

1 A Hernia You Don't Palpate: CT Diagnosis of Obturator Hernia

2 Abstract:

3 **Background:** Obturator hernia is an uncommon type of pelvic hernia but carries the highest
4 mortality among abdominal wall hernias, largely due to delayed diagnosis. Clinical
5 presentation is often nonspecific, and both clinical examination and imaging may pose
6 diagnostic challenges. Early recognition and surgical intervention are crucial for improving
7 outcomes.

8 **Materials and Methods:** We report the case of a 59-year-old woman who presented with
9 intermittent features of small bowel obstruction accompanied by right medial thigh pain.
10 Physical examination revealed no palpable hernia at the usual hernial orifices. Contrast-
11 enhanced computed tomography (CECT) of the abdomen and pelvis was performed as part of
12 the radiologic evaluation.

13 **Results:** CT imaging suggested a right incarcerated obturator hernia as the likely cause of
14 bowel obstruction with the herniated bowel segment passing through the obturator foramen
15 and lying within the obturator canal between the pectenous and obturator muscles.

16 **Conclusion:** Obturator hernia should be considered in elderly patients presenting with bowel
17 obstruction, particularly when symptoms are intermittent or associated with medial thigh
18 pain. CT plays a pivotal role in early diagnosis and reducing morbidity and mortality. A high
19 index of clinical suspicion combined with prompt radiological assessment and early surgical
20 management remains essential for optimal patient outcomes.

21

22 **Keywords:** medial thigh pain; obturator hernia; small bowel obstruction

23

24 1. Introduction

25 Most external abdominal wall hernias commonly occur in the inguinal region as
26 inguinal or femoral hernias. In contrast, obturator hernias are rare and frequently overlooked
27 pelvic hernias. They constitute approximately 0.07–1% of all hernias and account for 0.2–
28 1.6% of cases of mechanical small bowel obstruction¹. Despite their low incidence, obturator
29 hernias are associated with the highest mortality among abdominal wall hernias, ranging from
30 13% to 40%, primarily due to nonspecific clinical presentation and delayed diagnosis^{1–3}. The
31 increasing use of computed tomography has improved preoperative detection; however, early
32 recognition remains challenging, particularly in elderly patients^{2–3}.

33 The clinical presentation of obturator hernia is frequently subtle and nonspecific,
34 often leading to delayed or missed diagnosis. Unlike more common abdominal wall hernias, a
35 palpable groin mass is usually absent, and clinical examination may be unremarkable¹.
36 Imaging findings can also be challenging, as early or intermittent herniation may not be
37 readily apparent, particularly in the absence of bowel obstruction³. This combination of vague
38 symptomatology, limited clinical signs, and potential imaging pitfalls, together with the
39 associated high mortality rates, makes obturator hernia a serious yet easily overlooked cause
40 of abdominal pain and bowel obstruction, especially in elderly patients³.

41

42 2. Case Presentation

43 A 59-year-old thin, frail woman presented with a 9-day history of nausea, vomiting, 44 constipation, and progressively worsening right lower quadrant abdominal pain radiating to 45 the right medial thigh. On physical examination, the abdomen was soft with mild distension 46 and localized tenderness in the right iliac fossa. No palpable abdominal or groin masses were 47 detected, and examination of all hernial orifices was unremarkable.

48 Initial evaluation with a plain abdominal radiograph demonstrated multiple dilated 49 small bowel loops and minimal gas within the large bowel, findings consistent with small 50 bowel obstruction(**Figure A**). To further delineate the underlying cause, a contrast-enhanced 51 computed tomography (CECT) scan of the abdomen and pelvis was performed. CT imaging 52 revealed markedly dilated jejunal and proximal ileal loops showing multiple air–fluid levels, 53 with a maximum luminal diameter of approximately 3.3 cm. The distal ileal loops were seen 54 herniating through the right obturator foramen into the pelvis via a narrow neck measuring 55 approximately 12 mm, highly suggestive of an incarcerated right obturator hernia(**Figure B** 56 and **C**). The large bowel loops appeared collapsed, supporting the diagnosis of a mechanical 57 small bowel obstruction.

58 Based on these imaging findings, patient was taken for surgical exploration. 59 Exploratory laparotomy confirmed the presence of an obturator hernia, with herniation of an 60 ileal segment passing anterior to obturator externus muscle and beneath the pectenous muscle 61 within the obturator canal. Reduction of herniated ileal loops was successfully achieved at 62 approximately 7 cm proximal to ileocecal junction. Primary closure of the obturator defect 63 was performed, along with repair of an associated bowel perforation. She had an uneventful 64 postoperative course and was discharged in stable condition on the sixth postoperative 65 day. Retrospective review of imaging revealed that high axial CT sections emphasize the 66 importance of careful evaluation of the obturator canal on multiplanar reformatted images.

67

68 **Figure A:** Plain abdominal X-ray showing small bowel obstruction.

69

70

71 **Figure B:** Axial CT pelvic image showing the small bowel loop (indicated by #) descending
72 into the right obturator canal anterior to the obturator externus muscle.

73

74

75 **Figure C:** Coronal CT pelvic image with small bowel loop (indicated by #) descending into
76 the right obturator canal.

77 **3. Discussion**

78 Obturator hernia is a rare form of pelvic hernia in which abdominal contents protrude
79 through the obturator canal, a narrow fibro-osseous passage that transmits the obturator nerve
80 and vessels¹. Owing to its deep anatomical location and lack of superficial signs, this entity is
81 frequently overlooked during clinical examination. Obturator hernias predominantly occur in
82 elderly, thin women, a predisposition attributed to several anatomical and physiological
83 factors, including a wider female pelvis, a relatively larger obturator canal, multiparity, and
84 age-related loss of protective preperitoneal fat within the obturator canal¹. Progressive
85 weakening of the pelvic tissues and atrophy of the surrounding muscles further contribute to
86 the development of herniation in this population.

87 Because of this characteristic demographic distribution, obturator hernia has been
88 classically referred to as the “little old lady’s hernia”¹. Recent studies continue to support this
89 epidemiological profile, emphasizing that advanced age, low body mass index, and chronic
90 conditions associated with increased intra-abdominal pressure significantly increase the risk
91 of hernia formation⁴. Despite advances in imaging, the rarity of the condition and its

92 nonspecific presentation continue to contribute to delayed diagnosis, underscoring the
93 importance of maintaining a high index of suspicion in susceptible patients⁴.

94 Clinically, obturator hernias are difficult to diagnose as they often lack a palpable
95 groin mass and present with nonspecific symptoms of small bowel obstruction such as
96 nausea, vomiting, abdominal pain, and constipation¹. Obstruction is frequently intermittent,
97 commonly attributed to Richter's-type herniation, where only a portion of the bowel wall is
98 involved, further contributing to diagnostic delay¹. Compression or irritation of the obturator
99 nerve by the hernial sac may result in medial thigh pain, known as the Howship–Romberg
100 sign, which, although not universally present, is a valuable clinical clue when identified¹.

101 Computed tomography (CT) is widely accepted as the primary imaging modality for
102 the preoperative diagnosis of obturator hernia and has been shown to significantly reduce
103 morbidity and mortality by enabling early and accurate detection³⁻⁴. CT allows direct
104 visualization of the herniated bowel segment and precise delineation of the obturator canal
105 anatomy. The hallmark imaging feature is the presence of bowel loops herniating through the
106 obturator foramen, typically located between the pectineus muscle anteriorly and the
107 obturator externus muscle posteriorly, a finding best demonstrated on low axial sections and
108 multiplanar reformatted images³.

109 Recent studies continue to emphasize the critical role of computed tomography (CT)
110 in the preoperative diagnosis of obturator hernias, particularly in patients presenting with
111 atypical symptoms or intermittent features of bowel obstruction⁵. CT allows precise
112 visualization of bowel loops passing through the obturator canal and offers critical anatomical
113 information that facilitates timely surgical planning and intervention. Nevertheless, several
114 reports caution that radiologic findings may occasionally be limited or underestimate
115 associated complications, reinforcing the importance of correlating imaging with clinical
116 assessment and intraoperative findings to guide definitive management⁵.

117

118

119 **4. Conclusions**

120 Given the high morbidity and mortality associated with obturator hernias, rapid
121 clinical evaluation combined with timely radiological assessment, followed by early surgical
122 repair, is essential for optimal outcomes. Clinicians should maintain a high index of suspicion
123 for obturator hernia in patients presenting with bowel obstruction, particularly when
124 symptoms are intermittent or accompanied by medial thigh pain. A thorough assessment of all
125 hernial orifices, including screening for the Howship–Romberg sign, should not be
126 overlooked. When inguinal and femoral hernias have been excluded on clinical examination,
127 early CT imaging should be strongly considered. This approach facilitates quicker diagnosis
128 and reduces the risk of complications such as bowel ischemia and the need for intestinal
129 resection during surgery.

130

131 **Acknowledgements**

132 **Author Contributions:** Writing—original draft preparation, R.S., V.K. and A.M.; writing—
133 review and editing, S.B., K.V., R.S. and R.K.K. All authors have read and agreed to the
134 published version of the manuscript.

135 **Funding:** This research received no external funding.

136 **Institutional Review Board Statement:** This study was performed in accordance with the
137 recommendations of the Institutional Review Board of Geetanjali Medical College and
138 Hospital (Udaipur, Rajasthan, India).

139 **Informed Consent Statement:** The patient provided written informed consent.

140 **Data Availability Statement:** Data will be available at the hospital of the study. Contact the
141 authors for future access.

142 **Conflicts of Interest:** The authors declare no conflict of interest.

143

144 **References**

- 145 1. Mantoo SK, Mak K, Tan TJ. Obturator hernia: diagnosis and treatment in the modern
146 era. *Singapore Med J.* 2009;50(9):866–70.
- 147 2. Zhang H, Cong JC, Chen CS. Obturator hernia: a diagnostic challenge in elderly
148 patients. *Int J Surg Case Rep.* 2018;42:97–100.
- 149 3. Kulkarni SR, Punamiya AR, Rathod J. Role of CT in the diagnosis of obturator
150 hernia. *J Clin Diagn Res.* 2019;13(6):TD01–TD03.
- 151 4. Colsoul O, De Backer A, Vandenbroucke F. Small bowel obstruction caused by
152 obturator hernia. *J Belg Soc Radiol.* 2024;108(1):90.
- 153 5. Qian H, Chen Z. Clinical analysis of 18 cases of obturator hernia. *J Minim Access
154 Surg.* 2025;21(4):347–352.

155