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Oral and maxillofacial cysts are cavities that can pose significant risks 

if not detected and treated promptly. Many of these cysts are 

asymptomatic, often going unnoticed until complications arise. The 

introduction of artificial intelligence (AI) presents a promising 

opportunity for early detection and management of these cysts. To 

explore current studies on the use of artificial intelligence in diagnosing 

oral and maxillofacial cysts. To examine the existing literature in this 

field, assess the accuracy, effectiveness, and limitations of AI models, 

and identify challenges in implementing AI in clinical practice. This 

literature review followed a systematic approach, identifying 223 

studies from PUBMED and SCOPUS databases between 1975 and 

2024. After applying inclusion and exclusion criteria, 26 retrospective 

cohort studies were included in the final analysis. A risk of bias 

assessment was conducted using the ROBINS I tool. The investigation 

revealed that AI models consistently demonstrate high accuracy in 

detecting oral cysts in both radiographs and digital histopathology. The 

ROBINS I tool indicated a moderate risk of bias in most of the included 

studies. Notable limitations include limited datasets, variable data 

quality, and a lack of explainability in AI models results. AI models 

have shown considerable effectiveness and speed in detecting both 

simple and complex cysts. However, to fully leverage AI's potential in 

clinical settings, further rigorous studies are needed to evaluate its 

risks, benefits, and feasibility, ensuring compliance with governmental 

health regulations on AI. 
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Introduction:- 

Maxillofacial cysts can be defined as pathologic cavities lined by epithelium and generally containing fluid or semi-

solid material. One exceptional subgroup, known as pseudocysts, lacks an epithelial lining and possesses various 

diagnosticconsiderations
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1
. The lesions possess great heterogeneity in origin, biologic behavior, and clinical presentation, and therefore they 

are one of the significant challenges in diagnosis and also treatment. Epidemiological data of a United Kingdom-

based retrospective study, spanning over 55,000 specimens, showed that odontogenic cysts accounted for 

approximately 12.8% of the cases, with a higher occurrence in males and in the age group of 30 to 60 years
2
. The 

most prevalent types are radicular cysts, dentigerous cysts, and odontogenic keratocysts (OKCs). Diagnosis is 

paramount to effective clinical management and is typically founded upon a combination of patient history, clinical 

inspection, radiographic imaging, and histopathological examination
3
. 

Maxillofacial cyst classification has changed considerably over time. Initial efforts by Bland-Sutton in 1888 laid the 

foundation for systematic classification, building on which World Health Organization (WHO) classifications, 

starting in 1971, 1992, 2005, and more recently in 2017
8
, took place. The present WHO system reclassified 

odontogenic cysts and grouped jaw lesions based on contemporary understanding of their pathogenesis. 

Odontogenic cysts are grouped into inflammatory and developmental types. Inflammatory cysts typically arise from 

pulpal infections, whereas developmental cysts form during odontogenesis
3
.   

Radicular cysts, the most common inflammatory type, are formed due to necrotic pulp tissue that irritates epithelial 

cell rests
4,5

 . Root canal treatment or extraction with following curettage is commonly performed clinically. Residual 

cysts may persist when radicular cysts are incompletely removed
3
, while paradental cysts, commonly associated 

with third molars, share the same histological features as radicular cysts
4
. Among developmental cysts, dentigerous 

cysts are most frequent, most commonly associated with unerupted mandibular third molars. The lesions are 

radiographically unilocular but may become multilocular and displace neighboring structures. Management involves 

enucleation and histopathological analysis to eliminate the possibility of neoplastic transformation
4,6,7

. 

Odontogenic keratocysts (OKCs) are highly aggressive with a strong tendency for recurrence. Having been 

previously reclassified as tumors due to mutations in the PTCH gene, they were reclassified as cysts in the 2017 

WHO update
8,9

. OKCs predominantly appear in Caucasian males aged 20-40 years and are most commonly found in 

the posterior mandible
10

. Histologically, they are characterized by a thin epithelial lining, palisaded basal cells, and a 

keratin-filled lumen, some of the reasons why they have a strong tendency to recur
11

. OKCs are also associated with 

Gorlin-Goetz syndrome, a genetic condition with multiple cysts, basal cell carcinomas, and skeletal defects
12,13

. 

Nonodontogenic cysts, which arise from non–tooth-forming epithelium, include nasopalatine duct cysts and 

neonatal palatal cysts
14

. Nasopalatine duct cysts are typically heart-shaped radiolucencies in the anterior maxilla and 

are histologically confirmed by the existence of epithelial-lined fibrous tissue. They are generally curative with 

surgical removal and have minimal chance of recurrence. Neonatal palatal cysts, Epstein pearls, and Bohn nodules 

are small, asymptomatic, and resolve spontaneously. These are histologically keratin-filled epithelial cysts
15

. 

Despite histopathology as the gold standard for diagnosis, there are also several challenges. Radiographic overlap is 

common; OKCs and ameloblastomas may be indistinguishable, for instance, while nasopalatine duct cysts may be 

mistaken for periapical pathology
16,17

. Dentigerous cysts may also present as OKCs on imaging examinations
18

. 

Histopathological ambiguity also worsens the diagnosis, with features such as mucous cells and keratinisation 

occasionally overlapping among lesions, necessitating additional staining techniques for successful 

differentiation
19,20

. Further, inaccurate diagnoses by less experienced practitioners underscore the need for 

technological assistance tools, including artificial intelligence, to assist in enhancing diagnostic precision and 

preventing misclassification 
17,21

. 

Artificial Intelligence (AI) refers to the capacity of computers and machines to perform operations that traditionally 

require human intelligence, such as reasoning, learning, decision-making, and pattern recognition
22

. The theoretical 

foundation of AI dates back to Alan Turing's seminal work in 1950 and was formally put forward by John McCarthy 

in 1956
23

. AI is now a multidisciplinary field of research with applications in medicine, engineering, and social 

sciences. At the heart of AI is the usage of algorithms—computational methods enabling machines to accept inputs 

and generate outputs. Some of the most innovative AI developments are Machine Learning (ML) and Deep Learning 

(DL), which enable systems to learn from data and improve with experience. 
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Machine Learning encompasses supervised learning (learning from labeled examples), unsupervised learning 

(identifying patterns in unlabeled examples), and reinforcement learning (optimization via trial-and-error). Deep 

Learning, an ML branch, involves artificial neural networks with multiple layers based on the anatomy of the human 

brain. DL models are particularly good at image classification and recognition tasks and, therefore, are highly 

appropriate for analyzing radiographs and histological slides in the clinical setting
24

. The second key component is 

Natural Language Processing (NLP) which enables machines to understand and process human language with 

applications in clinical documentation, chatbots, and automated diagnostic reporting. AI systems range from 

Artificial Narrow Intelligence (ANI) which are task-specific to the theoretical constructs of Artificial General 

Intelligence (AGI) and Artificial Superintelligence (ASI) which attempt to equalize or exceed human intellectual 

capabilities. 

AI in healthcare is a developing decision support system that has the potential to deliver faster diagnosis, reduced 

human error, and personalized treatment planning. Its use in maxillofacial cyst diagnosis, in particular, holds great 

promise because of the diagnostic dilemma and overlapping features of these lesions. AI models were employed 

with panoramic radiographs, cone-beam computed tomography (CBCT), and magnetic resonance imaging (MRI) for 

enhancing the detection and classification of lesions. Algorithms such as YOLOv2 (You Only Look Once) have 

proven effective in the detection of cystic lesions such as dentigerous cysts, OKCs, and ameloblastomas by detecting 

shape, size, and anatomical location features
25

. Similarly, DetectNet, a CNN-based framework, uses bounding boxes 

to delineate lesion borders and predict classification
26

. These models have demonstrated high sensitivity and 

specificity, with performance better than that of general practitioners and even some specialists, with real-time 

feedback that is compatible with both clinical workflow and tele-dentistry platforms. 

AI also helps minimize inter-observer variability, a well-known problem in radiographic interpretation, especially 

between less experienced clinicians. In histopathology, AI helps ease the diagnostic bottleneck by automating image 

classification. Deep learning models such as VGG16, pre-trained on ImageNet, have been fine-tuned to analyze 

histological oral lesion slides with high accuracy
27

. These systems are able to pick up subtle histopathological 

differences between cystic lesions that are similar in appearance, such as distinguishing keratin-filled OKCs from 

dentigerous cysts or identifying proliferative epithelial features of neoplastic transformation. Rather than replacing 

pathologists, AI software is an adjunct that brings areas of suspicion to the attention of the pathologist, triages slides 

for review, and assists in decision-making in equivocal cases. 

Clinical deployment of AI integration has several advantages. Lesion detection, even at asymptomatic stages, can be 

facilitated by automated screening. AI algorithms can also assist treatment planning by measuring lesional volume 

and determining proximity to vital anatomical structures to inform surgery. AI can function as a triage system in 

resource-scarce settings, guiding referrals and coordinating specialist intervention. Moreover, AI-driven platforms 

are didactic and can be incorporated into training modules to enhance pattern recognition in novice clinicians. 

Looking ahead, the future of AI in maxillofacial pathology lies in building larger annotated datasets and multi-center 

research that enhances model accuracy and generalizability. Future models may integrate radiographic, histologic, 

and genomic data to provide multidimensional diagnostic possibilities. 

Despite the potential benefits of artificial intelligence (AI) in medicine, AI in oral and maxillofacial pathology must 

transcend several limitations. One of the key challenges is the absence of big annotated datasets required to build 

robust diagnostic models. In oral pathology, such datasets continue to be limited, hindering AI algorithm 

development and generalizability
28

. Privacy and ethical concerns are additional significant challenges. AI software 

must satisfy stringent data protection regulations, particularly when dealing with sensitive patient information. In the 

United Kingdom, regulators such as the Medicines and Healthcare products Regulatory Agency (MHRA) and the 

NHS AI Lab ensure that AI applications are consistent with ethical and legal requirements
29,30

. Another essential 

concern is the risk of overdependence on AI systems. While AI can enhance diagnostic accuracy and speed, it 

cannot replace clinical judgment. Instead, it must be constructed as a supportive tool that complements the 

intelligence of medical practitioners
28

. 
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Based on these findings, it is apt and essential to undertake an exhaustive literature review of AI application in oral 

and maxillofacial cyst diagnosis. To date, no review has systematically worked towards the utilization of both 

machine learning (ML) and deep learning (DL) approaches in the detection of such lesions in radiographic and 

histopathological modalities. The current review seeks to fill a significant knowledge gap in the literature by 

summarizing available knowledge, evaluating technological progress, and establishing directions for future studies. 

The purpose of this literature review is to discuss the current state and recent advances in the application of AI—

more precisely ML and DL—for diagnosing oral and maxillofacial cysts. The main goals are to review current 

studies that apply AI-driven methods and tools in this field, and to evaluate the accuracy, efficacy, and limitations of 

these algorithms in identifying different cystic lesions. A secondary objective is to identify persisting gaps and 

implementation challenges in AI integration, and to provide recommendations that can guide future research and 

clinical practice. 

Methods 

A systematic approach was employed to ensure methodological rigour and accountability in selection, analysis, and 

identification of included studies within this review. The process adhered to standards of literature synthesis, from 

which there were well-defined eligibility criteria and systematic data extraction protocols. 

Included studies were randomized controlled trials and cohort studies that investigated the application of artificial 

intelligence (AI) i.e. machine learning (ML) or deep learning (DL) in the detection or diagnosis of oral and 

maxillofacial cysts. To be included, studies had to have used AI-based methods in a diagnostic role and been 

English-language publications from January 1975 through to 15 June 2024. Studies were excluded if they were 

review articles, case reports, letters, editorials, conference abstracts, book chapters, or other non-research-based 

formats. Participants for eligible studies were patients who presented with oral cysts or cyst-like lesions found 

through radiographic evaluation or histopathological diagnosis. Interventions of interest were AI-driven diagnostic 

algorithms applied on radiographic (for example, panoramic radiographs, CBCT) or histopathological samples. 

Reference groups consisted of reference standards like previously established confirmed diagnosis or expert 

clinician opinion. Primary outcomes of interest measured included diagnostic accuracy metrics like sensitivity, 

specificity, precision, and F1-score. 

Systematic search approach was conducted in two leading databases: PubMed and Scopus. Scopus search query was 

('artificial intelligence' OR 'machine learning' OR 'deep learning') AND ('diagnosis' OR 'diagnostic imaging' OR 

'detection') AND ('oral cysts' OR 'jaw cysts' OR 'odontogenic cysts'). The search query for PubMed was: (('artificial 

intelligence' OR 'machine learning' OR 'deep learning' OR 'neural networks') AND ('maxillofacial cysts' OR 'jaw 

lesion' OR 'oral cysts' OR 'odontogenic cysts')) AND ('diagnosis' OR 'detection'). The search was narrowed to 

studies published within the specified timeframe and language needs. 

Independent study selection was performed by two reviewers. Titles and abstracts were screened for potentially 

eligible studies, and full texts were retrieved in studies with inclusion criteria or where it was not possible to 

determine from the abstract alone. As no randomized controlled trials were identified, the final decision included 

retrospective cohort studies. Data were independently withdrawn in a pre-standardized form with the intent to record 

main study characteristics. Extracted variables included author(s), year of publication, study design, type of applied 

AI, cyst classification, imaging modality, methods of validation, and diagnostic results reported. 

Methodological quality and potential bias within each study that was included were assessed using the Risk Of Bias 

In Non-randomized Studies - of Interventions (ROBINS-I) tool
31

. The instrument evaluates seven domains: 

confounding, participant selection, intervention classification, deviations from allocated interventions, missing data, 

outcome measurement, and reporting selection. Each domain was assigned a low, moderate, or critical risk of bias 

score. Tabulation of judgments regarding risk in all the included studies is shown in Appendix 2A. This systematic 

evaluation yielded methodologically sound data on which the review results were derived, allowing for critical 

evaluation of the validity and reliability of AI instruments for diagnosing oral cysts. 

223 articles were initially identified through a systematic search of two leading databases—PubMed and Scopus. 

Following the preselected inclusion and exclusion criteria, full-text screening, and the removal of duplicate data, the 

final list comprised 26 articles. All included studies were retrospective observational studies that investigated the 

application of artificial intelligence (AI) in diagnosing or detecting oral and maxillofacial cysts. 

The Scopus search yielded 136 articles. These were filtered out at first by selecting English-language research 

articles and excluding non-research article types such as conference abstracts, book chapters, mini reviews, case 
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reports, and editorials. This left the pool narrowed to 111 articles. Further filtering based on subject categories of 

interest to medicine and dentistry left the selection at 70 articles. This was followed by a critical assessment of titles 

and abstracts, and subsequent inclusion of 12 articles found to be eligible for the study. 

PubMed search generated 87 articles. With identical inclusion criteria—English-language research articles—and 

non-research articles excluded, the number of research articles eligible was reduced to 68. Relevance of articles to 

the study's purpose was assessed through title and abstract review, and 25 articles were selected accordingly. After 

cross-matching and duplicate elimination between the two databases, 26 unique articles remained for final analysis. 

Collectively, these studies provide a core data set from which the value of AI-based approaches to the diagnostic 

practice of oral and maxillofacial cysts can be evaluated. 

The selection process for the studies is summarized in Figure 1. 

Literature Review  

The reviewed studies altogether demonstrate the growing application of artificial intelligence (AI) to diagnose jaw 

cysts and related lesions through panoramic radiographs (OPG). The five studies employed similar retrospective 
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study designs and various machine learning (ML) or deep learning (DL) models with varying validation techniques 

from hold-out testing to cross-validation. 

Berne et al.
32

 developed a DL model with YOLOv3 to differentiate radicular cysts (RC) and periapical granulomas 

(GC). Using a 10-fold cross-validation approach to OPG images, the study had 80 RC cases, 72 GC cases, 197 

normal images, and some other radiolucent controls. The model was good for RC detection with 1.00 sensitivity, 

0.95 specificity, and an AUC of 0.97. In the case of GC, sensitivity was slightly lower at 0.77 but specificity 

remained flawless at 1.00 with an AUC of 0.88. These results validate the accuracy of the model in distinguishing 

between granulomatous and inflammatory lesions. 

Building upon this, Yu et al.
33

 employed a Unet-based deep learning model to distinguish odontogenic cysts and 

tumors, i.e., periapical cysts (PC), dentigerous cysts (DC), odontogenic keratocysts (OKC), and ameloblastomas 

(AB). The collection of samples comprised 87 lesion cases and 200 normal samples. Using a hold-out validation 

test, the model was 90.66% accurate, 85.23% precise, 84.27% sensitive, 93.50% specific, and 84.74% F1 score. 

These metrics represent how robust the model is in distinguishing pathological from normal images, particularly in 

mixed-lesion datasets. 

In another approach, Kumar et al.
34

 examined ML techniques—specifically support vector machines (SVM)—for 

dental cyst, tumor, and abscess identification. The study utilized 172 lesion images and hold-out validation. The 

three feature extraction methods were compared: GLCM, wavelet analysis, and GLRLM. GLCM had the highest 

accuracy of 98%, while GLRLM yielded 95% and wavelet analysis yielded 91%. AUC values testified to the 

superior diagnostic capability of GLCM, highlighting the importance of texture-based features in radiographic 

classification. 

Feher et al.
35

 broadened the scope by simulating clinical reasoning using RetinaNet, a ML model that was trained on 

855 OPG images and validated with 384. The model was able to differentiate between odontogenic and non-

odontogenic cysts. For odontogenic cysts, sensitivity was 0.84 and specificity was 0.59, while for non-odontogenic 

cysts, sensitivity dropped to 0.56 but specificity rose to 0.84. Compared to a human control group, the AI model had 

higher sensitivity for both groups, although specificity varied. The research illustrates the potential of AI in assisting 

diagnostic reasoning, especially in uncertain cases. 

Also supporting these findings, Watanabe et al.
36

 conducted a preliminary study using DetectNet for maxillary cyst-

like lesion and benign tumor detection. The patient dataset was 412 cases with 323 RC, 37 DC, 23 OKC, 3 AB, 2 

odontogenic myxomas, and 1 adenomatoid odontogenic tumor. The model was validated in two steps. In the first 

step, recall was 74.6%, precision 89.8%, and F1 score 81.5%. In the second step, recall was 77.1%, precision 90.0%, 

and F1 score 83.1%. These results indicate consistent performance on datasets and validate the applicability of DL 

for multi-class lesion detection. 

Liu et al.
37

 explored the use of machine learning (ML) algorithms to discriminate between ameloblastomas and 

odontogenic keratocysts (OKCs) on panoramic radiographs. Knowing that these lesions have overlapping diagnoses, 

the authors demonstrated that ML could learn to identify radiographic features successfully in an attempt to assist 

clinicians to accurately classify them. By utilizing model training on annotated datasets, promising diagnostic 

accuracy was achieved, which showed that AI can assist clinicians in differentiating between lesionally similar 

radiographic-appearing lesions. 

Following this radiographic foundation, Cai et al.
21

 progressed to digital pathology by developing AI models to 

differentially diagnose and predict the prognosis of sporadic OKCs on haematoxylin and eosin-stained slides. The 

approach merged image-based deep learning with prognostic modeling to not just diagnose lesions but also to 

forecast recurrence risk. This dual-purpose utility renders AI an effective tool in both diagnostic as well as treatment 

planning procedures, especially for aggressive behavior lesions like OKCs. 

In their corresponding effort to counteract diagnostic uncertainty, Lee et al.
38

 resolved a common conundrum by 

deep learning neural networks to separate Stafne's bone cavity—a benign anatomical variation—from pathological 

radiolucent mandibular lesions. In their proof on heterogeneous panoramic radiographs, the authors demonstrated 
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DL models can significantly differentiate between normal anatomy and disease, precluding false positives and 

unwarranted procedures. 

Scaling AI application in histopathology, Rao et al.
27

 developed a DL-driven microscopic diagnostic system for 

OKCs and non-keratocysts on the basis of histological slides. Trained on haematoxylin and eosin-stained incisional 

biopsies, the model was extremely accurate in classifying cyst types. The study highlighted the potential of AI to 

streamline histopathological processes, highlight uncertain cases, and support pathologists in high-volume 

diagnostic settings. 

Similarly, Yang et al.
25

 employed deep learning in automating detection of jaw cysts and tumors from panoramic 

radiographs. Their model performed well for a variety of lesions, i.e., dentigerous cysts, OKCs, and ameloblastomas. 

Employing convolution neural networks, the model was able to delineate the borders of lesions and make 

suggestions for classifications and offer real-time aid in radiographic interpretation. 

Adding additional importance to anatomical precision, Rašić et al.
39

 focused on segmentation tasks by deep neural 

networks to locate and define radiolucent lesions in the lower jaw. From panoramic radiographs, their model was 

very accurate in detecting lesion margins, which is crucial in surgical planning and follow-up. This study highlights 

the prospect of AI in enhancing image-based diagnosis by precise anatomical localization. 

For the early detection of disease, Endres et al.
40

 developed a DL algorithm specific for the identification of 

periapical disease from dental radiographs. The model, which was trained to identify subtle radiolucencies of 

pathologic structures, was very accurate for diagnosis. All these results validate the use of AI in everyday dental 

practice, particularly for the early detection of apical lesions, which, otherwise, remain undiagnosed. 

Following the differential diagnosis thread, Li et al.
41

 used a deep learning network to differentiate ameloblastomas 

from OKCs on panoramic radiographs. Tested against expert scores and learned on a big data set, the model proved 

that AI could match or exceed human ability at recognizing such clinically significant lesions. 

Kwon et al.
42

 extended this by developing a DL model of YOLOv3 to classify odontogenic cysts and 

ameloblastomas of 1,282 panoramic radiographs automatically. In the database, there were 302 RC, 350 DC, 300 

OKC, 230 AB, and 100 normal jaw views. Without augmentation, sensitivity of the model was 78.2%, specificity 

was 93.9%, and total accuracy was 91.3%, with an AUC of 0.86. Performance was greatly improved with 

augmentation, yielding sensitivity of 88.9%, specificity of 97.2%, accuracy of 95.6%, and AUC of 0.94—

highlighting the way that training advances are advantageous to model precision. 

Complementing this, Bispo et al.
43

 sought to differentiate between OKCs and ameloblastomas using MDCT images 

and a Google Inception v3 convolutional neural network. The dataset consisted of 350 images of 18 OKC and 22 

ameloblastoma cases. By using five-fold cross-validation, the model established stable accuracy in iterations of 

90.16% to 92.48%, showcasing the reliability of DL in CT-based lesion classification. 

By employing a multimodal approach, Committeri et al.
44

 blended ML models—logistic regression (LR) and 

Fourier transform (FT)—with inflammatory biomarkers and CBCT imaging to classify dentigerous cysts, OKCs, 

and unicystic ameloblastomas. For 103 patients, biomarkers alone yielded less than 50% accuracy. But when 

integrated with imaging, LR was at 95% accuracy with an AUC of 0.96, and FT was at 94.3% accuracy with an 

AUC of 0.95, reinforcing the benefit of data fusion towards enhanced diagnostic performance. 

Yilmaz et al.
45

 also validated ML's variability by comparing various models like SVM, Naive Bayes, decision tree, 

random forest, and neural networks for diagnosing periapical cysts and OKCs from 50 CBCT images. The 

performance of SVM model was superior in three validation methods: ten-fold cross-validation yielded accuracy 

and F1 score of 100%; split-sample validation yielded accuracy and F1 score of 96%; and leave-one-out cross-

validation yielded 94% accuracy and an F1 score of 93.88%, which testified to the strength of SVM for lesion 

detection based on CBCT. 
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In a comparative study, Lee et al.
46

 employed Google Inception v3 for AI-based diagnosis of periapical cysts, DCs, 

and OKCs from OPGs and CBCT scans. The database comprised 2,126 images, 1,140 OPGs, and 986 CBCTs. The 

model performed higher accuracy on CBCT with an AUC of 0.914, sensitivity of 96.1%, and specificity of 77.1%. 

For OPG, the AUC was 0.87, sensitivity was 88.2%, and specificity was 77.0%, indicating that CBCT offers 

superior diagnostic precision for AI models. 

For the case of anterior maxillary lesions, Kise et al.
17

 developed a DL system using DetectNet and Inception v3 to 

discriminate nasopalatine duct cysts (NDC) from radicular cysts (RC) with 300 panoramic radiographs. The data set 

included 100 NDC, 100 RC, and 100 normal ones. The DL system achieved a total accuracy of 0.88, higher than 

dental residents with 0.77. For NDC, the model achieved recall of 0.83, precision of 0.92, and F1 score of 0.87. For 

RC, recall was 0.85, precision 0.94, and F1 score 0.89. Normal images achieved recall of 0.95, precision of 0.79, 

and F1 score of 0.86, commenting on the good performance of the model by categories. 

Lee et al.
47

 conducted a comparative study of five DL models, namely EfficientDet-D3, Faster R-CNN, YOLO v5, 

RetinaNet, and SSD, to identify and classify nasopalatine duct cysts and periapical cysts from 1,269 panoramic 

radiographs. The data set comprised 603 RC, 606 NDC, and 60 normal images. EfficientDet-D3 outperformed all 

the other models, with mean average precision (mAP) of 93.8%, accuracy of 94.4%, sensitivity of 94.4%, specificity 

of 97.2%, and predictive values greater than 94%. The results reassert EfficientDet-D3's superiority in undertaking 

complex radiographic differentiation tasks. 

Ariji et al.
26

 suggested the use of a deep learning model with DetectNet for the automatic detection and classification 

of radiolucent lesions in the mandible. The collection had 210 panoramic radiographs and comprised 68 radicular 

cysts (RC), 66 dentigerous cysts (DC), 33 odontogenic keratocysts (OKC), 31 ameloblastomas (AB), and 12 simple 

bone cysts (SBC). Two independent test sets were used to test and validate the model. In both, sensitivity was 

always 0.88, while the false positive rate was remarkably low—0.00 per image in the first test and 0.04 in the 

second—demonstrating the accuracy and reliability of the model for multi-class lesion detection. 

Taking AI to histopathology, Mohanty et al.
48

 developed an automation pipeline for the discrimination of sporadic 

OKCs and non-keratocysts from WSI. The study utilized 113 slides, 48 OKCs, 20 DCs, and 37 RCs. With P-C-

ReliefF algorithm and hold-out validation, the model had an AUC of 0.97 and overall accuracy of 97.4%, managing 

over 128,000 parameters. Such results reflect the scalability of AI in high-resolution slide interpretation and its 

capability to assist digital pathology workflows. 

Frydenlund et al.
49

 utilized machine learning algorithms—support vector machines (SVM) and Bayesian logistic 

regression (BLR)—for the identification of four developmental odontogenic cysts based on micrographic digital 

images. The dataset involved 73 slides: 20 DCs, 20 OKCs, 20 lateral periodontal cysts (LPCs), and 13 glandular 

odontogenic cysts (GOCs). BLR outperformed SVM in all three experiments. In the first experiment, it was 95.4% 

compared to 92.3% for SVM. In cross-validation, BLR was 90% and SVM was 87.9%. Without DCs, SVM gave 

100% accuracy and BLR 96.78%, indicating the models' adaptability and robustness with various lesion types. 

Tajima et al.
50

 overcome the issue of limited training data by developing a deep learning model based on YOLOv3 

for the detection of cyst-like radiolucent lesions on panoramic radiographs. 7,160 images were employed to train the 

model, 100 for validating it, and 100 for testing it. Even with the small test set, the model worked incredibly well: 

98.3% accuracy, 94.4% sensitivity, 99.7% specificity, 99.0% precision, and F-score of 0.966. All these prove the 

strength of high-quality AI models even in conditions where there is limited data. 

These radiographic studies have been supplemented by Setzer et al.
51

, who designed a DL model based on the Unet 

architecture to detect periapical lesions in CBCT images. Using a training set of 20 CBCT images and five-fold 

cross-validation, the model achieved 0.93 accuracy, 0.88 specificity, positive predictive value of 0.87, and negative 

predictive value of 0.93. These results establish the excellence of the model for the detection of fine apical pathoses 

in three-dimensional imaging. 

Ekert et al.
52

 conducted a high-throughput analysis of 2,001 panoramic radiographs for apical lesion detection using 

deep learning. Model validation was conducted with 10-time repeated group shuffling with 0.85 (±0.04) AUC. 
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Sensitivity was moderate at 0.65 (±0.12), but specificity was up to 0.87 (±0.04). The positive predictive value was 

0.49 (±0.10), but the negative predictive value was extremely high at 0.93 (±0.03), indicating good performance in 

excluding disease and enabling early detection. 

Results 

Demographics and Population 

As seen in Figure 2. 26 retrospective studies on the use of AI in diagnosing oral and maxillofacial cysts were 

conducted across 16 countries. China and South Korea led the research efforts with five studies each. India followed 

with three studies. Japan and Germany both contributed with two studies each. Other countries, including Croatia, 

Belgium, Austria, the Netherlands, Brazil, Italy, Turkey, Canada, and the USA, each had one published study.  

 

 

 

 

Figure 2. location of the conducted studies 
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Figure 3. Years of published studies 

We began our search from 1975. However, in 2014, we have only found a single study from that year. There was a 

gap until 2017, which yielded another study. In 2019, two studies were found. A noticeable increase in research 

occurred between 2020 and 2024, with five studies published in both 2020 and 2021. In 2022, we identified three 

studies. The highest number of articles, six, were found in 2024. Explained on  Figure 3.  
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Figure 4. Number of reported cysts in included studies 

In our research, the most frequently reported type of cyst was OKC, with 16 studies. Radicular cysts followed with 

12 studies, and dentigerous cysts were reported in nine studies. Nasopalatine duct cysts and Stafne bone cysts each 

had two studies. Lateral periodontal cysts and glandular odontogenic cysts were the subjects of only one study each. 

Figure 4 illustrates this breakdown.  

 

Table 1. Accuracy rate of Deep Learning and Machine Learning models. 

Deep Learning 

Models 

Author(s) Accuracy  Machine 

Learning 

Models 

Author(s) Accuracy 

YOLO 

(v2,v3,v5,v8) 

Kown et al
43

, 

Yang et al.
 25

, 

Lee et al.,
38

 

Rasic et al.
39

, 

Berne et al.
32

,  

V2= 66% 

v3=91.3% 

98.3% 

v5= NA 

v8= NA 

SVM Frydenlund A 

et al.
49

, Cai et 

al.
21

, Yilmaz et 

al
45

 Kumar et 

al.
34

, 

87.9% 

NA 

98% 

98% 

VGG (16,19)  Li et al.
41

, Liu 

et al.
37

, Rao et 

al.
 27

, 

80.72% 

85.5% , 93% 

BLR Frydenlund A 

et al.
 49

, 

90.0 ± 

0.92% 

Google 

Inception3 

Bispo et al.
43

, 

Lee et al.
46

, 

Cai et al.
21

, 

Kise et al.
17

, 

90%- 92% 

NA 

NA 

Naïve Bayse Yilmaz et al.
 

45
, 

98% 

ResNet-50 Li m et al.
41

,  

Lee et al.
47

, 

82.50%, 

78.31% 

Decision tree Yilmaz et al.
 

45
, 

89% 

DetectNet Kise et al.
17

, 

Ariji et al.
 26

, 

Watanabe et 

al
36

 

88% 

NA 

NA 

Random 

forest 

Yilmaz et al.
 

45
, 

92% 

DenseNet  Lee et al.,  

Rao et al.
 27

, 

93%, 99.25% Neural 

Network 

Yilmaz et al.
45

, 92% 

EfficientNet  Li et al.
 41

, 87.50% MLP Cai et al.
21

, NA 

Faster R-CNN Lee et al., NA Extra Trees Cai et al.
21

, NA 

RetinaNet Lee et al., NA XGBoost Cai et al.
 21,

 NA 

SSD Lee et al.
 47

, NA Linear 

Regression 

Committeri U 

et al.
44

, 

95% 

EfficientDet-D3 Lee et al., 94.4% Fine Tree Committeri U 

et al.
 44

, 

94.3% 

Unet Setzer et al.
51

, 

Yu et al.
33

, 

93%,90.6% 

 

  

P-C-ReliefF Mohanty et 

al.
48

, 

97.4%  

 

A. Outcomes 

The primary outcomes of this review involved examining the existing literature on AI-based techniques and 

technologies utilised in the diagnosis of oral and maxillofacial cysts and assessing their accuracy and limitations. 

1) Deep Learning (DL) Models 

The most widely used DL model in this review was YOLO, with five published studies using various versions of the 

model. Yang et al.
 25

 reported that their YOLOv2 model achieved an accuracy of 66%, while Kwon et al.
42
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demonstrated an improved accuracy of 91.3% with YOLOv3. Lee et al.
 47

, Berne et al.
 32

 and Rasic et al.
 39

 used 

YOLOv5 and YOLOv8 models, respectively, and found promising results in terms of precision, although specific 

accuracy values were not provided. 

The second most frequently used model was Google InceptionV3. Four studies utilised this model. Bispo et al.
43

 

reported accuracy values ranging from 90% to 92% across five iterations. Kise et al.
17

 achieved an accuracy of 88% 

with InceptionV3. However, the studies by Lee et al.
 46

 and Cai et al.
21

 did not report accuracy, focusing instead on 

area under the curve (AUC) and sensitivity metrics. 

VGG16 and VGG19 models were used in three retrospective studies. Liu et al.
37

 reported an accuracy of 80.72%, 

Rao et al.
 27

  achieved 93% accuracy, and Li et al.
 41

 reported an accuracy of 85.50% with their VGG16/19 models. 

DetectNet was featured in three studies. Kise et al.
17

 reported an accuracy of 88%, while Ariji et al.
 26

 and Watanabe 

et al.
 36

 did not provide accuracy metrics but reported high scores in sensitivity and precision, respectively. Lee et al.
 

47
 reported high mean average precision for models like Faster R-CNN, YOLOv5, RetinaNet and SSD but did not 

provide accuracy values. However, the EfficientDet-D3 model scored a notable 94.4% accuracy. 

The highest accuracy was reported for DenseNet, with Lee et al.
 38

 achieving an accuracy of 99.25% and Rao et al.
 27

 

reporting 93%. Unet models were used by Setzer et al.
 51

 and Yu et al.
 33

, who reported accuracies of 93% and 90%, 

respectively. Lastly, Mohanty et al.
 48

 reported a high accuracy of 97.4% with their P-C-ReliefF model. 

2) Machine Learning (ML) Models 

Of the 26 studies reviewed, only five utilised ML models. Frydenlund et al.
 49

 employed an SVM and reported an 

accuracy of 87.9%. Additionally, the same study used bagging with logistic regression, achieving an accuracy of 

90.0 ± 0.92%. Yilmaz et al.
 45

 evaluated multiple ML models and reported accuracy scores of 98% for SVM, 98% 

for Naïve Bayes, 89% for decision tree, 92% for random forest and 92% for neural networks. Committeri et al.
 44

 

reported 95% accuracy using a linear regression model and 94.3% accuracy using a fine tree model. Cai et al. 
21

 

utilised four ML models: SVM, extra trees, XGBoost and MLP. Although the authors did not report specific 

accuracy numbers, these models achieved high values in the AUC metric. Finally, Kumar et al.
 34

 reported an 

accuracy of 98% using an SVM model. 

3) Digital Pathology 

Interestingly, out of all 26 studies, only four applied AI models for digital pathology. Frydenlund et al.
49

 pioneered 

the AI ML application for detecting odontogenic development cysts using H & E micrographic imaging with an 

accuracy between 87.9% and 92%. The other three studies – Rao et al.
 27

, Mohanty et al.
 48

 and Cai et al. 
21

– utilised 

DL models to detect and diagnose OKC lesions using whole-slide imaging. The accuracy results for Rao et al.
 27

 and 

Mohanty et al.
 48

 were 91% and 97.4%, respectively. Cai et al. 
21

 went further and measured the diagnosis and 

prognosis of OKCs using AUC, with the diagnosis being 0.935 and the prognosis 0.840, indicating high 

performance in distinguishing between other cysts. 

4) Odontogenic Cysts 

The majority of the reviewed studies
 
 focused on reporting odontogenic cysts using OPG, and AI models reported 

high performance results with an average accuracy higher than 85% 
25,26, 32, 33, 34,35, 36, 37, 38, 41, 43,52

. The reported 

studies using CBCT included Committeri et al.
 44

, Bispo et al.
 43

, Lee et al.
 46

, Setzer et al.
 51

 and Yilmaz et al.
 45

 and 

had higher performance than those using OPG. 

5) Nonodontogenic Cysts 

We found only two studies reporting on nasopalatine duct cysts in comparison to periapical cysts
17, 47

. The results of 

both achieved high accuracy in relation to dentists, with an accuracy of 88% and precision of 99.8%. 

6) Validation Tests 

Among the 26 retrospective studies reviewed, 17 applied a hold-out validation test, five implemented a five-fold 

cross-validation, two used a 10-fold cross-validation, and only one utilised a leave-one-out validation test. Only one 

study compared the effectiveness of these validation methods on the accuracy of AI models. Yilmaz et al.
 45

 reported 

that the highest accuracy was achieved with the 10-fold cross-validation at 100%, followed by the split-sample (or 

hold-out test) at 96% and, lastly, leave-one-out cross-validation at 90%. 

7) Duration Performance 
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Ariji et al.
 26

 reported that their model, DetectNet, required 3 hours for training, 13 seconds for validation and 13 

seconds for each testing session. Yang et al.
 25

 calculated the average time to evaluate 181 images and revealed that 

oral surgeons and general dentists took an average of 33.8 minutes, while their model, YOLOv2, provided real-time 

detection capabilities. Liu et al.
 37

 achieved an average processing time of 0.15 seconds per image using their 

models. Similarly, Lee et al.
 38

 reported that their DenseNet model required only 0.06 seconds per sample during 

testing. 

B. Limitations of Artificial Intelligence (AI) Models 

Across the reviewed studies, several limitations of using AI were identified. Computational complexity is a 

significant challenge, as noted by Rao et al.
 27

, with many models requiring advanced and faster hardware to function 

effectively. As highlighted by Cai et al.
21

, the reliance on single-centre samples, which means the collection of data 

from a single hospital or institute, limits the generalisability (the ability of the AI model to perform well on new and 

unseen data) of findings, thus emphasising the need for multicentre cohorts for more robust validation. Small sample 

sizes, as mentioned by Berne et al.
 32

, often lead to concerns about overfitting and the reliability of a model’s 

generalisability. Additionally, the interpretability of DL models, another concern raised by Berne et al.
 32

, remains an 

issue, making it difficult to understand and trust their decisions in clinical settings. Variability in data quality, such 

as image clarity, significantly impacts model performance, as seen in Mohanty et al.
 48

, thus necessitating consistent 

data standards. Finally, diverse validation methods reveal differences in accuracy, as reported by Yilmaz et al.
 45

, 

underscoring the need for standardised validation approaches to ensure consistent and reliable results. 

1) Application of Artificial Intelligence (AI) in Clinical Settings 

Watanabe et al.
 36

 emphasised the need for extensive and more training datasets to reduce error effects. In addition, 

improved network architecture may pave the way for clinical applications. Endres et al.
40

 highlighted the regulatory 

constraints and questions regarding whether AI predictions influence clinicians’ responses and patients’ trust and 

whether these effects will evolve over time with confidence in AI. Studies, such as Cai et al.
21

, that employed 

retrospective designs may not provide the strongest evidence compared to prospective studies, potentially hindering 

the implementation of AI in clinical practice. Bispo et al.
 43

 stated that, even though their model demonstrated high 

diagnostic value, their practical application remains limited. This is primarily due to the time-consuming nature of 

the segmentation and training processes, coupled with the high computational costs involved, which pose substantial 

limitations to their widespread use. 

2) Risk of Bias in Included Studies 

We used Cochrane’s tool ROBINS-I to assess the risk of bias in each individual study (presented in Figure 3 and 

Figure 4), which are summarised in Table 1in the Appendix 
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Figure 5. Risk of bias graph: review authors' judgements about each risk of bias item presented  

as percentages across all included studies. 

Most of the included studies had moderate bias due to confounding factors and the selection of participants. Only 

one study, published by Frydenlund et al.
49

, had critical risk bias due to missing data. However, all studies had low 

risks of bias in the classification of interventions and deviations from intended interventions. 

Discussion 

Oral and maxillofacial cysts are epithelial-lined lesions that may cause infection, pain, or bone expansion, often 

affecting adjacent anatomical structures. However, most are asymptomatic and found incidentally on radiographs. 

Aside from periapical cysts, which are linked to dental caries, most cysts lack a well-defined etiology. 

Diagnosing these lesions is complex due to overlapping clinical and radiographic features. Accurate diagnosis 

typically requires clinical evaluation, imaging, and histopathological confirmation. The emergence of artificial 

intelligence (AI) offers a promising tool that may enhance diagnostic accuracy and reduce diagnostic time. 

Interest in AI has surged globally. Our review included studies from 1975 to 2024, though no AI-based diagnostic 

research on oral cysts was found before 2014. Notably, publications have increased recently, with six studies 

released in the first half of 2024 alone. This trend may reflect growing awareness of AI and increased productivity 

during the COVID-19 pandemic. Most studies were from East Asia, particularly China and South Korea, suggesting 

regional leadership in dental AI research. 

All included studies used standard AI performance metrics: 

 Accuracy: Overall correctness of model predictions. 

 Sensitivity (Recall): Ability to correctly identify positive cases. 

 AUC: Model’s ability to distinguish between classes. 

 F1-score: Harmonic mean of precision and recall—especially useful for imbalanced datasets. 

No single AI model demonstrated flawless performance across all metrics. For example, Yang et al.
 25

 reported that 

YOLOv3 achieved a 0.7 precision using a relatively simple neural network architecture. More recently, Rasic et al.
 

39
 introduced YOLOv8, which significantly improved performance using 401 layers and over 45 million parameters. 

Most studies applied AI to orthopantomogram (OPG) images, with only five using CBCT. Although both modalities 

yielded good results, Lee et al.
 46

 found CBCT superior for detecting cysts, though OPG remains more accessible 

and involves lower radiation. 

Studies by Kise et al.
17

 and Lee et al.
 47

 evaluated AI detection of nasopalatine duct cysts, comparing AI models with 

general practitioners and residents. Results were promising, but further research involving experienced oral surgeons 

is needed to validate AI’s clinical utility across expertise levels. 

A common limitation was reliance on single-centre datasets, which may reduce generalisability. Multi-centre 

studies, such as those by Feher et al.
 35

 and Mohanty et al.
 48

, provide stronger evidence and should be encouraged. 

Another key challenge is dataset size. To address this, many studies used techniques like transfer learning and fine-

tuning, which adapt pretrained models for specific tasks
21,25, 47

. These methods save time and reduce overfitting, 

making them valuable when data are limited. 

The so-called "black box" nature of AI remains a concern. Kise et al.
17

 noted the lack of transparency in how models 

reach decisions. To improve safety and explainability, regulatory bodies like the MHRA, FDA, and Health Canada 

have issued joint guidelines for best practices in machine learning
29

. 

We excluded two recent systematic reviews by Tobias et al.
53

 and Shrivastava et al.
54

, as they did not address 

histopathology or nonodontogenic cysts. Our review is more comprehensive, covering both radiographic and digital 
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histological studies. However, both reviews reported high heterogeneity among studies, which aligns with our 

observations. 

Currently, performing a robust meta-analysis in this field is challenging due to wide variability in models, datasets, 

and evaluation metrics. As Cai et al.
21

 suggest, future prospective studies and, eventually, randomized controlled 

trials are needed to assess AI’s clinical value in diagnosing oral and maxillofacial cysts. 

Our review has several limitations. Only two databases were searched, which may have excluded relevant studies. 

Expanding the search scope would increase comprehensiveness. Additionally, the Risk of Bias assessment was 

conducted by a single reviewer, which may introduce subjectivity. Collaborative or blinded assessments could 

strengthen reliability. 

Conclusion 

This literature review examined 26 retrospective studies on the diagnosis of oral and maxillofacial cysts using 

artificial intelligence (AI). The findings indicate a growing awareness and potential for AI in diagnosing oral 

lesions. AI models demonstrated high accuracy in both machine learning and deep learning across radiographic and 

digital histopathological settings. 

However, several limitations were identified, including limited datasets, lack of explainability, variations in data 

quality, and the absence of standard validation tests. Oral and maxillofacial cysts pose significant health risks if not 

detected early. AI models have shown promising effectiveness and speed in detecting and diagnosing both simple 

and complex cysts. To enhance the reliability of AI in diagnosing oral and maxillofacial cysts, future research 

should focus on several key areas. Larger and more diverse datasets are needed to improve generalizability, while 

longitudinal and multi-centre prospective studies will provide comprehensive validation across different settings. 

Involvement of experienced clinicians as benchmarks, standardized validation protocols, and improved 

explainability are crucial for trust and accuracy. Additionally, randomized clinical trials should be conducted where 

applicable to assess the real-world impact of AI on clinical outcomes, aligning with governmental health guidelines. 

A systematic review with meta-analysis on YOLO models in oral cyst diagnosis could reduce heterogeneity and 

elevate study quality, given the multiple studies that have utilized YOLO models in this context.  Interdisciplinary 

collaboration will also ensure the development of clinically relevant AI tools.  
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