract of stem bark of *V. paradoxa* and *P. biglobosa*

236 **3.3. Prevalence of resistance in the *Salmonella* strains to some commonly used
 237 antibiotics.**

238 Figure 2summarizes the results of the antibiogram test for Ampicillin (AMP2),
 239 Clindamycin (CD10), Gentamicin (CN10), Penicillin (P10), ceftriaxone (CTR10),
 240 tetracycline (TE30), streptomycin (S10), and norfloxacin (NX10) on the *Salmonella*
 241 strains in our study. These results showed that 100% of the strains are resistant to
 242 Ampicillin, Clindamycin and Penicillin, while 95.45% are resistant to Tetracycline. No

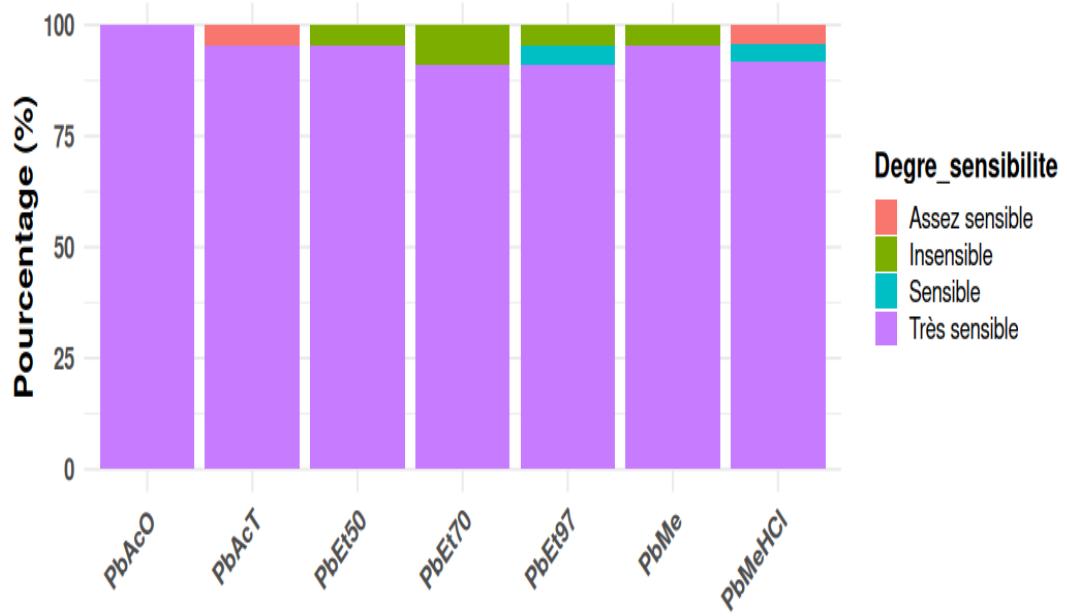
243 resistance was observed to Norfloxacin and Ceftriaxone. Furthermore, very low
244 resistance was observed to Gentamicin (4.55%) and Streptomycin.

245


246 **Figure 2 :** Resistance status of the *Salmonella* strains studied to some commonly
247 used antibiotics

248 **3.4. Antibacterial activity of extracts from *V. paradoxa* and *P. biglobosa* on the**
249 ***Salmonella* strains studied and on some reference strains**

250 **3.4.1. Susceptibility of bacterial strains to extracts of *V. paradoxa* and *P.***
251 ***biglobosa* bark**


252 The results of sensitivity tests on bacterial strains tested with *V. paradoxa* bark
253 extracts are shown in Figure 3. The figure shows the distribution of sensitivity levels
254 (%) of the strains tested with regard to the different *Vitellaria paradoxa* extracts. In
255 general, the 'Very sensitive' category dominates for all extracts, representing
256 between 85 and 95% of responses. This indicates marked antimicrobial activity for all
257 extracts studied. The ethyl acetate and acidified methanol extracts showed a slightly
258 higher proportion of 'Fairly sensitive' strains, suggesting slightly less consistent
259 efficacy compared to the other extracts. A few low percentages of 'Sensitive' and
260 'Insensitive' strains also appear, but sporadically (ethanolic extracts), confirming that
261 resistance remains marginal for all extracts.

262 Methanolic extracts (VpMe, VpMeHCl) and ethyl acetate extracts (VpAcT) showed
263 virtually no insensitive strains, demonstrating high and consistent efficacy.
264 Approximately 4% of strains were insensitive to acetone and ethanol extracts.

Figure 3: Inhibition diameters of *V. paradoxa* extracts on clinical *Salmonella* strains

265 The results of the bacterial strain inhibition test using *P. biglobosa* bark extracts are
266 shown in Figure 4. The figure illustrates the distribution of sensitivity levels (%) of the
267 tested strains to *P. biglobosa* extracts. It can be seen that, as with *P. biglobosa*, the
268 'Very sensitive' category dominates, generally accounting for more than 90% of
269 responses for all extracts. This reveals a very marked and consistent antimicrobial
270 activity of all *P. biglobosa* extracts. Some minor variations appear depending on the
271 extract. The ethyl acetate (PbAcT) and acidified methanol extracts showed a slightly
272 higher percentage of 'Fairly sensitive' and 'Sensitive' strains, indicating lower efficacy
273 for a limited proportion of strains. The ethanolic extracts (PbEt50, PbEt70, PbEt97)
274 and methanolic extract (PbMe) recorded a low proportion of 'sensitive' and
275 'insensitive' strains, which nevertheless remain marginal. Acetone extracts (PbAcO)
276 showed very uniform activity, with an almost total predominance of 'very sensitive'
277 strains. Overall, the variation between sensitivity categories remains very limited for
278 *P. biglobosa* extracts.

Figure 4 : Inhibition diameters of *P. biglobosa* extracts on clinical strains

279 **3.4.2. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal
280 Concentration (MBC)**

281 Table 3 summarizes the minimum and bactericidal concentrations of *V. paradoxa* bark
282 extracts. This table shows that, complementarily, the minimum inhibitory
283 concentration and bactericidal concentration tests confirm the effectiveness of the
284 antibacterial activity of *V. paradoxa* extracts. The extract based on acidified methanol
285 (1% HCl) recorded lower pairs (MIC; MBC) on fewer strains (the *Salmonella* sp8
286 strain). The acetone extract recorded low pairs (MIC; MBC) on the most strains (13
287 different strains, including strains 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 17, 19 and 21).

288 **Table 3:**Minimum inhibitory concentrations(MIC) and Minimum Bactericidal
289 Concentrations (MBC) of *V. paradoxa* extracts.

N° of strains	VpEt97		VpEt70		VpEt50		VpMe		VpMeHCl		VpAcO		VpAcT	
	MIC (mg/mL)	MBC (mg/mL)												
1	25	25	25	>50	12.5	50	25	25	50	>50	25	25	6.25*	12.5*
2	25	50	12.5*	25*	12.5	50	12.5	50	50	>50	12.5	50	6.25	50
3	6.25*	25*	6.25*	25*	12.5*	25*	25	50	50	>50	12.5	25	25	25
4	25	25	25	25	12.5*	25*	6.25*	25*	50	>50	12.5*	25*	12.5	25

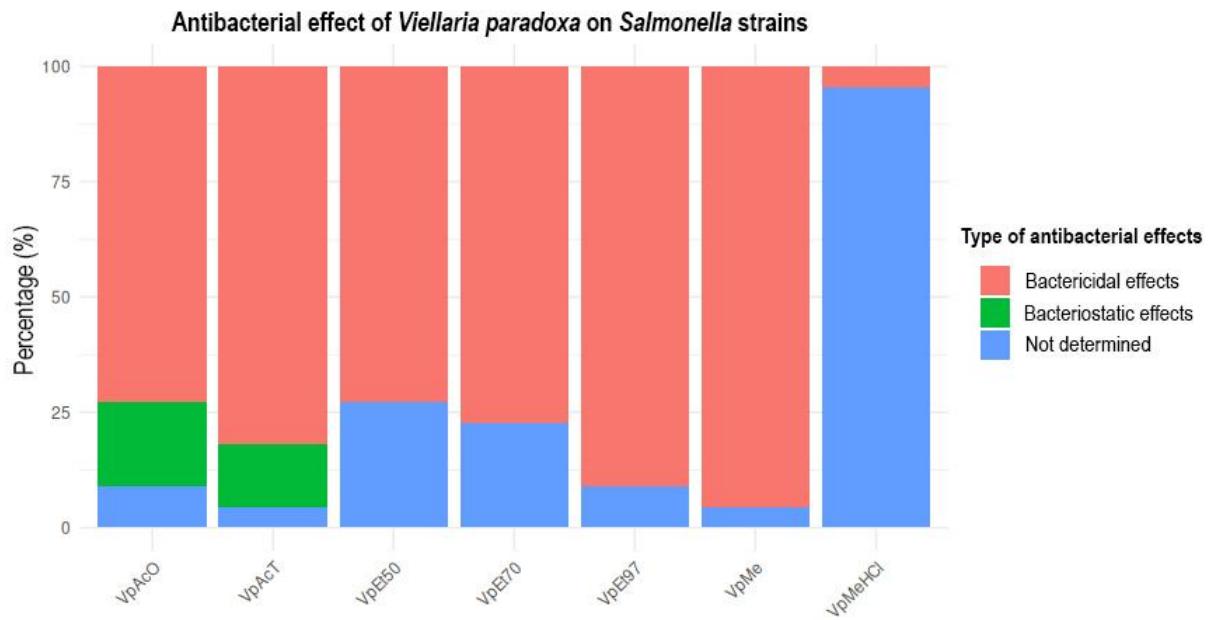
N° of strains	VpEt97		VpEt70		VpEt50		VpMe		VpMeHCl		VpAcO		VpAcT	
	MIC (mg/mL)	MBC (mg/mL)												
5	3.13*	12.5*	3.13*	12.5*	6.25*	12.5*	3.13*	12.5*	25	>50	1.56*	12.5*	3.13*	6.25*
6	25	50	25	50	50	50	25	25	25	>50	12.5*	12.5*	3.12*	6.25*
7	50	50	50	50	50	>50	50	50	50	>50	50	>50	50	>50
8	12.5	50	25	25	12.5	50	12.5	50	50	50	12.5*	25*	6.25*	25*
9	12.5*	25*	12.5	50	6.25*	12.5*	12.5*	25*	50	>50	12.5*	25*	12.5	50
10	12.5*	25*	12.5*	25*	12.5*	25*	6.13*	25*	50	>50	12.5*	25*	12.5	25
11	50	50	50	50	50	50	50	50	25	>50	50	50	6.25*	25*
12	25	25	50	50	50	>50	12.5*	25*	25	>50	6.25*	25*	6.25*	12.5*
13	3.13*	12.5*	6.25*	12.5*	12.5*	25*	3.13*	12.5*	50	>25	1.56*	12.5*	1.56	12.5
14	12.5*	25*	12.5*	25*	12.5*	25*	50	50	25	>25	12.5*	25*	6.25*	12.5*
15	50	50	50	50	50	50	50	50	25	>25	12.5*	12.5*	6.25*	6.25*
16	12.5*	25*	6.25*	25*	50	50	12.5	50	25	>25	3.13	50	3.13*	12.5*
17	12.5*	25*	6.25*	12.5*	25	>50	12.5	50	25	>25	6.25*	25*	12.5	25
18	50	>50	50	>50	50	>50	50	50	25	>25	50	50	25*	25*
19	25	25	12.5*	25*	12.5*	25*	12.5*	25*	25	>25	12.5*	25*	12.5*	25*
20	12.5	50	25	>50	12.5	50	25	25	25	>25	12.5	>50	12.5*	25*
21	50	50	50	>50	50	>50	50	>50	25	>25	0.78*	6.25*	1.56	12.5
22	3.125	>50	6.25	>50	6.25	>50	50	50	25	>25	25	50	25	50

290 *: Relatively low value

291 The minimum inhibitory and bactericidal concentrations of *P. biglobosa* bark extracts
292 are summarized in Table 4. This table shows that each *P. biglobosa* bark extract
293 recorded lower values (MIC; MBC) on at least one bacterial strain compared to the
294 others. The methanolic extract with 1% HCl was the only one to record lower values
295 on only two bacterial strains, *Salmonella* sp3 and 5. The 70% ethanol extract
296 recorded very low values (MIC; MBC) on more strains (12 *Salmonella* strains). The
297 70% ethanol extract was effective against *Salmonella* sp1, 3, 5, 6, 8, 9, 10, 13, 14,
298 15, 16 and 17 strains.

299

300 **Table 4:**Minimum inhibitory concentrations (MIC) and Minimum Bactericidal
 301 Concentrations (MBC) of *P. biglobosa* extracts.


Nº of strains	PbEt97		PbEt70		PbEt50		PbMe		PbMeHCl		PbAcO		PbAcT	
	MIC(mg/mL)	MBC(mg/mL)												
1	12.5	>50	12.5*	25*	12.5*	25*	12.5*	25*	25	>50	25	25	25	>50
2	50	>50	25	50	25	25	12.5	50	25	>50	12.5	50	25	>50
3	12.56	*	25*	12.5*	25*	6.25*	12.5*	6.25*	12.5*	25*	12.5*	25*	12.5	>50
4	12.5*	25*	25	25	12.5*	25*	12.5*	25*	25	50	12.5*	25*	12.5	>50
5	6.25*	25*	0.39*	25*	0.39*	12.5*	0.78*	6.25*	6.25*	25*	1.56*	6.25*	6.25	>50
6	12.5*	25*	12.5*	25*	25	25	12.5*	25*	50	50	12.5*	25*	25	>50
7	50	>50	50	50	50	50	>50	50	50	50	>50	6.25	6.25	>50
8	50	>50	12.5*	25*	12.5*	25*	12.5*	25*	50	>50	12.5*	25*	6.25	>50
9	25	>50	12.5*	25*	12.5*	25*	25	25	10.25	50	12.5*	25*	6.25	>50
10	50	50	12.5*	25*	25	25	12.5*	25*	12.5	>50	12.5*	25*	12.5	>50
11	50	>50	50	50	50	50	50	6.25	>50	50	50	12.5	50	
12	25	>50	25	>50	50	>50	25	>50	25	>50	12.5*	25*	12.5	>50
13	3.13*	12.5*	0.39*	12.5*	3.13*	12.5*	3.13*	25*	50	>25	12.5	50	12.5	>25
14	12.5*	25*	6.25*	12.5*	6.25*	25*	6.25*	12.5*	6.25	>25	12.5	>50	1,56	>25
15	12.5	>50	6.25*	25*	12.5*	25*	6.25*	25*	1,56	>25	12.5*	25*	1,56	>25
16	6.25	50	3.13*	12.5*	12.5	25	25	>50	25	>25	6.25	50	0,78*	1,56*
17	6.25*	25*	6.25*	25*	25	25	6.25	>50	25	25	12.5*	25*	6,25	>25
18	50	>50	50	>50	50	>50	50	50	25	50	50	>50	1,56*	3,13*
19	12.5	>50	12.5	>50	12.5	>50	12.5	>50	25	25	12.5*	25*	3,13*	3,13*
20	12.5*	25*	12.5	50	12.5*	25*	25	>50	25	>25	25	50	1,56*	12,5*
21	6.25	>50	25	50	12.5*	12.5*	50	>50	25	>25	1.56*	12.5*	1,56*	3,13*
22	12.5	>50	3.13	50	3.13	>50	25	>50	25	>25	1.56*	25*	1.56*	3,13*

302 *: Relatively low value

303 **3.4.3. Characterisation of the activity of *V. paradoxa* and *P. biglobosa* bark
 304 extracts on the bacterial strains tested**

305 Figure 5 characterises the antibacterial activity of *V. paradoxa* bark extracts. The
 306 figure shows the percentage distribution of antibacterial effects observed for the
 307 different *Vitellaria paradoxa* bark extracts. Bactericidal and bacteriostatic effects are
 308 observed. However, these effects remain undetermined for certain strains. For most
 309 extracts (ethanolic, ethyl acetate, ethanolic and methanolic), bactericidal effects are
 310 the predominant category, ranging from approximately 72% to over 95%. This
 311 suggests strong lethal antimicrobial activity for most extracts, particularly those
 312 obtained with polar or semi-polar solvents. Bacteriostatic effects are present in only
 313 two extracts: acetone (18.2%) and ethyl acetate (13.6%). The effects remained
 314 undetermined on certain strains for the ethanolic and ethanol extracts (4.5% to

315 27.3%). The acidified methanol extract (VpMeHCl) stands out strongly with 95.5%
316 undetermined effects and only 4.5% bactericidal effects recorded.

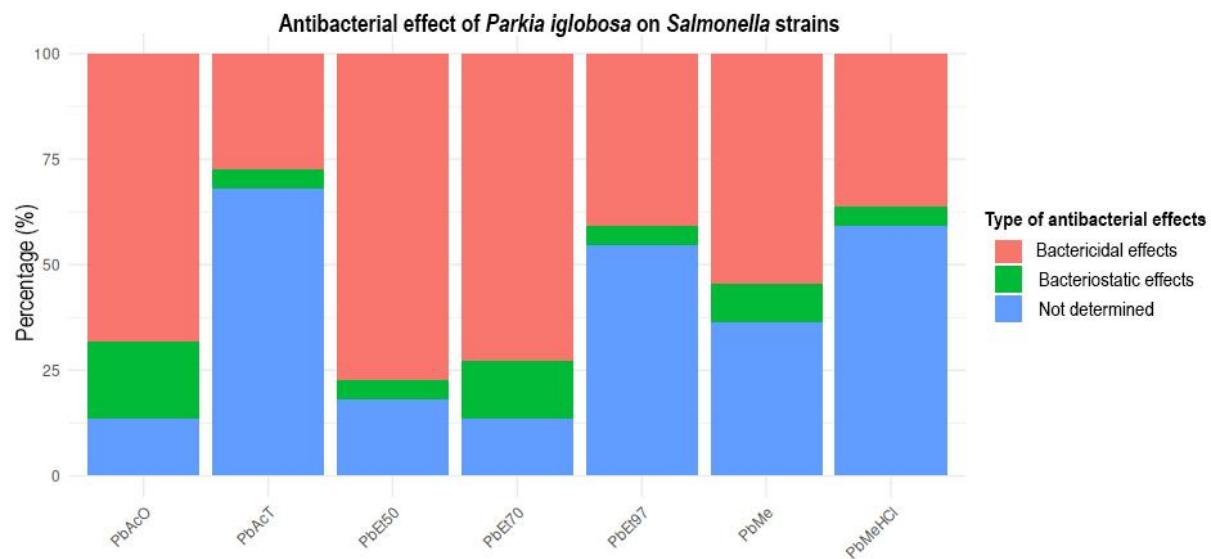


Figure 5:Bactericidal or bacteriostatic effects of *V. paradoxa* extracts on the strains studied.

317

318 The antibacterial effects of *P. biglobosa* bark extracts on strains are shown in Figure
319 6. The figure illustrates the percentage distribution of the antibacterial effects
320 (bactericidal, bacteriostatic) of the different Parkiabiglobosa extracts. The profiles
321 show marked variability depending on the solvents used. The majority of extracts
322 show a significant proportion of bactericidal effects, ranging from 36.4% to 77.3%.
323 The most bactericidal extracts are ethanolic (PbEt50 (77.3%) and PbEt70 (72.7%))
324 and aceton (PbAcO (68.2%)). Bacteriostatic effects remain modest (4.5% to 18.2%)
325 but are recorded for almost all extracts, including acetone (PbAcO (18.2%), ethanol
326 (PbEt70 (13.6%)) and methanol (PbMe (9.1%))). The other extracts show low values
327 (4.5%). Several extracts (ethyl acetate (PbAcT (68.2%)), methanol (PbMeHCl
328 (59.1%)), and ethanol (PbEt97 (54.5%))) have a high proportion of undetermined
329 effects. Highly polar solvents (97% ethanol, acidic methanol) show effects that are
330 more difficult to classify.

331

Figure 6 :Bactericidal or bacteriostatic effects of *P. biglobosa* extracts on the strains studied

332

333

334

335 **Discussion**

336 The determination of total anthocyanin content (TAC) revealed a very contrasting
 337 distribution between the two species studied. Anthocyanins were only quantifiable in
 338 extracts from the bark of *Vitellariaparadoxa*, while all extracts from *Parkiabiglobosa*
 339 had levels below the limit of quantification (<LOQ). This observation suggests a
 340 marked phytochemical specificity of *V. paradoxa* in anthocyanins, possibly linked to
 341 genetic, metabolic or anatomical differences between the two species, particularly in
 342 terms of flavonoid biosynthesis (Yan et al., 2021)

343 Among the extracts of *V. paradoxa*, the anthocyanin content varied significantly
 344 depending on the hydroalcoholic degree of the extraction solvent. The Vp70 extract
 345 had the highest content (66.79 ± 8.34 mg/g of plant powder), followed by Vp50 (50.65
 346 ± 36.67 mg/g) and Vp97 (31.17 ± 17.13 mg/g). This variation highlights the
 347 importance of solvent polarity in the extraction of anthocyanins, hydrophilic
 348 compounds known to be better solubilised in intermediate hydroalcoholic mixtures.
 349 The superior performance of 70% ethanol is consistent with data in the literature
 350 reporting optimal extraction of phenolic compounds in solvents of moderate polarity
 351 (Tourabi et al., 2025; Boeing et al., 2014). In terms of antioxidant activity, all *V.*

352 paradoxa extracts showed a strong ability to inhibit lipid peroxidation, with
353 percentages ranging from 54.43% to 65.46%. In contrast, *P. biglobosa* extracts
354 showed moderate inhibitory activity (32.01–43.90%), lower than that observed for *V.*
355 *paradoxa* extracts. This interspecific difference suggests that the secondary
356 metabolites present in greater quantities in *V. paradoxa*, particularly anthocyanins
357 and other polyphenols, play a decisive role in protecting against lipid oxidation
358 (Tidiane et al., 2021). This would be justified by the ability of anthocyanins to reduce
359 the formation of lipid hydroperoxide, giving the extracts antioxidant potential (Klinger
360 et al., 2024). Notably, the Vp50 and Vp97 extracts showed statistically superior lipid
361 peroxidation inhibitory activity to that of ascorbic acid, used as a reference
362 antioxidant. This result highlights the strong antioxidant potential of these extracts,
363 possibly attributable to a synergistic effect between anthocyanins and other phenolic
364 compounds such as flavonols, tannins or phenolic acids (Joshi et al., 2024). In
365 contrast, the activity of Vp70, although high, was statistically comparable to that of
366 ascorbic acid, suggesting that high anthocyanin content does not necessarily
367 translate into proportionally higher antioxidant activity, highlighting the complexity of
368 interactions between bioactive compounds (Joshi et al., 2022). These results further
369 confirm the antioxidant potential of *V. paradoxa* and *P. biglobosa* bark extracts
370 previously reported for the synthetic radicals DPPH, ABTS, FRAP and
371 phosphomolybdate (Dangnon et al., 2025). Overall, these results indicate that *V.*
372 *paradoxa* bark extracts are a promising source of natural antioxidant compounds,
373 with efficacy sometimes superior to that of ascorbic acid. However, further studies,
374 including structural identification of anthocyanins, evaluation of other phenolic
375 classes and in vivo trials, would be necessary to better understand the underlying
376 mechanisms of action and confirm their therapeutic potential.

377 The results of the antibiogram tests show a high prevalence of resistance to
378 conventional antibiotics among the isolated *Salmonella* strains. Total resistance
379 (100%) was observed to Ampicillin, Clindamycin and Penicillin, followed by almost
380 total resistance (95.45%) to Tetracycline. These observations are consistent with
381 numerous previous studies that report an alarming rise in resistance to commonly
382 used antibiotics, particularly in resource-limited countries, due to their excessive or
383 inappropriate use. In Nigeria, for example, multidrug resistance has been reported in
384 *Salmonella* strains isolated from blood samples (Akinkunmi et al., 2023). The same

385 was true for strains isolated in Bangladesh from blood samples (Ghurnee et al., 2021;
386 Mina et al., 2023). High levels of antimicrobial resistance have been reported among
387 Gram-negative bacteria against commonly used antibiotics (Ombelet et al., 2022). In
388 contrast, no resistance was noted to Norfloxacin and Ceftriaxone, while moderate or
389 low resistance was noted to gentamicin (4.55%) and streptomycin, reflecting a certain
390 residual efficacy of gentamicin and streptomycin and indicating that these, in addition
391 to norfloxacin and ceftriaxone, remain among the therapeutic options that are still
392 effective against these strains. Faced with this growing problem of resistance, the
393 use of natural products with antimicrobial potential, such as plant extracts, is a
394 promising alternative.

395 *V. paradoxa* bark extracts showed significant antibacterial activity against the strains
396 tested, with inhibition zone diameters of up to 21.5 ± 3.5 mm. Ethanolic extracts (50%
397 and 70%) proved to be particularly effective, as did methanol-based extracts with 1%
398 HCl. The 70% ethanolic extract showed maximum activity against *S. aureus*
399 ATCC29213, while the 50% extract stood out for its action against certain strains of
400 *Salmonella* sp. The methanol extract with 1% HCl showed broad efficacy, inhibiting
401 several strains with significant inhibition diameters, suggesting that acidification of
402 methanol as an extraction solvent for *Vitellariaparadoxa* bark improves the extraction
403 or release of antibacterial active ingredients. Bark and leaf extracts are reported to
404 have antibacterial activity on clinical isolates of *Bacillus cereus*, *Pseudomonas*
405 *aeruginosa*, *Candida albicans*, *Escherichia coli*, and *Salmonella typhi*. Compared to
406 the leaves, the bark extract showed the highest activity with the largest inhibition
407 zone of 15.5 mm (Lawrence et al., 2023). The largest inhibition diameter reported is
408 well below the 21.5 ± 3.5 mm reported in our study for *V. paradoxa* bark. However,
409 inhibition diameters of 18 to 24 mm have been reported for *V. paradoxa* bark extracts
410 on *Serpulalacrymans*, *Sclerotiumrolfsii*, *Aspergillusfumigatus*, *Fomitopsisspinicoca*,
411 *Phaeolusschweinitzii*, *Rhizopus* spp., *Coniophoraputeana*, *Gloeophyllumsepiarium*,
412 and *Fibroporiavaillantii* (Ekhuemelo et al., 2021). Furthermore, like *Salmonellatyphi*
413 strains, *V. paradoxa* extracts inhibited the growth of *Burholderiacepacia* and
414 *Staphylococcus aureus* (Abdulazeez et al., 2023). The evaluation of minimum
415 inhibitory concentrations (MIC) and bactericidal concentrations (MBC) confirmed the
416 antibacterial activity of the extracts. In *V. paradoxa*, the majority of extracts had
417 MBC/MIC ratios ≤ 4 , which, according to the standard classification, indicates

418 bactericidal activity. The antibacterial molecules are believed to be distributed
419 throughout the seeds of *V. paradoxa*, whose oil extract can induce inhibition ranging
420 from 6 to 12 mm against *Staphylococcus aureus*, *Pseudomonas aeruginosa*,
421 *Klebsiella pneumonia*, *Escherichia coli*, *Streptococcus pyogenes*, and *Proteus*
422 *mirabilis* with MICs and MBCs of 25 to 100 µg/ml and 50 to 100 µg/ml, respectively
423 (Adegoke et al., 2024). The inhibitory and bactericidal concentrations reported in the
424 microgram range are considerably low compared to those in the milligram range in
425 our study.

426 *P. biglobosa* bark extracts also demonstrated antibacterial activity, with inhibition
427 diameters of up to 21 ± 2 mm. As observed for *V. paradoxa*, ethanolic extracts at
428 different concentrations, as well as methanolic and ethyl acetate extracts, were active
429 against several *Salmonella* strains, with varying inhibition profiles. The 70% ethanol
430 and methanol extracts each showed increased efficacy on a higher number of
431 strains, demonstrating their broad spectrum of action. Ihuma et al. (2022) also
432 reported antibacterial activity with inhibition diameters of 12.5 mm and 6.5 mm
433 against *S. aureus* and *E. coli*, respectively. They recorded a higher MIC of 100 mg/ml
434 (Ihuma et al., 2022), which is very high compared to the 50 mg/ml in our study.
435 Similar results were observed in *P. biglobosa*. All extracts showed bactericidal activity
436 on at least one strain, with MBC/MIC ratios ranging from 0.5 to 4. The 70% ethanol
437 and methanol extracts were the most effective in terms of the number of sensitive
438 strains with low MIC/MBC values. The methanolic extract with 1% HCl showed more
439 limited activity, effectively inhibiting only one strain. The various organs of *P.*
440 *biglobosa* are certainly reservoirs of antibacterial molecules. Indeed, the antibacterial
441 activity of *P. biglobosa* fruit peel extracts has been reported in previous studies,
442 particularly against *Pseudomonas aeruginosa* and *Escherichia coli*, with a minimum
443 inhibitory concentration of 1.25 mg/mL (Bothon et al., 2023).

444 Overall, the extracts tested showed notable efficacy against multi-resistant strains of
445 *Salmonella*. This observation supports their potential as alternative antibacterial
446 agents. The mechanism of action of the extracts was not elucidated in this study, but
447 it could involve disruption of the bacterial membrane, inhibition of protein or nucleic
448 acid synthesis, or interference with cell communication (quorum sensing), which
449 warrants further investigation. These results justify not only the pharmacological
450 evaluation of *V. paradoxa* and *P. biglobosa*, but also the need for further chemical

451 characterization of the active fractions and assessment of their toxicity, bioavailability,
452 and mechanisms of action.

453 **Conclusion**

454 This study highlights the significant antioxidant and antibacterial potential of extracts
455 from the bark of *Vitellariaparadoxa* and *Parkiabiglobosa*, in a context marked by the
456 worrying increase in antibiotic resistance. Phytochemical analysis revealed marked
457 interspecific specificity, characterised by the exclusive and high presence of
458 anthocyanins in *V. paradoxa* extracts, whereas these were not quantifiable in *P.*
459 *biglobosa*. This particularity gives *V. paradoxa* a superior antioxidant capacity,
460 reflected in a high inhibition of lipid peroxidation, sometimes superior to that of
461 ascorbic acid. However, the absence of a strictly proportional correlation between
462 anthocyanin content and antioxidant activity highlights the complexity of the
463 synergistic interactions between the different phenolic metabolites. In terms of
464 antibacterial activity, extracts from both species showed significant activity against
465 multi-resistant strains of *Salmonella*. Extracts from *V. paradoxa* were particularly
466 notable for their predominantly bactericidal profiles and high inhibition diameters,
467 while those from *P. biglobosa* showed a broad spectrum of activity, depending on the
468 extraction solvent. These results confirm the decisive role of extraction conditions in
469 the release of active ingredients. Overall, these data support the pharmacological
470 value of *V. paradoxa* and *P. biglobosa* as promising sources of natural antioxidant
471 and antibacterial compounds. Nevertheless, further studies on the structural
472 identification of bioactive compounds, the evaluation of their toxicity, bioavailability
473 and mechanisms of action *in vivo* remain essential in order to confirm their
474 therapeutic potential and future integration into alternative strategies for combating
475 oxidative stress and antimicrobial resistance.

476

477 **References**

478 Al-Kufaishi, A. M. A., & Al-Musawi, N. J. (2025). Oxidative Stress and Related
479 Diseases: A Comprehensive review. *Journal of Preventive Diagnostic and*
480 *Treatment Strategies in Medicine*, 4(2), 65–70.
481 https://doi.org/10.4103/jpdtsm.jpdtsm_21_25

482 Boeing, J. S., Barizão, É. O., Silva, B. C. E., Montanher, P. F., De Cinque Almeida,
483 V., & Visentainer, J. V. (2014). Evaluation of solvent effect on the extraction of
484 phenolic compounds and antioxidant capacities from the berries: application of
485 principal component analysis. *Chemistry Central Journal*, 8(1), 48.
486 <https://doi.org/10.1186/s13065-014-0048-1>

487 Compaoré, H., Kpoda, D. S., Samandoulougou, S., Ouattara, A., Kambiré, D.,
488 Tientrébéogo, P. J., Paré, A., Ouattara, C. a. T., Hagrétou, S. L., & Ouattara, S.
489 A. (2024). Assessment of the Antimicrobial Activities of *Lanneamicrocarpa*,
490 *Parkiabiglobosa*, and *Vitellariaparadoxa* Barks in Burkina Faso. *International
491 Journal of Current Microbiology and Applied Sciences*, 13(8), 231–237.
492 <https://doi.org/10.20546/ijcmas.2024.1308.028>

493 Dangnon, B., Dah-Nouvlessounon, D., Hoteyi, S. M. I., Abdelrahman, A., Mahamat,
494 M. A., Chabi, N. W., Haziz, S., Baba-Moussa, F., Adjanohoun, A., & Baba-
495 Moussa, L. (2024). Gastrointestinal ulcers treatment: plants and recipes used
496 by herbalists of Abomey-Calavi and Cotonou districts, southern Benin.
497 *American Journal of Plant Sciences*, 15(09), 699–725.
498 <https://doi.org/10.4236/ajps.2024.159046>

499 Dangnon, B., Dah-Nouvlessounon, D., Hoteyi, S. M. I., Sina, H., Tomescu, J. A.,
500 Akpo, K. J., Sangare-Oumar, M. M., Adjanohoun, A., Babalola, O. O.,
501 Vamanu, E., & Baba-Moussa, L. (2025). Gastroprotective, Antioxidant, Anti-
502 Inflammatory, and Toxicological Evaluation of Stem Bark Extracts of
503 *Vitellariaparadoxa* and *Parkiabiglobosa*. *Pharmaceuticals*, 18(8), 1184.
504 <https://doi.org/10.3390/ph18081184>

505 Deguenon, E., Dougnon, V., Lozes, E., Maman, N., Agbankpe, J., Abdel-Massih, R.
506 M., Djegui, F., Baba-Moussa, L., & Dougnon, J. (2019). Resistance and
507 virulence determinants of faecal *Salmonella* spp. isolated from slaughter
508 animals in Benin. *BMC Research Notes*, 12(1), 317.
509 <https://doi.org/10.1186/s13104-019-4341-x>

510 Institute for Health Metrics and Evaluation. (2024). *The Lancet: more than 39 million
511 deaths from antibiotic-resistant infections estimated between now and 2050,
512 suggests first global analysis*. Retrieved December 25, 2025, from
513 [https://www.healthdata.org/news-events/newsroom/news-releases/lancet-
more-39-million-deaths-antibiotic-resistant-infections](https://www.healthdata.org/news-events/newsroom/news-releases/lancet-
514 more-39-million-deaths-antibiotic-resistant-infections)

515 Jeyaraj, E. J., Gamage, G. C. V., Cintrat, J., & Choo, W. S. (2023). Acylated and non-
516 acylated anthocyanins as antibacterial and antibiofilm agents. *Discover Food*,
517 3(1). <https://doi.org/10.1007/s44187-023-00062-8>

518 Joshi, T., Agrawal, K., Mangal, M., Deepa, P. R., & Sharma, P. K. (2024).
519 Measurement of antioxidant synergy between phenolic bioactives in traditional
520 food combinations (legume/non-legume/fruit) of (semi) arid regions: insights
521 into the development of sustainable functional foods. *Discover Food*, 4(1).
522 <https://doi.org/10.1007/s44187-024-00082-y>

523 Joshi, T., Deepa, P. R., & Sharma, P. K. (2022). Effect of different proportions of
524 phenolics on antioxidant potential: Pointers for Bioactive Synergy/Antagonism
525 in Foods and Nutraceuticals. *Proceedings of the National Academy of
526 Sciences India Section B Biological Sciences*, 92(4), 939–946.
527 <https://doi.org/10.1007/s40011-022-01396-6>

528 Klinger, E., Salminen, H., Bause, K., & Weiss, J. (2024). Interactions between lipid
529 oxidation and anthocyanins from black carrots in ω-3 fatty acid-rich flaxseed
530 oil-in-water emulsions. *European Food Research and Technology*, 250(12),
531 2973–2987. <https://doi.org/10.1007/s00217-024-04604-x>

532 Lakshmikanthan, M., Muthu, S., Krishnan, K., Altemimi, A. B., Haider, N. N.,
533 Govindan, L., Selvakumari, J., Alkanan, Z., Cacciola, F., & Francis, Y. M.
534 (2024). A comprehensive review on anthocyanin-rich foods: Insights into
535 extraction, medicinal potential, and sustainable applications. *Journal of
536 Agriculture and Food Research*, 17, 101245.
537 <https://doi.org/10.1016/j.jafr.2024.101245>

538 Lee, J., Durst, R. W., Wrolstad, R. E., Eisele, T., Giusti, M. M., Hach, J., Hofsommer,
539 H., Koswig, S., Krueger, D. A., Kupina, S., Martin, S. K., Martinsen, B. K.,
540 Miller, T. C., Paquette, F., Ryabkova, A., Skrede, G., Trenn, U., & Wightman,
541 J. D. (2005). Determination of total monomeric anthocyanin pigment content of
542 fruit juices, beverages, natural colorants, and wines by the pH differential
543 method: collaborative study. *Journal of AOAC International*, 88(5), 1269–1278.
544 <https://doi.org/10.1093/jaoac/88.5.1269>

545 Lv, P., Pei, Y., Jiang, Y., Wang, Q., Liu, Y., Qu, M., Xu, X., Chen, M., & Wang, Y.
546 (2025). Genomic insights into antibiotic-resistant non-typhoidal *Salmonella*
547 isolates from outpatients in Minhang District in Shanghai. *Communications
548 Medicine*, 5(1), 228. <https://doi.org/10.1038/s43856-025-00950-3>

549 Naghavi, M., Vollset, S. E., Ikuta, K. S., Swetschinski, L. R., Gray, A. P., Wool, E. E.,
550 Aguilar, G. R., Mestrovic, T., Smith, G., Han, C., Hsu, R. L., Chalek, J., Araki,
551 D. T., Chung, E., Raggi, C., Hayoon, A. G., Weaver, N. D., Lindstedt, P. A.,
552 Smith, A. E., . . . Aziz, S. (2024). Global burden of bacterial antimicrobial
553 resistance 1990–2021: a systematic analysis with forecasts to 2050. *The
554 Lancet*, 404(10459), 1199–1226. [https://doi.org/10.1016/s0140-6736\(24\)01867-1](https://doi.org/10.1016/s0140-6736(24)01867-1)

556 Nagpala, M. J. M., Mora, J. F. B., Pavon, R. D. N., & Rivera, W. L. (2025). Genomic
557 characterization of antimicrobial-resistant *Salmonella enterica* in chicken meat
558 from wet markets in Metro Manila, Philippines. *Frontiers in Microbiology*, 16,
559 1496685. <https://doi.org/10.3389/fmicb.2025.1496685>

560 Ouattara, N. G. A., Justine, N. T. W., Tidiane, N. K., Pascal, N. B. A., Faustin, N. K.
561 A., Abdoulaye, N. T., Claude, N. K. a. L., Donourou, N. D., & Réné, N. S. Y.
562 (2021). Phytochemical screening and evaluation of antioxidant activity of the
563 stem bark of *Anacardiumoccidentale* L. and *Vitellariaparadoxa* C.F. Gaertn,
564 two medicinal plants from Poro region (Northern of Côte d'Ivoire). *International
565 Journal of Science and Technology Research Archive*, 1(2), 022–028.
566 <https://doi.org/10.53771/ijstra.2021.1.2.0042>

567 Sadowska-Bartosz, I., & Bartosz, G. (2024). Antioxidant activity of anthocyanins and
568 anthocyanidins: A Critical review. *International Journal of Molecular Sciences*,
569 25(22), 12001. <https://doi.org/10.3390/ijms252212001>

570 Saleh, M. S. M., Jalil, J., Zainalabidin, S., Asmadi, A. Y., Mustafa, N. H., & Kamisah,
571 Y. (2021). Genus Parkia: phytochemical, medicinal uses, and pharmacological
572 properties. *International Journal of Molecular Sciences*, 22(2), 618.
573 <https://doi.org/10.3390/ijms22020618>

574 Sarkodie-Addo, P., Aglomasa, B. C., & Donkor, E. S. (2025). Prevalence and
575 antimicrobial resistance patterns of nontyphoidal *Salmonella* in Ghana: a
576 systematic review and meta-analysis. *Tropical Medicine and Health*, 53(1), 91.
577 <https://doi.org/10.1186/s41182-025-00731-7>

578 Silva, C., Calva, E., & Maloy, S. (2014). One Health and Food-Borne Disease:
579 *Salmonella* Transmission between Humans, Animals, and Plants. *Microbiology
580 Spectrum*, 2(1), OH-0020. <https://doi.org/10.1128/microbiolspec.oh-0020-2013>

581 Song, S., La, T., Kim, T., Kim, J., Shin, E., Temuujin, U., Hyeon, J., Lee, D., & Lee, S.
582 (2025). Whole-genome sequencing analysis of *Salmonellaenterica* serotype

583 Enteritidis isolated from poultry sources in Mongolia. *Frontiers in Veterinary*
584 *Science*, 12, 1595674. <https://doi.org/10.3389/fvets.2025.1595674>

585 Taghavi, T., Patel, H., Akande, O. E., & Galam, D. C. A. (2022). Total anthocyanin
586 content of strawberry and the profile changes by extraction methods and
587 sample processing. *Foods*, 11(8), 1072.
588 <https://doi.org/10.3390/foods11081072>

589 Tidiane, K., Ouattara, G. A., Monon, K., Abdoulaye, T., & Karamoko, O. (2021). Etude
590 Phytochimique et Activité Antioxydante des Extraits D'écorces de Tiges de
591 *VitellariaParadoxa*C.F.Gaertn, Une Plante Médicinale Utilisée au Nord de la
592 Côte d'Ivoire. *European Scientific Journal ESJ*, 17(34).
593 <https://doi.org/10.19044/esj.2021.v17n34p241>

594 Tourabi, M., Faiz, K., Ezzouggari, R., Louasté, B., Merzouki, M., Daelbait, M.,
595 Bourhia, M., Almaary, K. S., Siddique, F., Lyoussi, B., & Derwich, E. (2025). Optimization of extraction process and solvent polarities to enhance the
596 recovery of phytochemical compounds, nutritional content, and biofunctional
597 properties of *Mentha longifolia* L. extracts. *Bioresources and Bioprocessing*,
598 12(1), 24. <https://doi.org/10.1186/s40643-025-00859-8>

600 Ugbo, E., Effendi, M. H., Ugbo, A., Unegbu, V. N., Unegbu, V., Raharjo, H.,
601 Tyasningsih, W., Tang, J. Y. H., Budiastuti, B., & Rehman, S. (2025). Public
602 health impact of multidrug-resistant *Salmonella enterica* serovars identified via
603 MALDI-TOF MS in cattle from Abakaliki abattoirs, Nigeria *Open Veterinary*
604 *Journal*, 15(9), 4393. <https://doi.org/10.5455/ovj.2025.v15.i9.46>

605 Vamanu, E., & Nita, S. (2012). Antioxidant Capacity and the Correlation with Major
606 Phenolic Compounds, Anthocyanin, and Tocopherol Content in Various
607 Extracts from the Wild Edible *Boletus edulis* Mushroom. *BioMed Research*
608 *International*, 2013, 1–11. <https://doi.org/10.1155/2013/313905>

609 Wang, Y., Liu, Y., Lyu, N., Li, Z., Ma, S., Cao, D., Pan, Y., Hu, Y., Huang, H., Gao, G.
610 F., Xu, X., & Zhu, B. (2022). The temporal dynamics of antimicrobial-resistant
611 *Salmonella enterica* and predominant serovars in China. *National Science*
612 *Review*, 10(3), nwac269. <https://doi.org/10.1093/nsr/nwac269>

613 Wang, Y., Xu, X., Jia, S., Qu, M., Pei, Y., Qiu, S., Zhang, J., Liu, Y., Ma, S., Lyu, N.,
614 Hu, Y., Li, J., Zhang, E., Wan, B., Zhu, B., & Gao, G. F. (2025). A global atlas
615 and drivers of antimicrobial resistance in *Salmonella* during 1900–2023. *Nature*
616 *Communications*, 16(1), 4611. <https://doi.org/10.1038/s41467-025-59758-3>

617 World Health Organization: WHO. (2025). *WHO warns of widespread resistance to*
618 *common antibiotics worldwide*. Retrieved December 25, 2025, from
619 [https://www.who.int/fr/news/item/13-10-2025-who-warns-of-widespread-](https://www.who.int/fr/news/item/13-10-2025-who-warns-of-widespread-resistance-to-common-antibiotics-worldwide)
620 *resistance-to-common-antibiotics-worldwide*

621 Yan, H., Pei, X., Zhang, H., Li, X., Zhang, X., Zhao, M., Chiang, V. L., Sederoff, R. R.,
622 & Zhao, X. (2021). MYB-Mediated Regulation of Anthocyanin Biosynthesis.
623 *International Journal of Molecular Sciences*, 22(6), 3103.
624 <https://doi.org/10.3390/ijms22063103>

625 Abdulazeez, I. A., Enengedi, I. S., & Isaac, I. O. (2023). Chemical composition, in
626 vitro antioxidant and antimicrobial activities of methanol extracts of different
627 parts of *Vitellariaparadoxa*. *Researchers Journal of Science and Technology*,
628 3(2), 31-54.

629 Adesokan, A. A., Akanji, A. M., & Yakubu, M. (2007). Antibacterial potentials of
630 aqueous extract of *Enantiachlorantha* stem bark. *African Journal of
631 Biotechnology*, 6(22), 2502-2505. <https://doi.org/10.5897/AJB2007.000-2397>

632 Akinkunmi, F., Ajoseh, S., Fakorede, C., Abegunrin, R., Salami, W., Lawal, A.,
633 & Akinyemi, K. (2023). Prevalence of *Salmonella* Bloodstream Infection and
634 Antimicrobial Resistance in Lagos, Nigeria. *Infection Epidemiology and
635 Microbiology*, 9(1), 1-14. <https://doi.org/10.52547/tem.9.1.1>

636 Bothon, F. T. D., Atindéhou, M. M., Koudoro, Y. A., Lagnika, L., & Avlessi, F. (2023).
637 <i>Parkiabiglobosa</i> Fruit Husks : Phytochemistry, Antibacterial,
638 and Free Radical Scavenging Activities. *American Journal of Plant Sciences*,
639 14(02), 150-161. <https://doi.org/10.4236/ajps.2023.142012>

640 Doughari, J., Elmahmood, A., & Manzara, S. (2007). Studies on the antibacterial
641 activity of root extracts of *Carica papaya* L. *African Journal of Microbiology
642 Research*, 1(3), 037-041.

643 Ekhuemelo, D. O., Anyam, J. V., & Ekhuemelo, C. (2021). Antimicrobial Efficacy of
644 *Vitellariaparadoxa* fractions and compounds on some wood Fungi and
645 Bacteria. *Nigerian Journal of Biotechnology*, 38(1), 1-13.
646 <https://doi.org/10.4314/njb.v38i1.1>

647 Ghurnee, O., Ghosh, A. K., Abony, M., Akhter Aurin, S., Fatema, A. N., Banik, A., &
648 Ahmed, Z. (2021). Isolation of Multi-Drug Resistant (MDR) and Extensively
649 Drug Resistant (XDR) *Salmonellatyphi* from Blood Samples of Patients

650 Attending Tertiary Medical Centre in Dhaka City, Bangladesh. Advances in
651 Microbiology, 11(09), 488-498. <https://doi.org/10.4236/aim.2021.119036>

652 Hudzicki, J. (2009). Kirby-Bauer disk diffusion susceptibility test protocol. American
653 society for microbiology, 15(1), 1-23.

654 Ihuma, J. O., Kure, S., & Famojuro, T. I. (2022). Antimicrobial Effects of the Stem
655 Bark Extracts of *Parkia biglobosa* (Jacq.) G. Don on *Escherichia coli* and
656 *Staphylococcus aureus*. 16(3), 9. <https://doi.org/10.9734/AJOB/2022/v16i3301>

657 Lawrence, A. A., Oliver, A., & Abdul-Wahab, M. I. (2023). Antimicrobial activities of
658 the extract of shea tree (*Vitellaria paradoxa* Gaertn. F.) leaf and bark on some
659 selected clinical pathogens. Journal of Medicinal Plants Research, 17(12),
660 338-344. <https://doi.org/10.5897/jmpr2023.7329>

661 Mina, S. A., Hasan, M. Z., Hossain, A., Barua, A., Mirjada, M. R., & Chowdhury, A.
662 (2023). The Prevalence of Multi-Drug Resistant *Salmonella typhi* Isolated
663 From Blood Sample. Microbiol Insights, 16, 11786361221150760.
664 <https://doi.org/10.1177/11786361221150760>

665 Ombelet, S., Kpossou, G., Kotchare, C., Agbobli, E., Sogbo, F., Massou, F., Lagrou,
666 K., Barbe, B., Affolabi, D., & Jacobs, J. (2022). Blood culture surveillance in a
667 secondary care hospital in Benin: Epidemiology of bloodstream infection
668 pathogens and antimicrobial resistance. BMC Infect Dis, 22(1), 119.
669 <https://doi.org/10.1186/s12879-022-07077-z>

670 Ouattara, L. H., Kabran, G. R. M., Guessennd, N. K., Konan, K. F., Mamyrbekova-
671 Bekro, J. A., & BEKRO, Y.-A. (2017). Activités antibactériennes in vitro des
672 extraits d'écorces de racines de *Mezoneuron benthamianum* et de tiges de
673 *Paullinia pinnata*: 2 plantes de la pharmacopée ivoirienne. Pharmacopée et
674 médecine traditionnelle africaine, 18, 31-40.

675 Phrompittayarat, W., Putalun, W., Tanaka, H., Jetiyanon, K., Wittaya-areekul, S.,
676 & Ingkaninan, K. (2007). Comparison of Various Extraction Methods of
677 *Bacopamonnieri*. 15, 29-34.

678 Semeniuc, C. A., Socaci, M.-I., Socaci, S. A., Mureşan, V., Fogarasi, M., & Rotar, A.
679 M. (2018). Chemometric Comparison and Classification of Some Essential
680 Oils Extracted from Plants Belonging to Apiaceae and Lamiaceae Families
681 Based on Their Chemical Composition and Biological Activities. Molecules,
682 23(9), 2261. <https://doi.org/10.3390/molecules23092261>

683 SFM. (2024). Comité de l'antibiogramme de la Société Française de Microbiologie (p.
684 177). www.sfm-microbiologie.org

685 Institute for Health Metrics and Evaluation. (2024, September 16). The Lancet: More
686 than 39 million deaths from antibiotic-resistant infections estimated between
687 now and 2050, suggests first global analysis. HealthData.org.
688 [https://www.healthdata.org/news-events/newsroom/news-releases/lancet-](https://www.healthdata.org/news-events/newsroom/news-releases/lancet-more-39-million-deaths-antibiotic-resistant-infections)
689 more-39-million-deaths-antibiotic-resistant-infections

690 Ganfon, H., Houvoheissou, J. P., Assanhou, A. G., Bankole, H. S., & Gbenou, J.
691 (2019). Antibacterial activity of ethanolic extract and fractions of
692 *Anogeissus leiocarpa* (Combretaceae). International Journal of Biological and
693 Chemical Sciences, 13(2), 643–651

694