
 

 

GLOBAL ATTRCTIVITY AND POSITIVITY SOLUTIONS FOR 1 

NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS WITH 2 
MEASURES OF NONCOMPACTNESS 3 

 4 
 5 
 6 

ABSTRACT: We prove in this paper some existence theorems concerning the 7 

attractivity and positivity of the solutions for nonlinear functional differential 8 

equations using the techniques of some measures of noncompactness. Our study 9 

is in the Banach space of real-valued functions defined, continuous and bounded 10 

on unbounded intervals together with the applications of a measure theoretic 11 

fixed point theorem of Dhage[1].Our study in this paper, it is new to the literature 12 

as regards positivity of the solutions for nonlinear functional differential 13 

equations. 14 

 15 

1. INTRODUCTION 16 

Nonlinear differential equations and integral equations with bounded intervals 17 

have been studied in the literature as various aspects existence, uniqueness, 18 

stability and externality of solutions. However the study of nonlinear differential 19 

and integral equations with unbounded intervals is new and exploited for the new 20 

characteristics of attractivity and asymptotic attractivity of solutions. There are 21 

two approaches for dealing with these characteristics of solutions one is classical 22 

fixed point theorems involving the hypothesis from analysis and topology, the 23 

second is the fixed point theorems involving the use of measure of 24 

noncompactness approaches has some advantages and disadvantages over the 25 

others Dhage[2,3]. In this paper, we prove some theorems on the existence and 26 

global attractivity and positivity of solutions for functional differential equations 27 

by using fixed point theorems involving the use of measures of noncompactness. 28 

Our study will be situated in the Banach space of real-valued functions which are 29 

defined, continuous and bounded on the real half axis ℝ+. The main tool used in 30 

our considerations is the technique of measures of noncompactness and fixed 31 

point theorem of B.C.Dhage type [1]. The assumptions imposed in our main 32 

existence theorems admit several natural realizations. These realizations are 33 

constructed with help of a certain class of sub additive functions. The results 34 

obtained in this paper generalized and extend several ones obtained earlier in a lot 35 

of papers concerning asymptotic stability of solutions for some functional integral 36 

equations [cf.1,4,5,6,7]. Our approach consists mainly in the possibility of 37 

obtaining the global attractivity, asymptotic attractivity and positivity of solutions 38 

for considered nonlinear functional Differential equations. 39 

 40 
 41 

 42 

2. AUILIARY RESULTS 43 

        At the beginning we present some basic facts concerning the measures of 44 

noncompactness. We accept the following definitions of the concept of a measure 45 



 

 

of noncompactness given in Dhage[1].The details measures of noncompactness 46 

appear in Banas and Goebel[8] and the references therein.  47 

Let E be a Banach space and let 𝒫𝓅 E be denote the class of all non-empty 48 

subsets ofE with property 𝒫. Here 𝒫 may be 𝒫cl = closed, 𝒫bd = bounded, 49 

𝒫rcp = relatively compact. Thus, 𝒫cl E , 𝒫bd  E , 𝒫cl ,bd  E  and 𝒫rc p E denotes 50 

the classes of closed, bounded, closed and bounded and relatively compact 51 

subsets of E respectively. 52 

A function      dH A, B = max d A, B , d b, A ,b∈B
sup

a∈A
sup

                              2.1 53 

Satisfies all the conditions of a metric on 𝒫bd  E  is called Hausdrorff-Pompeiu 54 

metric on E, where d a, B = inf  a − b : b ∈ B . It is known that the hyperspace 55 

 𝒫cl E , dH  is a complete metric space. In this paper, we adopt the following 56 

axiomatic definition of the measure of noncompactness in a Banach space given 57 

by Dhage[1]. The other useful forms appear in Banas and Goebel[8] and the 58 

references therein. We need the following definitions in the sequel. 59 

 60 

Definition:2.1. A sequence  An  of non-empty sets in 𝒫bd  E  is said to 61 

converges to a set A, called the limiting set if dH An , A → 0 as n → ∞. A 62 

mapping  μ: 𝒫bd  E → ℝ+ is called continuous if for any sequence  An  in 63 

𝒫bd  E   we have  64 

dH An , A → 0 ⇒  μ An − μ A  → 0asn → ∞. 65 

 66 

Definition:2.2. A mapping  μ: 𝒫bd  E → ℝ+ is said to be nondecreasing if 67 

A, B ∈ 𝒫bd  E  are any two sets with A ⊆ B, then μ A ≤ μ B , where≤ is a order 68 

relation by inclusion in 𝒫bd  E . 69 

Definition:2.3. A function μ: 𝒫bd  E → ℝ+ is called a measure of 70 

noncompactness if it satisfies  71 

i. ϕ ≠ μ−1 0 ⊂ 𝒫rcp  E , 72 

ii. μ A  = μ A , where A   denotes the closure of A, 73 

iii. μ convA = μ A , where convA denotes the convex hull of A, 74 

iv. μ is nondecreasing, and 75 

v. If  An  is a decreasing sequence of sets in 𝒫bd  E  such that   76 

                     μ An n→∞
lim = 0, then the limiting set  A∞ = Ann→∞

lim  is non-empty. 77 

The family ker μ  described in (i) is said to be the kernel of the measure of 78 

noncompactness μ and ker μ =  A ∈ 𝒫bd  E : μ A = 0 ⊆ 𝒫rcp  E . The 79 

measure μ is called complete if the ker μ of  μ consists of all possible relatively 80 

compact subsets of E. 81 

The measure μ is called sublinear if it satisfies 82 

vi. μ λA =  λ μ A  for  λ ∈ ℝ,  and 83 

vii. μ A + B ≤ μ A + μ B .  84 

There do exist the sublinear measures of noncompactness on Banach space E. 85 

Observe that the limiting set  A∞  from (v) is a member of family ker μ. In facts, 86 



 

 

science μ  A∞ ≤ μ  An  for any n, we infer that μ  A∞ = 0. There fore 87 

 A∞ ∈ ker μ. 88 

 89 

Definition:2.4. A mapping Q: E → E is called D − set − Lipschitz if there exists 90 

a continuous nondecreasing function  ϕ: ℝ+ → ℝ+ such that μ Q(A) ≤ ϕ μ A   91 

for all A ∈ 𝒫bd  E  with Q A ∈ 𝒫bd  E , where ϕ 0 = 0. Sometimes we call the 92 

function ϕ to be D-function of Q on E. When ϕ r = kr, k > 0 then Q is called a 93 

K-set contraction on E. Further if ϕ r < 𝑟 for r > 0, then Q is called a nonlinear 94 

D-set contraction on E. 95 

 96 

Theorem:2.1(Dhage[1]): Let C be a non-empty, closed, convex and bounded 97 

subset of a Banach space E, and let Q: C → C be a continuous and nonlinear D-set 98 

contraction. Then Q has a fixed point. 99 

 100 

Remark.2.1: Let Fix(Q) denote the set of all fixed points of the operator Q which 101 

belong to c. It can be shown in theorem.2.1 Fix Q ∈ kerμ. In fact if  Fix Q ∉102 

kerμ, then  μ Fix Q  > 0 and Q Fix Q  = Fix Q . Now from nonlinear D-set 103 

contraction,  μ  Q Fix Q   ≤ Q  μ Fix Q    This is a contradiction. 104 

Since ϕ r < 𝑟 for  r > 0. Hence Fix Q ∈ kerμ. Our further considerations will 105 

be placed in Banach space BC ℝ+, ℝ   with standard supremum norm   106 

 x = sup  x t  : t ∈ ℝ+  

for our purpose we will use the Hausdorff measure of noncompactness in 107 

BC ℝ+, ℝ  and is defined as follows. Let us fix a nonempty and bounded subset X 108 

of the space  BC ℝ+, ℝ  and positive number T. For x ∈ X, ϵ ≥ 0 denote by     109 

                              ωT x, ϵ = sup  x t − x s  : t, s ∈  0, T ,  t − s ≤ ϵ  110 

Next, let us put  111 

ωT X, ϵ = sup ωT x, ϵ : x ∈ X  

                                                    ω0
T X = limϵ→0 ωT X, ϵ .    112 

         It is known that ω0
T  is a measure of noncompactness in the Banach space    113 

         C  0, T , ℝ  of continuous and real-valued functions defined on a closed and    114 

         bounded interval  0, T  in ℝ which is equivalent to Hausdroff or ball measure on   115 

          noncompactness in it. Now one has  116 

χ X =
1

2
ω0

T X  

         For any bounded subset χ of C  0, T , ℝ  see Banas and Goebel [3] and the   117 

         reference therein. We define                         118 

ωo X = lim
T→∞

ω0
T X  

         Now, for a fixed number t ∈ ℝ+, let us denote X t =  x t : x ∈ X , 119 

 X t  = sup  x t  : x ∈ X . 120 

         and  121 

 X t − c = sup  x t − c : x ∈ X . 122 

Let us consider the function μ defined on the family 𝒫bd  X  by  123 



 

 

     sμa X = max ω0 X , limt→∞ sup diamX t  , 124 

μb X = max ω0 X , limt→∞ sup X t   , 125 

and                               μc X = max ω0 X , limt→∞ sup X t − c  . 126 

For any bounded subset X of BC ℝ+, ℝ  define  127 

δ X = sup limt→∞ sup  x t  − x t  : x ∈ X . 128 

Define the functions μad , μbd ,   μcd : 𝒫bd  E → ℝ+ by 129 

                                      μad  X = max μa X , δ X                                                    2.2 130 

                                       μbd  X = max μb X , δ X                                                   2.3 131 

                                       μcd  X = max μc X , δ X                                                   2.4 132 

for all  X ∈ 𝒫bd  E  133 

It can be shown as in Banas[4] that the functions μa , μb,   μc,μad , μbd  and μcd  are 134 

measures of noncompactness in the space BC ℝ+, ℝ . The kerμa, kerμb and kerμc  of 135 

the measures μa, μb  and μc consist of non empty and bounded subsets X are locally 136 

equicontinuous on ℝ+. 137 

 In order to introduce further concepts used in this article, let us assume that 138 

E = BC ℝ+, ℝ  and let Ω be a subset of X. Let Q: E → E be a operator and consider the 139 

following operator equation in E, 140 

                                              Qx t = x t                                                                    2.5 141 

For all  t ∈ ℝ+.  Below we give different characterizations of the solutions for the 142 

operator (2.5) on ℝ+. 143 

 144 

Definition:2.5. We say that solutions of equation (2.5) are locally attractive if there 145 

exists a closed ball ℬ r xo  in space BC ℝ+, ℝ  for some  xo ∈ BC ℝ+, ℝ  such that for 146 

arbitrary solutions x = x t  and y = y t  of equation (2.5) belonging to ℬ r xo ∩ Ω.  147 

we have  148 

                                        limt→∞ x t − y t  = 0                                                     2.6 149 

In the case when the limit (2.3) is uniform with respect to the set ℬ r xo ∩ Ω  i.e. when 150 

for each ϵ > 0, ∃𝑇 > 0 such that  151 

                                                   x t − y t  ≤ ϵ                                                        2.7  152 

for all x, y ∈ ℬ r xo ∩ Ω  being solutions of (2.1) and for  t ≥ T, we will say that 153 

solutions of (2.5) are uniformly locally attractive on ℝ+. 154 

Definition:2.6. The solution x = x t  of equation (2.5) is said to be globally attractive if 155 

(2.7) holds for each solution y = y t   of (2.5) on Ω. In the case when the condition 156 

(2.9) is satisfied uniformly with respect to the set Ω i.e. if for every ϵ > 0, ∃𝑇 > 0 such 157 

that the inequality (2.7) is satisfied for all  x, y ∈ Ω being the solution of (2.5) and 158 

 t ≥ T, we will say that solutions of the equation (2.5) are uniformly globally attractive 159 

on ℝ+.     160 

 The following definitions appear in Dhage[2]  161 

Definition:2.7. A line y t = c where c a real number is called a attractor for a 162 

solution  x ∈ BC ℝ+, ℝ   to the equation (2.5) if  limt→∞ x t − c = 0. In such case 163 

the solution x to the equation (2.6) is called to be asymptotic to the line y t = c and 164 

the line is asymptote for the solution x on ℝ+. 165 



 

 

Let us mention that the concepts of global attractivity of solutions are recently 166 

introduced in Hu and Yan[7] while the concepts of local and global asymptotic 167 

attractivity have been presented in Dhage[2]. Similarly, the concepts of uniform local 168 

and global attractivity were introduced in Banas and Rzepka[5].   169 

Next we introduce the new concept of local and global asymptotic positivity of 170 

solution for equation2.5) in BC ℝ+, ℝ . 171 

 172 

Definition:2.8. A solution x of equation (2.5) is called locally ultimately positive if 173 

there exist a closed ball ℬ r xo  in BC ℝ+, ℝ  for some x ∈ BC ℝ+, ℝ  such that 174 

x ∈ ℬ r xo  and  175 

                                                       limt→∞  x t  − x t  = 0                                     2.8 176 

When for each  ϵ > 0, ∃𝑇 > 0 such that 177 

                                                          x t  − x t  ≤ ϵ                                                2.9 178 

For all x being solutions of (2.5) and for t ≥ T, we will say that solutions of equations 179 

(2.5) are uniformly locally ultimately positive on ℝ+.    180 

 181 

Definition:2.9: A solution x ∈ C ℝ+, ℝ  of equation (2.5) is called globally ultimately 182 

positive if equation (2.9) is satisfied. In this case when the limit (2.8) is uniform with 183 

respective to the solution set of the operator equation (2.5) in C ℝ+, ℝ . i.e. when for 184 

each ϵ > 0, ∃𝑇 > 0 such that (2.9) is satisfied for all x being solutions of equations of 185 

(2.5) and for t ≥ T, we will say that solutions of equations (2.5) are uniformly globally 186 

ultimately positive on ℝ+.  187 

In the following section we prove the main results of this article. 188 

 189 

3. ATTRCTIVITY AND POSITIVITY SOLUTION 190 

Let ℝ be the real line and let ℝ+ be the set of non negative real numbers. 191 

Consider the functional differential equation (in short FDE)  192 

                                              
d

dt
 

x t 

f t,x α t   
 = g  t, x γ t                                         3.1 193 

for t ∈ ℝ+,  where f: ℝ+ × ℝ → ℝ , g: ℝ+ × ℝ → ℝ , and   α, γ: ℝ+ → ℝ+. 194 

By a solution of the FDE (3.1) we mean a function in C ℝ+, ℝ  that satisfies the 195 

equation (3.1), where C ℝ+, ℝ  is the space of continuous real-valued functions defined 196 

on ℝ+. For  t ∈ ℝ+,  the FDE (3.1) reduces to the functional integral equation (in short 197 

FIE) 198 

                                 x t = q t + f  t, x α t   +  g  t, x ω s   
β t 

0
ds              3.2 199 

where : ℝ+ → ℝ , β: ℝ+ → ℝ+. 200 

The type of integral equation (3.2) has been studied in Dhage[3] and references given 201 

therein. For global attractivity of solutions via classical hybrid fixed point theory 202 

observe that the type of above integral equation (3.2) includes several classes of 203 

functional, integral and functional integral equations considered in the literature 204 

(cf[1,4,5,6,7] and references therein). Let us also mention that the following type of 205 

functional integral equation considerd in Banas and Dhage[6], 206 



 

 

                                       x t = f  t, x α t   +  g  t, s, x ω s   
β t 

0
ds                 3.3 207 

is also special case of the equation (3.2) which further includes the functional integral 208 

equation considered in Banas and Rzepk[5] where α t = β t = γ t ,  t ∈ ℝ+.  209 

Therefore FIE(3.2) means FDE(3.1) is more general and so the attractivity and 210 

positivity of this paper include the attractivity and positivity results for all the above 211 

mentioned integral equations which are also new to the literature. 212 

 The equation (3.2) will be considered under the following assumptions. 213 

(A0) The functions α, β, γ: ℝ+ → ℝ+ are continuous and satisfy t ≤ α t  for  t ∈ ℝ+.  214 

(A1) The function q: ℝ+ → ℝ is continuous and bounded. 215 

(A2) The function f: ℝ+ × ℝ → ℝ is continuous and there exists a bounded function    216 

        ℓ: ℝ+ → ℝ with bound L and a positive constant M such that  217 

 f t, x − f t, y  ≤
ℓ t max  x − y  

M + max  x − y  
 

         for  t ∈ ℝ+ and for x, y ∈ ℝ. Moreover, we assume that L ≤ M. 218 

(A3)  The function t → f(t, o) is bounded on ℝ+ with F0 = sup  f(t, o) :  t ∈ ℝ+ . 219 

(A4)  The function g: ℝ+ × ℝ × ℝ → ℝ is continuous and there exists a continuous     220 

          function b: ℝ+ × ℝ+ → ℝ+ such that  g t, s, x  ≤ b t, s  for  t, s ∈ ℝ+. 221 

Moreover, we assume that limt→∞  b t, s ds = 0
β t 

0
. 222 

Remark.3.1: Hypothesis (A2) is satisfied if the function and satisfied the condition, 223 

                                         f t, x − f t, y  ≤
ℓ(t) x−y 

2M+ x−y 
                                               3.4 224 

for all  t ∈ ℝ+ and x, y ∈ ℝ, where L ≤ M, and the function ℓ is defined as in hypothesis 225 

(A2) which further yields the usual Lipschitz condition on the function f, 226 

                                             f t, x − f t, y  ≤
ℓ(t)

2M
 x − y                                        3.5 227 

for all  t ∈ ℝ+ and x, y ∈ ℝ provided L < 𝑀. Our hypothesis (A2) is more general that 228 

existing in the literature. 229 

 We will proceed for our main results. 230 

Theorem:3.1: Under the above assumptions (A0)- (A4),  FDE (3.1) has at least one 231 

solution in the space BC ℝ+, ℝ . Moreover, solutions of the equation FDE (3.1) are 232 

globally uniformly attractive on ℝ+. 233 

Proof: Consider the operator Qdefined on the space BC ℝ+, ℝ  be the formula  234 

                       Qx t = q x + f  t, x α t   +  g  t, s, x α s   ds
β t 

0
                      3.6 235 

Observe that for any x ∈ BC ℝ+, ℝ  the function Qx is continuous on ℝ+. Moreover for any 236 

fixed  t ∈ ℝ+ we obtain  237 

 Qx t  ≤  q x  +  f  t, x α t    +   g  t, s, x α s    ds
β t 

0
  238 

                                    ≤  q x  +  f  t, x α t   − f(t, 0) +  f(t, 0) +  b t, s ds
β t 

0
 239 

                                    ≤  q +
Lmax   x α t    

M+max   x α t    
+  f(t, 0) +  b t, s ds

β t 

0
  240 

≤  q +
L x 

M +  x 
+ F0 + υ(t) 



 

 

≤  q +
L x 

M +  x 
+ F0 + V 

where  υ t =  b t, s ds
β t 

0
, V = sup υ t :  t ∈ ℝ+   is finite by (A4).  241 

From the above estimate we deduce that  242 

                                                         Q ≤  q + L + F0 + V                                             3.7 243 

for all x ∈ BC ℝ+, ℝ . This means that the operator Q transforms the space BC ℝ+, ℝ  into 244 

itself from (3.7) the operator Q transforms continuously the space BC ℝ+, ℝ  into the closed 245 

ball ℬ r 0 , where r =  q + L + F0 + V. Because of this fact, the existence of solutions for 246 

the FDE (3.1) is global in nature. 247 

 We will consider the operator Q as a mapping from ℬ r 0  into itself. New we show 248 

that the operator Q  is continuous on the ball ℬ r 0 . Let ϵ > 0 and take x, y ∈ ℬ r 0  such that 249 

 x − y < 𝜖. Then we get 250 

 Qx t − Qy t  ≤  f  t, x α t   − f  t, y α t      251 

                                  +   g  t, s, x α s   − g  t, s, y α s    ds
β t 

0
 252 

                       ≤
Lmax   x α t  −y α t    

M+max   x α t  −y α t    
+    g  t, s, x α s    +  g  t, s, y α s     ds

β t 

0
   253 

                       ≤
L x−y 

M+ x−y 
+ 2  b t, s ds

β t 

0
 254 

                       ≤ ϵ + 2υ t . 255 

Hence, in virtue of assumption (A4) we infer that there exists T > 0 such that υ t ≤ ϵ for 256 

t ≥ T. Thus for t ≥ T from (3.3) we derive that  257 

                                        Qx t − Qy t  ≤ 3ϵ                                                             3.8 258 

Further let us assume that t ∈  0, T  then evaluating similarity s above we get 259 

 Qx t − Qy t  ≤ ϵ +   g  t, s, x α s   − g  t, s, y α s    ds
β t 

0
  260 

                                              ≤ ϵ +  ωr
T g, ϵ ds

β t 

0
   261 

                                               ≤ ϵβTωr
T g, ϵ  262 

Where  βT = sup β t : t ∈  0, T   and  263 

ωr
T g, ϵ = sup  g t, s, x − g t, s, y  : t ∈  0, T , s ∈  0, βT , x, y ∈  −r, r ,  x − y ≤ ϵ   264 

3.10  265 

Obviously we have that βT < ∞. Moreover from the uniform continuity of the function 266 

g t, s, x  on the set  0, T ×  0, βT ×  −r, r . we derive that ωr
T g, ϵ → 0 as ϵ → 0. Now from 267 

(3.9),(3,10) and above established facts we conclude that the operator Q maps continuously  268 

the closed ball ℬ r 0  into itself. 269 

           Further on let us take nonempty subset X of the ball ℬ r 0 . Next T > 0 and ϵ > 0, let 270 

us choose  x ∈ X and t1, t2 ∈  0, T  with  t1 − t2 ≤ ϵ. Without loss of generality we may 271 

assume that t1 < t2. Then taking into account our assumptions, we get 272 

  Qx  t2 −  Qx  t1  ≤  q t2 − q t1  +  f  t2, x α t2   − f  t1, x α t1     

                                                   +   g  t2, s, x α s   
β t2 

0
ds −  g  t1, s, x α s   

β t2 

0
ds +273 

                                                                g  t1, s, x α s   
β t2 

0
ds −  g  t1, s, x α s   

β t1 

0
ds  274 



 

 

≤ ωT q, ϵ +
Lmax  x α t2  − x α t1    

M + max  x α t2  − x α t1    
+ ωr

T f, ϵ  

                                           +   g  t1, s, x α s   − g  t2, s, x α s    

β t2 

0

ds 

                                                               +    g  t, s, x α s    ds
β t2 

β t1 
    275 

≤ ωT q, ϵ +
Lmax   ωT x,ωT α,ϵ    

M+max   ωT x,ωT α,ϵ    
+ ωr

T f, ϵ +  ωr
T g, ϵ ds + ωT β, ϵ GT

rβT

0
             3.11 276 

Where  ωr
T q, ϵ = sup  q t2 − q t1  : t1, t2 ∈  0, T ,  t1 − t2 ≤ ϵ  277 

             ωr
T f, ϵ = sup  f t2,x − f t1, x  : t1, t2 ∈  0, T ,  t1 − t2 ≤ ϵ, x, y ∈  −r, r   278 

             ωr
T g, ϵ = sup  

 g t2, s, x − g t1, s, x  : t1, t2 ∈  0, T ,  t1 − t2 ≤ ϵ,

                                         s ∈  0, βT , x, y ∈  −r, r 
  279 

              GT
r = sup  g t, s, x  : t ∈  0, T , s ∈  0, βT , x ∈  −r, r  .  280 

from the above estimate we derive the following  281 

ωT Qx, ϵ ≤ ωT q, ϵ +
Lmax   ωT x,ωT α,ϵ    

M+max   ωT x,ωT α,ϵ    
+ ωr

T f, ϵ +  ωr
T g, ϵ ds + ωT β, ϵ GT

rβT

0
 282 

3.12 283 

Observe that ωT q, ϵ → 0, ωr
T f, ϵ → 0 and ωr

T g, ϵ → 0 as ϵ → 0, which is a simple 284 

consequence of the uniform continuity of the functions q, f, g on the set  0, T , 285 

 0, T ×  −r, r   and  0, T ×  0, βT ×  −r, r  respectively. Moreover it is obvious that the 286 

constant GT
r  is finite and ωT α, ϵ → 0, ωT β, ϵ → 0 as ϵ → 0. Thus linking the established 287 

facts with the estimate (3.12) we get, 288 

                                                            ω0
T Qx ≤

Lω0
T X 

M+ω0
T X 

                                                    3.13 289 

Now, taking into account our assumptions, for fixed  t ∈ ℝ+ and for x, y ∈ X we deduce the 290 

following 291 

 Qx t − Qy t  ≤  
Lmax   x α t  −y α t    

M+max   x α t  −y α t    
+     292 

                                   g  t, s, x γ s    +  g  t, s, y γ s     ds
β t 

0
      293 

                            ≤  
Lmax   x α t  −y α t    

M+max   x α t  −y α t    
+ 2υ t        294 

                            ≤  
Lmax  diamX  α t   

M+max  diamX  α t   
+ 2υ t   295 

Hence we obtain 296 

                   diam Qx  t ≤  
Lmax  diamX  α t   

M+max  diamX  α t   
+ 2υ t   297 

In view of assumptions  A0  and  A4  yields  298 

limt→∞ sup daim Qx  t ≤
L lim t→∞ sup max  diamX  α t   

M+lim t→∞ sup max  diamX  α t   
  299 

                                                                       ≤
L lim t→∞ sup diamX  t 

M+lim t→∞ sup diamX  t 
                                3.14 300 

Further using the measure of noncompactness μa  defined by the (2.2) and keeping in mind 301 

the estimate (3.13) and (3.14), we get 302 

μa QX = max ω0 Qx , limt→∞ sup diamQX t    303 



 

 

         ≤ max  
Lω0 X 

M+ω0 X 
,

L lim t→∞ sup diamX  t 

M+lim t→∞ sup diamX  t 
   304 

                                                ≤
Lmax  ω0 X ,lim t→∞ sup diamQX  t  

M+max  ω0 X ,lim t→∞ sup diamQX  t  
  305 

                                                =
Lμa  X 

M+μa  X 
                                                                              3.15 306 

Since L ≤ M by of assumption  A2  from the above estimate, μa QX ≤ ϕ μa X   where 307 

ϕ r =
Lr

M+r
< 𝑟 for r > 0. Hence we yield theorem (2.1) to deduce that the operator Q has a 308 

fixed point x in the ball ℬ r 0 . Obviously x is solution of the FIE (3.2) means solution of 309 

FDE (3.1). Moreover taking into account that the image of the space BC ℝ+, ℝ  under the 310 

operator Qis contained in the ball ℬ r 0  we infer that the set Fix Q  of all fixed points of Q is 311 

contained in ℬ r 0 . Obviously, the set Fix Q  of all contains all solutions of the FIE (3.2) 312 

means FDE (3.1). From remark (2.1) the set Fix Q  belongs to the family kerμa . Now, taking 313 

into account the description of sets belonging to kerμa  we deduce that all solutions for the 314 

FIE(3.2) are globally uniformly attractive on ℝ+. This completes the proof. 315 

 316 

Remark:3.2: When q = 0, f(t, x) and g(t, s, x) in our theorem 3.1 we obtain the global 317 

attractivity result for the FDE(3.1). Note that the global attractivity result for (3.3) is also 318 

proved in Banas and Dhage[6] under the same hypothesis, but under the stronger hypothesis 319 

of  A2  that L < 𝑀. Therefore, our theorem 3.1 generalize and improve the existence results 320 

of Dhage[3] and Banas and Dhage[6] and thereby the results of Banas and Rezpka[5] under 321 

weaker conditions with a new measure of noncompactness in the Banach space BC ℝ+, ℝ . 322 

 To prove next result concerning the asymptotic positivity of the attractive solution we 323 

need the following hypothesis in the sequel.  324 

 A5  The functions q and f satisfy 325 

limt→∞  q t  − q t  = 0 and limt→∞  f t, x  − f t, x  = 0 for all x ∈ ℝ+. 326 

 327 

Theorem:3.2: Under the hypotheses of theorem 3.1 and  A5 , the FDE (3.1) has at least one 328 

 solution on ℝ+. Moreover, solutions of the FDE(3.1) are uniformly globally attractive and 329 

ultimately positive on ℝ+.  330 

Proof: Consider the closed ball ℬ r 0  in the Banach space BC ℝ+, ℝ , where the real number 331 

r is given as in the proof of theorem 3.1 and define a mapping Q: BC ℝ+, ℝ → BC ℝ+, ℝ  332 

by (3.7). Then it is shown as in the proof of theorem 3.1that Q defines a continuous mapping 333 

from the space BC ℝ+, ℝ  into ball ℬ r 0 . In particular, Q maps ℬ r 0  into itself. Next we 334 

show that Q is a nonlinear-set-contraction with respective to the measure μad  of 335 

noncompactness in Banach space BC ℝ+, ℝ . We know that for any x ∈ ℝ. 336 

Now for any  x ∈ ℬ r 0 , one has  337 

  Qx t  − Qx t  ≤   q t  − q t  +   f  t, x α t    − f  t, x α t     

                                                   +    g  t, s, x γ s    − g  t, s, x γ s    ds
β t 

0
  338 

                                             ≤   𝑞 𝑡  − 𝑞 𝑡  +   𝑓  𝑡, 𝑥 𝛼 𝑡    − 𝑓  𝑡, 𝑥 𝛼 𝑡    + 2𝜐 𝑡 .  339 

Taking the limit supremum over t, we have 340 



 

 

limt→∞ sup  Qx t  − Qx t  ≤ limt→∞ sup  q t  − q t  +341 

                                                              limt→∞
sup   f  t, x α t    − f  t, x α t    

+2 limt→∞ sup υ t 
  342 

                                                   = 0 343 

for all x ∈ ℬ r 0 . This implies that δ Qx = 0 for all subsets X of ℬ r 0 . Further, using the 344 

measure of noncompactness μa  defined by the formula (2.2) and keeping in mind the 345 

estimates (3.13) and (3.14), we obtain 346 

μad  QX = max μad  QX , δ Qx   

                                                              ≤ max  
Lμa  X 

M+μa  X 
, 0  347 

                                                              =
Lμa  X 

M+μa  X 
 348 

                                                               ≤
Lμad  X 

M+μad  X 
 349 

Since  L ≤ M in view of assumption  A2 , from the above estimate we infer that μad  QX ≤350 

ϕ μad  X  , where ϕ r =
Lr

M+r
< 𝑟 for r > 0. Hence we apply theorem 2.2 to deduce that the 351 

operator Q has a fixed point x in the ball ℬ r 0 .  Obviously x is a solution of the FDE (3.1). 352 

Moreover, taking into account that the image of the space BC ℝ+, ℝ  under the operator  Q is 353 

contained in the ball ℬ r 0  we infer that the set Fix Q  of all fixed points of Q is contained in 354 

ℬ r 0 . Obviously, the set Fix Q  contains all solutions of all the equation (3.1). On the other 355 

hand, from remark 2.1 we conclude that the set Fix Q  belongs to the family kerμad  we 356 

deduce that all solutions of the equation (3.1) are uniformly globally attractive and positive 357 

on ℝ+. This completes the Proof. 358 

 359 
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