

INFLUENCE OF TREATED EFFLUENT FROM THE QUILOMOSSO WWTP (UÍGE, ANGOLA) ON THE QUALITY OF THE BOLONGONZO RIVER BASED ON COD AND BOD INDICATORS.

Manuscript Info

..... **Manuscript History**

Received: xxxxxxxxxxxxxxxxx

Final Accepted: xxxxxxxxxxxxxxxx

Published: xxxxxxxxxxxxxxxxx

Key words:-

Wastewater management; Biochemical Oxygen Demand (BOD₅); Chemical Oxygen Demand (COD); Environmental sustainability.

Abstract

.....
This study examined wastewater management in the city of Uíge, focusing on the Quilomosso area, with the aim of assessing the effectiveness of the existing treatment system and the environmental impacts of effluent discharge into the Bolongonzo River. Analyses of parameters such as Biochemical Oxygen Demand (BOD₅) and Chemical Oxygen Demand (COD) showed that at the inlet, average values were 470 mg/L for BOD₅ and 1558 mg/L for COD, which is expected due to the high pollutant loads in the raw water. After the decantation stage, at the decanter outlet, the parameters dropped to 5 mg/L for BOD₅ and 48 mg/L for COD, indicating significant efficiency in solid separation. Finally, at the point of discharge into the river, the measured values were 3 mg/L for BOD₅ and 41 mg/L for COD, both within the limits set by Angola's Presidential Decree 261/11. It was recognised that the final effluent disposal has a regulated impact but could be optimised to align with environmental sustainability principles. Based on these results, suggestions included improving maintenance of the treatment infrastructure and enhancing effluent quality monitoring.

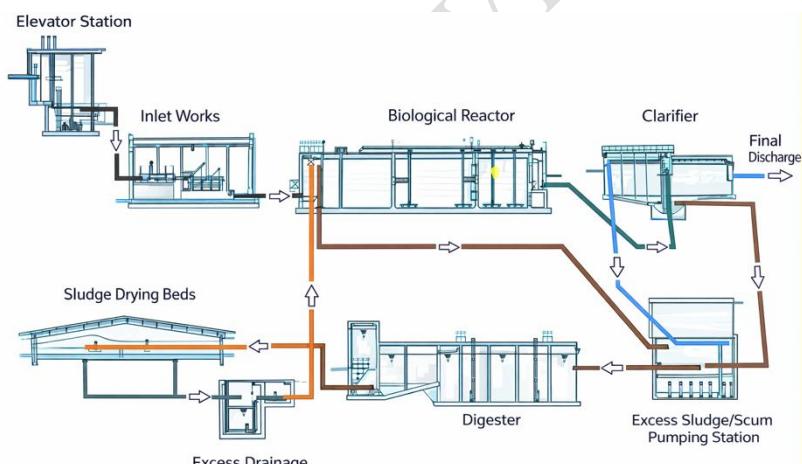
Copy Right, IJAR, 2019,. All rights reserved.

1
2

Introduction:-

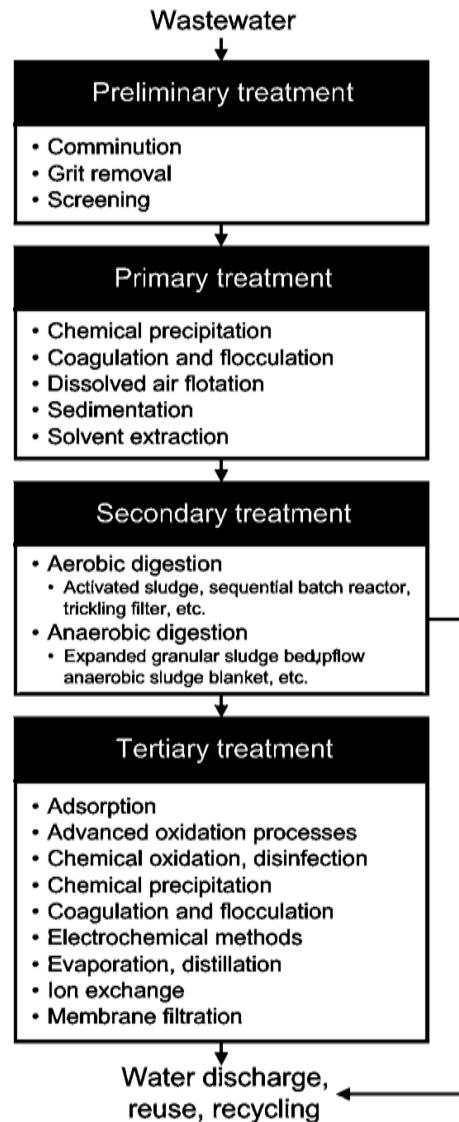
3 Water is an essential resource that sustains ecosystems, supports human life, and drives sectors
4 such as industry and agriculture. The demand for freshwater has been steadily increasing as the
5 global population grows (Kato & Kansha, 2024). Efficient wastewater management is a critically
6 important challenge in many cities around the world, which mainly deal with wastewater from
7 domestic, medical, and industrial sources (Inarmal & Moodley, 2024); the town of Uíge, in
8 particular, is no exception. The centrality of Quilomosso, located in this region, becomes a
9 relevant case study to understand the specific challenges faced in managing urban wastewater.
10 Aligned with Goal 6.2 of the United Nations Sustainable Development Goals (UN), agreed upon
11 in September 2015, the Ministry of Energy and Water of Angola developed a priority action plan
12 for the country's development, which set the goal of eliminating open defecation by 2030. (Matos
13 et al., 2021). The plan focuses on studies of sustainable wastewater collection and treatment
14 (Matos et al., 2021). This study will address different aspects of wastewater in the Quilomosso
15 Centrality to analyse the impact of discharging treated effluent into the Bolongonzo River
16 by assessing carbonaceous pollution, COD, and BOD₅. The technologies used in the WWTP will
17 be examined, as will their efficiency in removing organic load from effluents and their
18 compliance with established environmental standards.

19 **Theoretical Framework:**


20 **Implementation of wastewater treatment plants (WWTPs)**

21 Implementing wastewater treatment plants is essential but challenging to prevent water pollution
 22 and satisfy water demand (Kato & Kansha, 2024). Around 25% of the world's biggest cities are
 23 already experiencing severe water stress, and 2.2 billion people still lack access to safe drinking
 24 water (Imteaz et al., 2025). The most common type of WWTPs located in urban areas uses the
 25 activated sludge treatment method (Inarmal & Moodley, 2024; Matos et al., 2021) for the
 26 removal of various compounds. This includes, but is not limited to, nutrients and inorganic
 27 compounds. This method is efficient because it ensures high nutrient, organic matter, and
 28 suspended solids removal at a relatively low operational cost (Inarmal & Moodley, 2024).

29 **Principle of operation of the Quilomosso WWTP**


30 The wastewater treatment plant implemented at the Quilomosso Centrality (operation scheme
 31 shown in Figure 1) uses the anaerobic/anoxic/aerobic (AAA) process (Luo et al., 2025),
 32 systematically sequenced through the preliminary, primary, secondary, and tertiary phases (Kato
 33 & Kansha, 2024), which allows for the effective reduction of organic matter abundance.

34

35
 36 **Figure1.** Operational scheme of the Quilomosso Centrality WWTP.

37 Figure 2 shows the typical flowchart of the wastewater treatment process (WWTP) and the
 38 corresponding techniques.

39

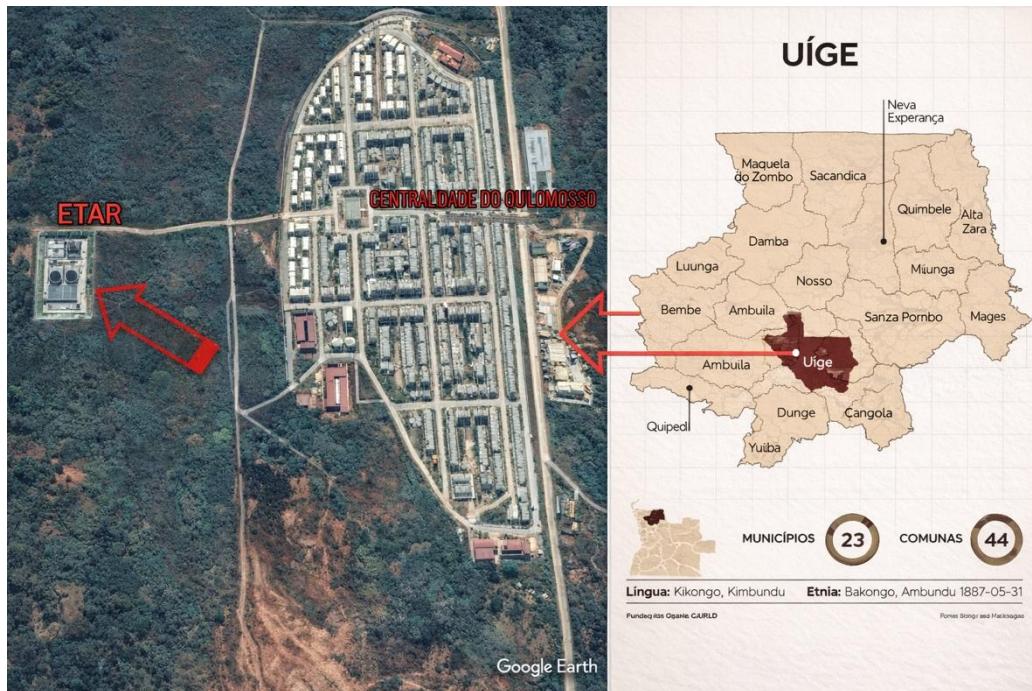
40 **Figure2.** The overall flow of a wastewater treatment process and the techniques used (Kato & Kansha, 2024).

41

42 **Efficiency and sustainability of WWTPs**

43 The efficiency of a wastewater treatment system can be evaluated by the reduction of parameters
 44 such as turbidity, hardness, conductivity, total dissolved solids, total suspended solids (TSS),
 45 chloride (Cl^-), ammoniacal nitrogen ($\text{NH}_3\text{-N}$), biochemical oxygen demand (BOD), chemical
 46 oxygen demand (COD), and total coliforms (Imteaz et al., 2025). The removal efficiencies in
 47 various wastewater treatment plants (WWTPs) vary due to multiple factors, including the
 48 physicochemical properties of the compound, climatic conditions (such as temperature, sunlight,
 49 and precipitation), and operational conditions of the treatment (related to temperature, redox
 50 conditions, and retention times), as well as the time and state of activated sludge (Inarmal &

51 Moodley, 2024). Determining organic matter is one of the most significant challenges, as it
52 encompasses all compounds that contain carbon and other elements, such as hydrogen, oxygen,
53 and nitrogen(Aguilar-Torrejón et al., 2023).Thus, identifying your presence and concentration
54 requires a different kind of analysis, usually assessed using the chemical oxygen demand
55 (COD)test (Han et al., 2014) and the biochemical oxygen demand (BOD) test (Rudaru et al.,
56 2022). Water monitoring is essential for determining the substances released into the
57 environment and for better understanding WWTP processes, providing valuable information for
58 decision-making(García-Martínez et al., 2025). Wastewater treatment plants (WWTPs) are
59 recognised as a key barrier in preventing pollutants from entering natural ecosystems(Luo et al.,
60 2025; Wu et al., 2023). It is worth noting that wastewater can be treated to meet the quality
61 requirements for irrigation and other agricultural uses. An additional treatment can also expand
62 the supply of drinking water. This approach ensures that no resource is overlooked, maximising a
63 resource that would otherwise be completely discarded (Silva, 2023).


64 **Ratio between BOD₅ and COD: parameters in water for organic matter assessment**

65 Efficient management and control of wastewater pollution are essential for sustainable
66 development, especially as water demand increases at twice the rate of population
67 growth(Diwyanjalee et al., 2024). A primary distinction between BOD and COD lies in the fact
68 that COD evaluates all the organic matter present, including biodegradable and non-
69 biodegradable compounds, while BOD is limited to quantifying the organic matter that is or can
70 be biologically degraded, that is, the biodegradable fraction of wastewater (Diwyanjalee et al.,
71 2024; Rudaru et al., 2022; Wei et al., 2023). In recent studies, the BOD/COD ratio has emerged
72 as a prominent indicator of the biodegradability of total organic carbon. It serves as an indicator
73 of a contaminant's ability to reduce oxygen levels in wastewater(Diwyanjalee et al., 2024). The
74 BOD/COD ratio should be less than or equal to 1.0. However, this ratio is only an indicator of
75 the fraction of biodegradable organic matter present in the wastewater (Aguilar-Torrejón et al.,
76 2023). The values reported in the literature for the BOD/COD ratio, or biodegradability index
77 (BDI), range from 0.4 to 0.8 for wastewater considered readily biodegradable and from 0.1 to 0.2
78 for wastewater that is difficult to treat biologically or contains substances toxic to activated
79 sludge microorganisms. Among values from 0.2 to 0.5, the microorganisms responsible for
80 biological degradation need to be adapted to the wastewater influent of the wastewater treatment
81 plant(Rudaru et al., 2022).Understanding the microbial population present in activated sludge is
82 essential for wastewater treatment, as it helps assess microbial resistance to pollutant toxicity and
83 the biodegradability of the water. Wastewater with a BOD/COD ratio of around 0.5 provides
84 excellent stability and efficiency to the microbial community(Wei et al., 2023). The
85 biodegradability index (BDI) is also a useful indicator for assessing the organic matter content in
86 river water(Rudaru et al., 2022).

87 **Materials and Methods:-**

88 **Location and description of the study area:**

89 The centrality of Quilomosso – Uíge (Figure 3), located 5 km from the city centre of Uíge, was
 90 inaugurated on August 10, 2018. It was designed for 4,500 housing units. In this first phase,
 91 1,010 houses were built, including 752 apartments, 82 single-family homes, and 176 duplex
 92 houses, as well as social infrastructure such as primary and secondary schools, health clinics, a
 93 childcare centre, and a kindergarten, along with a potable water production and supply system
 94 and domestic wastewater treatment. The Quilomosso Centrality's wastewater treatment plant has
 95 a capacity of 6,600 m³/day.

96
 97 **Figure 3.** Study Area. Adapted from (Assembleia Nacional, 2024).
 98

99 **Sampling locations**

100 Wastewater samples were collected at different strategic points of the Wastewater Treatment
 101 Plant (WWTP): upstream of the plant — the inlet works (P1) — to assess the initial pollutant
 102 load before any treatment; in the secondary clarifier (P2) — to verify the efficiency of solids and
 103 matter removal after sedimentation; and in the Bolongonzo River (P3) — to evaluate the impact
 104 of the discharged treated effluent on the receiving ecosystem. The sample volume (Figure 4) was
 105 1000 mL at all collection points.

106

107 **Figure 4.** Representative samples of wastewater at the Quilomosso WWTP, corresponding to the raw sewage entry
 108 points, the treated effluent outlet, and the discharge into the Bolongonzo River, for analysis of COD and BOD₅
 109 parameters.

110 The samples were collected regularly and rigorously, in accordance with the technical standards
 111 for preservation and integrity described by Lipps et al. (2023), ensuring reliable and accurate
 112 results. Subsequently, they were transported to the AMBIÁFRICA laboratory, located on Cauaco
 113 Road, km 4 Caxito, Panguila, Luanda, where the tests were conducted. This approach enabled a
 114 detailed assessment of the wastewater treatment process, allowing the identification of potential
 115 failures and the proposal of concrete solutions to improve the wastewater management system at
 116 the Quilomosso Centrality.

117 **Determination of the efficiency of the QuilomossoWWTP and the BOD / COD ratio**

118 To calculate pollutant removal efficiency, Equation 1 was used, asdescribed by Pérez et al.
 119 (2024). This method is widely accepted in the literature on sanitary engineering studies
 120 (Kachienga et al., 2025).

121

$$122 \%R_E = \frac{C_{\text{inlet}} - C_{\text{outlet}}}{C_{\text{inlet}}} \times 100\% \quad (1)$$

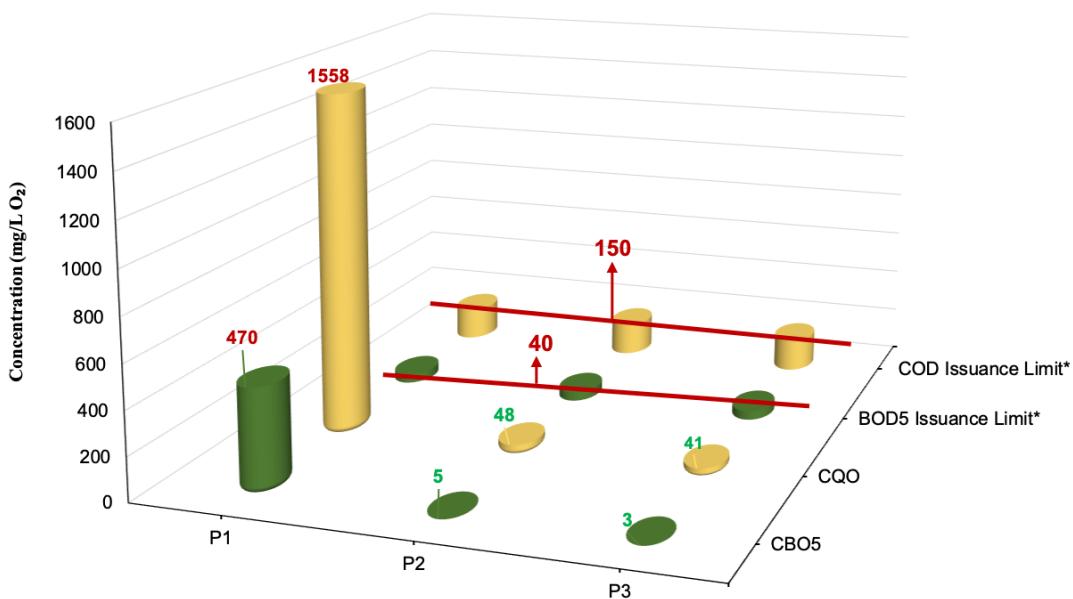
123

124 where: $\%R_E$ = Pollutant Removal Efficiency; C_{inlet} = Concentration of the analysed parameter at
 125 P1; C_{outlet} = Concentration of the analysed parameter at P2 and P3;

126 It should be noted that calculating removal efficiency based on simultaneous inlet and outlet
 127 measurements has no physical significance; such a procedure,therefore, does not reflect the
 128 actual pollutant removal efficiency. The portion of wastewater entering (P1) requires a residence

129 time to be removed under steady flow conditions. This consideration must be considered. Only
 130 samples collected at two different times, at the inlet and outlet, can be used to assess the
 131 pollutant removal efficiency(Pérez et al., 2024).

132 The biodegradability index (BDI) of each sample was calculated using the following
 133 equation(Diwyanjalee et al., 2024):


134

135
$$BDI = \frac{BOD_5}{COD} \quad (2)$$

136

137 **Results and Discussions:-**

138 Figure 5 shows the values of BOD_5 (Biochemical Oxygen Demand) and COD (Chemical
 139 Oxygen Demand) collected at the three sampling points, along with the limits established by
 140 Angolan Presidential Decree No. 261/11(DecretoPresidencialn.o 261/11 de 06 de outubro, 2011).
 141 As expected, the values of both parameters at P1 are well above the established limits,
 142 confirming that the wastewater from the Quilomosso central area carries a high organic and
 143 chemical load.

144

145 **Figure 5.** Values of CBO₅ and CQO in P1, P2, and P3.* Limits established by Angolan Presidential Decree No.
 146 261/11(DecretoPresidencialn.o 261/11 de 06 de outubro, 2011).

147 Regarding the values of the two parameters at points P2 and P3, they were within the standards
 148 established by Angolan legislation. For point P2 (Figure 6), the results indicate that, under the
 149 analysed conditions, the treatment system of the WWTP at Quilomosso Centrality was able to

150 eliminate a significant portion of the pollutant load; and, at the final discharge point (P3), the
151 results were even lower than those observed at P2, demonstrating compliance with
152 environmental standards. It is important to note that the samples were collected on a one-time
153 basis rather than continuously, which limits the ability to confidently assert that the system
154 maintains efficiency consistently, since the data refer to a specific moment in operation.

155

156

157 **Figure6.** Secondary clarifier of the Quilomoso WWTP.

158

159 **Comparison of CBO and CQO results with international standards**

160 Regarding the parameters studied, the treated effluent from the Quilomosso Wastewater
161 Treatment Plant meets the standards set by many countries and regions worldwide. For example,
162 the limits for BOD and COD in the European Union range from 15 to 40 mg/L and 75 to 150
163 mg/L, respectively. In Africa, BOD values range from 30 to 50 mg/L in Nigeria and 30 mg/L in
164 Tanzania (Ogbu et al., 2025). In South Africa, the COD emission limit is 75 mg/L (Kachienga et
165 al., 2025); in Benin, the limits for CBO and CQO are 25 mg/L and 125 mg/L,
166 respectively (Clément Adjahouinou et al., 2025).

167 **Efficiency of the QuilomossoWWTP (P2 and P3) and CBO/CQO ratio**

168 The removal efficiency, as shown in Equation 1, measures the proportion of analyte removed
169 during the treatment process and is expressed as a percentage (Inarmal & Moodley, 2024). The
170 WWTP of Quilomosso demonstrated a very high efficiency (Table 1) in removing carbonaceous
171 pollutants, COD, and BOD5 from the effluent at P2 and at the final discharge point (P3). From

172 P2 to P3, there is a slight increase in efficiency; however, the effluent is already deemed safe at
 173 P2 and, as corroborated by the flowchart shown in Figure 2, could be directly discharged into the
 174 Bolongonzo River after secondary treatment, with minimal risk of organic matter pollution.

175

176 **Table 1.** Efficiency of the Quilomosso WWTP (P2 and P3).

Sampling points	BOD ₅ /mg.L ⁻¹	COD/mg.L ⁻¹	Efficiency in pollutant removal	
			CBO ₅	CQO
P1	470	1558		
P2	5	48	98.94%	96.92%
P3	3	4	99.36%	97.37%

177

178 Estimates of COD are generally higher than those of BOD₅ and vary depending on the specific
 179 water sample analysed. The BOD₅/COD ratio should not exceed 1.0, indicating the proportion of
 180 biodegradable organic matter in the wastewater. However, this ratio provides empirical rather
 181 than absolute results and is more helpful in comparing different samples than for quantifying
 182 specific pollutants. (Diwyanjalee et al., 2024). The biodegradability index (BDI) for P1 was
 183 0.3017; for P2 and P3, it was 0.1042 and 0.0732, respectively. These results indicate that, in raw
 184 wastewater (P1), they fall within the values between 0.3 and 0.9, which are typical of domestic
 185 and municipal wastewater that can be treated or purified through biological processes with
 186 activated sludge (Diwyanjalee et al., 2024). And, after treatment at the wastewater treatment
 187 plant (P2 and P3), they show biodegradability indices below the ideal, indicating that they are
 188 non-biodegradable waters.

189 Normally, the biodegradability index values for surface waters, such as rivers, are ≤ 0.2 (in the
 190 Bolongonzo River – P3, BDI = 0.0732), because these waters are rich in nutrients, mineral salts,
 191 and other inorganic substances, and generally have a low content of biodegradable organic
 192 matter (Diwyanjalee et al., 2024).

193 These data reflect a high technical efficiency in removing organic load, demonstrating the good
 194 performance of the station even operating at only 5% of its nominal capacity. However, it is
 195 important to emphasise that the measurements were taken through spot sampling, which limits
 196 the ability to generalise the results. Therefore, continuous and systematic monitoring is essential
 197 to confirm effectiveness over time. Thus, although the data are encouraging, installing an
 198 analysis laboratory at the wastewater treatment plant and implementing periodic control routines
 199 are crucial measures to ensure a sustainable and fully verifiable treatment system performance.

200 Conclusion:-

201 This study technically evaluated the management of wastewater in the city of Uíge, focusing on
202 the Quilomosso Centrality Treatment Station. The investigation was based on laboratory
203 analyses and field observations, prioritizing the efficiency of the treatment system and the
204 environmental impacts associated with discharging the treated effluent into the Bolongonzo
205 River.

206 The results showed that the WWTP (Wastewater Treatment Plant) demonstrates high efficiency
207 in removing pollutants, with 98.94% for BOD₅ and 96.92% for COD, meeting the limits set by
208 Presidential Decree No. 261/11 of Angola. However, it is important to note that the data
209 collection was limited and isolated, and not enough to confidently claim that the system
210 maintains this performance continuously.

211 Another identified challenge is the absence of an analysis laboratory at the WWTP, which
212 prevents on-site testing and limits the ability to respond to operational variations, compromising
213 the quality control of the treated water.

214
215 Acknowledgments:-

216 The authors thank the Water and Sanitation Company of Uíge (EASU-EP) for the cooperation
217 provided during the research.

218
219 References:-

- 220 1. Aguilar-Torrejón, J. A., Balderas-Hernández, P., Roa-Morales, G., Barrera-Díaz, C. E.,
221 Rodríguez-Torres, I., & Torres-Blancas, T. (2023). Relationship, importance, and
222 development of analytical techniques: COD, BOD, and, TOC in water—An overview
223 through time. *SN Applied Sciences*, 5(4), 118. <https://doi.org/10.1007/s42452-023-05318-7>
- 224 2. Assembleia Nacional. (2024). Lei n.o 14/24, de 5 de Setembro, aprovou a Divisão Político-
225 Administrativa do País. Em *Diário da República Ia Série n.o 229* (p. 12938). <https://lex.ao/>
- 226 3. ClémentAdjahouinou, D., Vivien Doto, C., Alexandre SètondjiAdanlokonon, E., Zouhir, F.,
227 &Nourou Dine Liady, M. (2025). Pollution Levels of Urban Drainage, Stormwater and
228 Wastewater Mixtures Released Into Coastal Waters in Cotonou City (Benin, West Africa).
229 *Journal of Environment Pollution and Human Health*, 13(3), 37–45.
230 <https://doi.org/10.12691/jephh-13-3-1>
- 231 4. Decreto Presidencial n.o 261/11 de 06 de outubro, *Diário da República Ia Série n.o 193* de 6
232 de Outubro de 2011 (Pág. 4706) 2 (2011). <https://lex.ao/>

233 5. Diwyanjalee, G. R., Bellanthudawa, B. K. A., De Silva, D. K. N. S., & Gunawardena, A. R.
234 (2024). Biodegradability index (BDI) as an indicator for effluents quality measurement: A
235 case study based on different industry sectors in Matara District, Sri Lanka. *Water Practice*
236 & Technology, 19(8), 3092–3108. <https://doi.org/10.2166/wpt.2024.183>

237 6. García-Martínez, J., Akasoglou, I., Golovko, O., Frey, M., Henser, C., Spégel, P., & Krais, A.
238 M. (2025). Evaluating removal efficiency in wastewater treatment plants using non-target
239 screening analysis. *Journal of Environmental Management*, 395, 127820.
240 <https://doi.org/10.1016/j.jenvman.2025.127820>

241 7. Han, B., Jiang, X., Hou, X., & Zheng, C. (2014). Miniaturized Dielectric Barrier Discharge
242 Carbon Atomic Emission Spectrometry with Online Microwave-Assisted Oxidation for
243 Determination of Total Organic Carbon. *Analytical Chemistry*, 86(13), 6214–6219.
244 <https://doi.org/10.1021/ac501272m>

245 8. Imteaz, M. A., Tariq, M. A. U. R., Rajabi, Z., & Ahsan, A. (2025). Mathematical Modelling
246 for Predicting Wastewater Treatment Efficiency Through Specialised Electrocoagulation.
247 *International Journal of Environmental Research*, 19(4), 118.
248 <https://doi.org/10.1007/s41742-025-00780-0>

249 9. Inarmal, N., & Moodley, B. (2024). Removal efficiencies and environmental risk assessment
250 of selected pharmaceuticals and metabolites at a wastewater treatment plant in
251 Pietermaritzburg, South Africa. *Environmental Monitoring and Assessment*, 197(1), 102.
252 <https://doi.org/10.1007/s10661-024-13515-z>

253 10. Kachienga, L. O., Ndou, T., Rikhotso, M. C., Traore, A. N., & Potgieter, N. (2025).
254 Assessing the Physiochemical Parameters and Reduction Efficiency from Two Typical
255 Wastewater Treatment Plants in the Vhembe District in South Africa. *International Journal*
256 *of Environmental Research and Public Health*, 22(6), 856.
257 <https://doi.org/10.3390/ijerph22060856>

258 11. Kato, S., & Kansha, Y. (2024). Comprehensive review of industrial wastewater treatment
259 techniques. *Environmental Science and Pollution Research*, 31(39), 51064–51097.
260 <https://doi.org/10.1007/s11356-024-34584-0>

261 12. Lipps, W. C. ., Braun-Howland, E. Burton., & Baxter, T. E. . (2023). *Standard methods for*
262 *the examination of water and wastewater* (24Th ed). American Public Health Association.

263 13. Luo, C., Zhang, T., Mustafa, M. F., Li, M., & Xu, S. (2025). Removal efficiency of ARGs in
264 different wastewater treatment plants and their potential risks in effluent. *npj Clean Water*,
265 8(1), 45. <https://doi.org/10.1038/s41545-025-00456-4>

266 14. Matos, R. V., Ferreira, F., Alves, L., Ramos, E., Costa, L., & Matos, J. S. (2021). Multi-
267 Criteria Framework for Selection of City-Wide Sanitation Solutions in Coastal Towns in
268 Northern Angola. *Sustainability*, 13(10), 5627. <https://doi.org/10.3390/su13105627>

269 15. Ogbu, C. A., Alexiou Ivanova, T., Ewemoje, T. A., Alabi, H. A., & Roubík, H. (2025).
270 Towards environmentally sustainable water management in Africa: a comprehensive review
271 of life cycle assessment studies in water and wastewater treatment. *The International
272 Journal of Life Cycle Assessment*, 30(5), 956–979. <https://doi.org/10.1007/s11367-025-02434-x>

274 16. Pérez, Y., Vargas, E., García-Cortés, D., Hernández, W., Checo, H., & Jáuregui-Haza, U.
275 (2024). Efficiency and effectiveness of systems for the treatment of domestic wastewater
276 based on subsurface flow constructed wetlands in Jarabacoa, Dominican Republic. *Water
277 Science and Engineering*, 17(2), 118–128. <https://doi.org/10.1016/j.wse.2023.08.004>

278 17. Rudaru, D. G., Lucaciu, I. E., & Fulgheci, A. M. (2022). Correlation between BOD5 and
279 COD – biodegradability indicator of wastewater. *Romanian Journal of Ecology &
280 Environmental Chemistry*, 4(2), 80–86. <https://doi.org/10.21698/rjeec.2022.207>

281 18. Silva, J. A. (2023). Wastewater Treatment and Reuse for Sustainable Water Resources
282 Management: A Systematic Literature Review. *Sustainability*, 15(14), 10940.
283 <https://doi.org/10.3390/su151410940>

284 19. Wei, G., Wei, T., Li, Z., Wei, C., Kong, Q., Guan, X., Qiu, G., Hu, Y., Wei, C., Zhu, S., Liu,
285 Y., & Preis, S. (2023). BOD/COD ratio as a probing index in the O/H/O process for coking
286 wastewater treatment. *Chemical Engineering Journal*, 466, 143257.
287 <https://doi.org/10.1016/j.cej.2023.143257>

288 20. Wu, Y., Li, S., Yu, K., Hu, J., Chen, Q., & Sun, W. (2023). Wastewater treatment plant
289 effluents exert different impacts on antibiotic resistome in water and sediment of the
290 receiving river: Metagenomic analysis and risk assessment. *Journal of Hazardous
291 Materials*, 460, 132528. <https://doi.org/10.1016/j.jhazmat.2023.132528>

292
293
294