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GLOBAL ATTRCTIVITY AND POSITIVITY SOLUTIONS FOR
NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS WITH
MEASURES OF NONCOMPACTNESS

ABSTRACT: We prove in this paper some existence theorems concerning the
attractivity and positivity of the solutions for nonlinear functional differential
equations using the techniques of some measures of noncompactness. Our study
is in the Banach space of real-valued functions defined, continuous and bounded
on unbounded intervals together with the applications of a measure theoretic
fixed point theorem of Dhage[1].Our study in this paper, it is new to the literature
as regards positivity of the solutions for nonlinear functional differential
equations.

1. INTRODUCTION

Nonlinear differential equations and integral equations with bounded intervals
have been studied in the literature as various aspects existence, unigqueness,
stability and externality of solutions. However the study of nonlinear differential
and integral equations with unbounded intervals is new and exploited for the new
characteristics of attractivity and asymptotic attractivity of solutions. There are
two approaches for dealing with these characteristics of solutions one is classical
fixed point theorems involving the hypothesis from analysis and topology, the
second is the fixed point theorems involving the use of measure of
noncompactness approaches has some advantages and disadvantages over the
others Dhage[2,3]. In this paper, we prove some theorems on the existence and
global attractivity and positivity of solutions for functional differential equations
by using fixed point theorems involving the use of measures of noncompactness.
Our study will be situated in the Banach space of real-valued functions which are
defined, continuous and bounded on the real half axis R,. The main tool used in
our considerations is the technique of measures of noncompactness and fixed
point theorem of B.C.Dhage type [1]. The assumptions imposed in our main
existence theorems admit several natural realizations. These realizations are
constructed with help of a certain class of sub additive functions. The results
obtained in this paper generalized and extend several ones obtained earlier in a lot
of papers concerning asymptotic stability of solutions for some functional integral
equations [cf.1,4,5,6,7]. Our approach consists mainly in the possibility of
obtaining the global attractivity, asymptotic attractivity and positivity of solutions
for considered nonlinear functional Differential equations.

2. AUILIARY RESULTS
At the beginning we present some basic facts concerning the measures of
noncompactness. We accept the following definitions of the concept of a measure
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of noncompactness given in Dhage[1].The details measures of noncompactness
appear in Banas and Goebel[8] and the references therein.

Let E be a Banach space and let 2, (E)be denote the class of all non-empty
subsets ofE with property P. Here P may be P, = closed, P,4 = bounded,
Pp = relatively compact. Thus, Py (E), Ppq (E), Popa (E) and P, (E)denotes
the classes of closed, bounded, closed and bounded and relatively compact
subsets of E respectively.

A function  dy(A,B) = max{ chd(A,B), ;nd(b,A), } 2.1
Satisfies all the conditions of a metric on P4 (E) is called Hausdrorff-Pompeiu
metric on E, where d(a, B) = inf{|la — b||: b € B}. It is known that the hyperspace
(P4(E),dy) is a complete metric space. In this paper, we adopt the following
axiomatic definition of the measure of noncompactness in a Banach space given
by Dhage[1]. The other useful forms appear in Banas and Goebel[8] and the
references therein. We need the following definitions in the sequel.

Definition:2.1. A sequence {A,} of non-empty sets in P.,q(E) is said to
converges to a set A, called the limiting set if dy(A,,A) >0 as n— oo. A
mapping w: Pyq (E) » R* is called continuous if for any sequence {A,} in
Pyq (E) we have

di (Ay, A) = 0 = [u(A,) — p(A)| - Oasn — co.

Definition:2.2. A mapping w:P,q(E) » R* is said to be nondecreasing if
A, B € P4 (E) are any two sets with A € B, then p(A) < u(B), where< is a order
relation by inclusion in P4 (E).
Definition:2.3. A function p:P,4(E) > Rt is called a measure of
noncompactness if it satisfies

i ¢ #p(0) © Ry (B),

ii. pn(A) = pn(A), where A denotes the closure of A,

iili. u(convA) = u(A), where convA denotes the convex hull of A,

Iv. wisnondecreasing, and

v. If{A,}is a decreasing sequence of sets in P,4 (E) such that

LJm o (A,) = 0, then the limiting set A, = 12 A, is non-empty.

The family ker p described in (i) is said to be the kernel of the measure of
noncompactness p and kerp = {A € Pyq(E): u(A) = 0} € P, (E). The
measure p is called complete if the ker p of p consists of all possible relatively
compact subsets of E.
The measure p is called sublinear if it satisfies

vi. p(AA) = |Alu(A) for A € R, and

vii. p(A+ B) < u(A) + u(B).
There do exist the sublinear measures of noncompactness on Banach space E.
Observe that the limiting set A, from (v) is a member of family ker . In facts,
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science u(Ay,) < u(A,) for any n, we infer that pn(A,) = 0. There fore
A, € ker .

Definition:2.4. A mapping Q: E — E is called D — set — Lipschitz if there exists
a continuous nondecreasing function ¢: R* — R* such that u(Q(A)) < ¢(n(A))
for all A € P4 (E) with Q(A) € Ppq(E), where ¢(0) = 0. Sometimes we call the
function ¢ to be D-function of Q on E. When ¢(r) = kr,k > 0 then Q is called a
K-set contraction on E. Further if &(r) < r for r > 0, then Q is called a nonlinear
D-set contraction on E.

Theorem:2.1(Dhage[1]): Let C be a non-empty, closed, convex and bounded
subset of a Banach space E, and let Q: C — C be a continuous and nonlinear D-set
contraction. Then Q has a fixed point.

Remark.2.1: Let Fix(Q) denote the set of all fixed points of the operator Q which
belong to c. It can be shown in theorem.2.1 Fix(Q) € kerp. In fact if Fix(Q) ¢
kery, then p(Fix(Q)) > 0 and Q(Fix(Q)) = Fix(Q). Now from nonlinear D-set

contraction, p (Q(Fix(Q))) <Q (u(FiX(Q))) This is a contradiction.
Since ¢(r) < r for r > 0. Hence Fix(Q) € kerp. Our further considerations will
be placed in Banach space BC(R,, R) with standard supremum norm
lIxll = sup{|x(D|:t € Ry}
for our purpose we will use the Hausdorff measure of noncompactness in
BC(R,, R) and is defined as follows. Let us fix a nonempty and bounded subset X
of the space BC(RR,, R) and positive number T. For x € X, e > 0 denote by
w' (x,€) = sup{|x(t) —x(s)|:t,s € [0, T], |t — s| < €}
Next, let us put
w' (X, €) = sup{w'(x,€):x € X}
wp (X) = lime,o o' (X, €).
It is known that w{ is a measure of noncompactness in the Banach space
C([0, T], R) of continuous and real-valued functions defined on a closed and
bounded interval [0, T] in R which is equivalent to Hausdroff or ball measure on
noncompactness in it. Now one has

1
X(X) = 5 wp (X)
For any bounded subset x of C([0, T], R) see Banas and Goebel [3] and the
reference therein. We define
o (X) = lim 3 (X)
Now, for a fixed number t € R, let us denote X(t) = {x(t):x € X},
IX(Il = sup{|x(D)]:x € X}.
and
IX() — cll = sup{[x(t) — c|:x € X}.

Let us consider the function p defined on the family 2,4 (X) by
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Sp, (X) = max{wq(X), lim_,., sup diamX(t)},
p, (X) = max{wg (X), lim¢_,q, sup||X(O) I3,
and 1 (X) = max{wy(X), lim._,, sup||X(t) — cl|}.
For any bounded subset X of BC(R,, R) define
8(X) = sup{lim;_, sup(|x(D)| — x()) : x € X}.
Define the functions pag, Mpa, Meq: Poa (E) = Ry by

Uag (X) = max{p, (X), 8(X)} 2.2
g (X) = max{u, (X), 5(X)} 2.3
e (X) = max{p(X), 8(X)} 2.4

forall X € Pyq(E)
It can be shown as in Banas[4] that the functions p,, My HeHag, Mpg and peg are
measures of noncompactness in the space BC(R,, R). The kerp, kerpy and kerp, of
the measures p, p, and p. consist of non empty and bounded subsets X are locally
equicontinuous on R,.

In order to introduce further concepts used in this article, let us assume that
E = BC(R,, R) and let Q be a subset of X. Let Q: E — E be a operator and consider the
following operator equation in E,

Qx(t) = x(t) 2.5

For all t€ R,. Below we give different characterizations of the solutions for the
operator (2.5) on R,.

Definition:2.5. We say that solutions of equation (2.5) are locally attractive if there
exists a closed ball B,(x,) in space BC(R,, R) for some x, € BC(R,,R) such that for
arbitrary solutions x = x(t) and y = y(t) of equation (2.5) belonging to B, (x,) N Q.
we have
lim,_,, (x(t) — y(t)) =0 2.6
In the case when the limit (2.3) is uniform with respect to the set B, (x,) N Q i.e. when
for each € > 0,3T > 0 such that
Ix() —y(®O] <e 2.7
for all x,y € B.(x,) NQ being solutions of (2.1) and for t > T, we will say that
solutions of (2.5) are uniformly locally attractive on R,.
Definition:2.6. The solution x = x(t) of equation (2.5) is said to be globally attractive if
(2.7) holds for each solutiony = y(t) of (2.5) on Q. In the case when the condition
(2.9) is satisfied uniformly with respect to the set 0 i.e. if for every e > 0,3T > 0 such
that the inequality (2.7) is satisfied for all x,y € Q being the solution of (2.5) and
t = T, we will say that solutions of the equation (2.5) are uniformly globally attractive
onR,.
The following definitions appear in Dhage[2]
Definition:2.7. A line y(t) = ¢ where c a real number is called a attractor for a
solution x € BC(R,,R) to the equation (2.5) if lim,_. (x(t) —c) = 0. In such case
the solution x to the equation (2.6) is called to be asymptotic to the line y(t) = ¢ and
the line is asymptote for the solution x on R,.
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Let us mention that the concepts of global attractivity of solutions are recently
introduced in Hu and Yan[7] while the concepts of local and global asymptotic
attractivity have been presented in Dhage[2]. Similarly, the concepts of uniform local
and global attractivity were introduced in Banas and Rzepka[5].

Next we introduce the new concept of local and global asymptotic positivity of
solution for equation2.5) in BC(R,, R).

Definition:2.8. A solution x of equation (2.5) is called locally ultimately positive if
there exist a closed ball B.(x,) in BC(R,,R) for some x € BC(R,,R) such that
x € B,(x,) and

lim_o [[x(D)| —x(©)] =0 2.8
When for each € > 0,3T > 0 such that
||X(t)| — X(t)| <e€ 2.9

For all x being solutions of (2.5) and for t > T, we will say that solutions of equations
(2.5) are uniformly locally ultimately positive on R,.

Definition:2.9: A solution x € C(R,, R) of equation (2.5) is called globally ultimately
positive if equation (2.9) is satisfied. In this case when the limit (2.8) is uniform with
respective to the solution set of the operator equation (2.5) in C(R,, R). i.e. when for
each € > 0,3T > 0 such that (2.9) is satisfied for all x being solutions of equations of
(2.5) and for t > T, we will say that solutions of equations (2.5) are uniformly globally
ultimately positive on R,.

In the following section we prove the main results of this article.

3. ATTRCTIVITY AND POSITIVITY SOLUTION
Let R be the real line and let R, be the set of non negative real numbers.
Consider the functional differential equation (in short FDE)

%[ﬁ] =g (tx(v(®)) 3.1
forte R, whereff R, XR->R,gR, XR->R,and o, y:R; = R,.
By a solution of the FDE (3.1) we mean a function in C(R,, R) that satisfies the
equation (3.1), where C(R., R) is the space of continuous real-valued functions defined
on R,. For t€ R,, the FDE (3.1) reduces to the functional integral equation (in short
FIE)

x(9) = q(®) + £ (£x(a®)) + [ Vg (6 x(w(s)) ) ds 3.2

where : R, - R, B: R, = R;.

The type of integral equation (3.2) has been studied in Dhage[3] and references given
therein. For global attractivity of solutions via classical hybrid fixed point theory
observe that the type of above integral equation (3.2) includes several classes of
functional, integral and functional integral equations considered in the literature
(cf[1,4,5,6,7] and references therein). Let us also mention that the following type of
functional integral equation considerd in Banas and Dhage[6],



207 x(t) = f(t,x(a(t))) + foﬁ(t) g (t, s,x(u)(s))) ds 3.3
208 is also special case of the equation (3.2) which further includes the functional integral
209  equation considered in Banas and Rzepk[5] where a(t) = B(t) =y(), t € R,.
210 Therefore FIE(3.2) means FDE(3.1) is more general and so the attractivity and
211 positivity of this paper include the attractivity and positivity results for all the above
212 mentioned integral equations which are also new to the literature.
213 The equation (3.2) will be considered under the following assumptions.
214 (Ao) The functions a, 8, y: R, — R, are continuous and satisfy t < a(t) for t € R,.
215 (Ajp) The function q: R, = R is continuous and bounded.
216 (Ay) The function f: R, X R = R is continuous and there exists a bounded function
217 £: R, = R with bound L and a positive constant M such that
£()max{|x — y|}

It %) — £yl = 7 max{lx = y[}
218 for t € R, and for x,y € R. Moreover, we assume that L. < M.
219  (As3) The function t — f(t, 0) is bounded on R, with F, = sup{|f(t,0)|: t € R, }.
220 (A4) The function g: R, X R x R = R is continuous and there exists a continuous
221 functionb: Ry X Ry — R, such that |g(t,s,x)| < b(t,s) for t,s €R,.

222 Moreover, we assume that lim,_,, foﬁ(t)b(t, s)ds = 0.
223  Remark.3.1: Hypothesis (A,) is satisfied if the function and satisfied the condition,

£(0)1x—yl
224 It x) — £ )| < 53 3.4

225 forall te R, and x,y € R, where L < M, and the function ¢ is defined as in hypothesis
226 (A,) which further yields the usual Lipschitz condition on the function f,

227 1f(tx) — f(ty)l < % Ix —yl 35
228 forall te R, and x,y € R provided L. < M. Our hypothesis (A,) is more general that
229  existing in the literature.

230 We will proceed for our main results.

231 Theorem:3.1: Under the above assumptions (Ao)- (A4), FDE (3.1) has at least one
232 solution in the space BC(R,, R). Moreover, solutions of the equation FDE (3.1) are
233 globally uniformly attractive on R,.

234 Proof: Consider the operator Qdefined on the space BC(R,, R) be the formula

235 Qx(t) = q(x) + f(t,x(a(t))) + foﬁ(t)g (t, s,x(a(s))) ds 3.6
236 Observe that for any x € BC(R,, R) the function Qx is continuous on R,. Moreover for any
237  fixed t € R, we obtain

238 |Qx(D)| < Iqx)| + |f(t,x(a(t)))| + foﬁ(t) |g(t, s,x(oc(s)))| ds

239 < |q(x)| + |f(t,x(a(t))) — f(t, 0)| + |f(t,0)| + foﬁ(t)b(t, s)ds
240 < llqll + % + |f(t, 0)] + fOB(t)b(t, s)ds
LIx]|
< llqll + + Fo +v(t)

M + [I]]
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M+ (||l
where v(t) = foﬁ(t)b(t, s)ds, V = sup{u(t): t € R, } is finite by (As).

From the above estimate we deduce that
lQll < llql + L+ Fo +V 3.7

for all x € BC(R,, R). This means that the operator Q transforms the space BC(R,, R) into
itself from (3.7) the operator Q transforms continuously the space BC(R,, R) into the closed
ball B,(0), where r = ||q]| + L + F, + V. Because of this fact, the existence of solutions for
the FDE (3.1) is global in nature.

We will consider the operator Q as a mapping from B,(0) into itself. New we show
that the operator Q is continuous on the ball B, (0). Let € > 0 and take x,y € B..(0) such that
||x — yl|| < €. Then we get

jQx(t) = Qv < |f(tx(a®))) = £ (. y(a(®) )]
+f08(t) |g(t, s,x(a(s))) - (t s, y(a(s)))| ds
< MT;’;)E'&)E?&B) yi?it()t))l)}” Js PO Hg (t s, x(a(s)))| + |g (t, s, y(a(s)))” ds

Lilx—yll B()
< Xyl
YT + Zf b(t,s)ds

< e+ 2v(b).
Hence, in virtue of assumption (A,) we infer that there exists T > 0 such that v(t) < € for
t > T. Thus for t > T from (3.3) we derive that

|Qx(t) — Qy(D)| < 3e 3.8
Further let us assume that t € [0, T] then evaluating similarity s above we get
x(® - vl < e+ [P [g (b5,x(a(®)) - g (1.5, y(a())| ds
<e+ fOB(t) w, (g €)ds
< eproy (g€
Where By = sup{B(t):t € [0, T]} and
(*)IT(g' E) = Sup{lg(tr S, X) - g(t, S, Y)l te [01 T], S € [01 BT]:X'Y € [—I', r]' IX - Y| < E}

< lqll + +F,+V

3.10
Obviously we have that 1 < co. Moreover from the uniform continuity of the function
g(t,s,x) on the set [0, T] x [0, Br] X [—r, r]. we derive that w[ (g,€) — 0 as e - 0. Now from
(3.9),(3,10) and above established facts we conclude that the operator Q maps continuously
the closed ball B..(0) into itself.
Further on let us take nonempty subset X of the ball B,(0). Next T > 0 and € > 0, let
us choose x € X and ty,t; € [0, T] with |t; — t;] < e. Without loss of generality we may
assume that t; < t,. Then taking into account our assumptions, we get

Q) (t2) — (O] < la(tz) — ale)] + |F (2, x(a(t2))) = F(tr, x(a(t)) )|
+ |f08(t2) g (t2, S, X(OC(S))) ds — foﬁ(tZ) g (tl, S,X(a(s))) ds| +
|f06(t2) g (tl, S, x(a(S))) ds — fOB(tl) g (tl, s,x(a(s))) ds|
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Lmax{|x(a(t,)) — x(a(t)[}

M + max{|x(a(t;)) — x(a(t))|}
B(t2)

[ Je(sn(e) - g (s x(a)| ds
g (bsx(a()))| ds]

] + w; (fe) + fOBT w; (g €)ds + o' (B, €)Gy 311

< w'(qge)+ + wl (f €)

0
t
+ |fﬁﬁ(i12))
Lmax {|mT(x,mT(o¢,e))|}
M +max {|mT(x,u)T((x,e))|
Where w; (q,€) = sup{lq(ty) — q(ty)]:ty, t; € [0, T], [ty — ta] <€}
w! (fe) = sup{|f(tzjx) - f(tl,x)|:t1,t2 €[0,T] Ity —t;] < exy € [-r,1]}
ty,s,x) — g(ty,s,x)|:t1,t, € [0, T], |ty — t5| <€,
ol (g €) = sup{lg( 25,%) — g(ty,s,x)| 1S E2 [0’[BT]’]X,|yle [_21[‘ - }
Gt = sup{lg(t,s,x)|:t € [0, T],s € [0, Br],x € [-1,1]}.
from the above estimate we derive the following
Lmax {|u)T(x,u)T(a,e))|}
M +max {|u)T(X,u)T((x,e))H

<w'(qe€) +

o’(Qx,€) < w'(q,€) + + o) (fe) + fOBT o) (g €)ds + w' (B, €)Gk

3.12
Observe that w'(q,e) = 0,w! (fe) » 0 and w) (g €) = 0 as € » 0, which is a simple
consequence of the uniform continuity of the functions g, f, g on the set [0, T],
[0, T] X [-r,r] and [0,T] x [0, Br] X [—r, r] respectively. Moreover it is obvious that the
constant G is finite and w”(a,€) = 0, " (B,€) = 0 as e —» 0. Thus linking the established

facts with the estimate (3.12) we get,

T Lo (X)
W, (Qx) < Mrwl(0 3.13
Now, taking into account our assumptions, for fixed t € R, and for x,y € X we deduce the
following
1Qx() — Qy(1)] < = B Ol

M-+max {|x(a () =y (a(®))[}

foB(t) [lg (t, S, x(y(s)))| + |g (t, S, y(y(s)))” ds

Lmax {|x(a(©))—=y(a(D)|}
= Mrmax (@@ v @) T 20(®

Lmax {diamX (« (t))}
— M+max {diamX (cx(t))} + ZU(t)

Hence we obtain
diam(Qx)(t) <

Lmax {diamX (a (1))}
M +max {diamX (oc(t))}
In view of assumptions (A,) and (A,) yields

+ 2v(t)

Llim {50 Sup max {diamX (a(t))}
M+lim {50 SUp max {diamX (a(t))}
Llim (e sup diamX (t)
~ M+lim {5 sup diamX (t)
Further using the measure of noncompactness p, defined by the (2.2) and keeping in mind
the estimate (3.13) and (3.14), we get

Ha (QX) = maX{wO (QX)’ lirnt—)oo sup dlamQX(t)}

lim,_,, sup daim(Qx)(t) <

3.14
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Lwgo(X L1lim ¢ sup diamX (t
Smax{ o()’ m tooo p . ()}
M+wo(X) M+lim e sup diamX (t)
Lmax {0 (X),lim {5c sup diamQX ()}
— M+max {w(X),lim {-e sup diamQX (t)}

_ Lpa (X)
T MAr (X) 3.15

Since L < M by of assumption (A,) from the above estimate, p,(QX) < ¢ (1. (X)) where

o(r) = ML—; < r for r > 0. Hence we yield theorem (2.1) to deduce that the operator Q has a

fixed point x in the ball B,(0). Obviously x is solution of the FIE (3.2) means solution of
FDE (3.1). Moreover taking into account that the image of the space BC(R,, R) under the
operator Qis contained in the ball B,(0) we infer that the set Fix(Q) of all fixed points of Q is
contained in B,(0). Obviously, the set Fix(Q) of all contains all solutions of the FIE (3.2)
means FDE (3.1). From remark (2.1) the set Fix(Q) belongs to the family kerp,. Now, taking
into account the description of sets belonging to kerp, we deduce that all solutions for the
FIE(3.2) are globally uniformly attractive on R,. This completes the proof.

Remark:3.2: When q = 0,f(t,x) and g(t,s,x) in our theorem 3.1 we obtain the global
attractivity result for the FDE(3.1). Note that the global attractivity result for (3.3) is also
proved in Banas and Dhage[6] under the same hypothesis, but under the stronger hypothesis
of (A,) that L. < M. Therefore, our theorem 3.1 generalize and improve the existence results
of Dhage[3] and Banas and Dhage[6] and thereby the results of Banas and Rezpka[5] under
weaker conditions with a new measure of noncompactness in the Banach space BC(R,, R).

To prove next result concerning the asymptotic positivity of the attractive solution we
need the following hypothesis in the sequel.
(As) The functions q and f satisfy

lim_o [|q(t)| — q(t)] = 0 and lim_,., [|f(t,x)| — f(t,x)] = 0 for all x € R,.

Theorem:3.2: Under the hypotheses of theorem 3.1 and (As), the FDE (3.1) has at least one
solution on R,. Moreover, solutions of the FDE(3.1) are uniformly globally attractive and
ultimately positive on R,.
Proof: Consider the closed ball B,.(0) in the Banach space BC(R,, R), where the real number
r is given as in the proof of theorem 3.1 and define a mapping Q: BC(R,, R) —» BC(R,, R)
by (3.7). Then it is shown as in the proof of theorem 3.1that Q defines a continuous mapping
from the space BC(R,, R) into ball B,(0). In particular, Q maps B, (0) into itself. Next we
show that Q is a nonlinear-set-contraction with respective to the measure p,q of
noncompactness in Banach space BC(R,, R). We know that for any x € R.

Now for any x € B,(0), one has

101 - Qx(®] < [la®] - a®)] + [|f (6 x(a(0))| - £ (6 x(o(0))|
+ fOB(t) Hg(t, s,x(y(s)))| - g(t, s,x(y(s)))] ds
< [la@®1 = q®] + ||£ (&.2(@®))| - £ (&, 2(«®))| + 2000,

Taking the limit supremum over t, we have
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363
364
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375
376
377

lim_, sup||Qx(t)| — Qx(t)| < lim, sup|lq(®)| — q(©)| +

|f(t, x(a(t)))| — f(t, x(a(t)))|

+2 lim_,o, sup v (t)

sup

lim_

=0
for all x € B,(0). This implies that §(Qx) = 0 for all subsets X of B,(0). Further, using the
measure of noncompactness p, defined by the formula (2.2) and keeping in mind the
estimates (3.13) and (3.14), we obtain

Had (QX) = max{uad (QX)’ S(QX)}
Lu, (X) }
M+, (X))
_ Lua (X)
T M (X)
Litag (X)
T Mpyg X)
Since L < M in view of assumption (A,), from the above estimate we infer that p,4 (QX) <

< max{

$(paq (X)), where ¢(r) = ML—; < r for r > 0. Hence we apply theorem 2.2 to deduce that the

operator Q has a fixed point x in the ball B.(0). Obviously x is a solution of the FDE (3.1).
Moreover, taking into account that the image of the space BC(R,, R) under the operator Q is
contained in the ball B, (0) we infer that the set Fix(Q) of all fixed points of Q is contained in
B, (0). Obviously, the set Fix(Q) contains all solutions of all the equation (3.1). On the other
hand, from remark 2.1 we conclude that the set Fix(Q) belongs to the family kerp,y we
deduce that all solutions of the equation (3.1) are uniformly globally attractive and positive
on R,. This completes the Proof.
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