

GLOBAL ATTRACTIVITY AND POSITIVITY SOLUTIONS FOR NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS WITH MEASURES OF NONCOMPACTNESS

ABSTRACT: We prove in this paper some existence theorems concerning the attractivity and positivity of the solutions for nonlinear functional differential equations using the techniques of some measures of noncompactness. Our study is in the Banach space of real-valued functions defined, continuous and bounded on unbounded intervals together with the applications of a measure theoretic fixed point theorem of Dhage[1].Our study in this paper, it is new to the literature as regards positivity of the solutions for nonlinear functional differential equations.

1. INTRODUCTION

Nonlinear differential equations and integral equations with bounded intervals have been studied in the literature as various aspects existence, uniqueness, stability and externality of solutions. However the study of nonlinear differential and integral equations with unbounded intervals is new and exploited for the new characteristics of attractivity and asymptotic attractivity of solutions. There are two approaches for dealing with these characteristics of solutions one is classical fixed point theorems involving the hypothesis from analysis and topology, the second is the fixed point theorems involving the use of measure of noncompactness approaches has some advantages and disadvantages over the others Dhage[2,3]. In this paper, we prove some theorems on the existence and global attractivity and positivity of solutions for functional differential equations by using fixed point theorems involving the use of measures of noncompactness. Our study will be situated in the Banach space of real-valued functions which are defined, continuous and bounded on the real half axis \mathbb{R}_+ . The main tool used in our considerations is the technique of measures of noncompactness and fixed point theorem of B.C.Dhage type [1]. The assumptions imposed in our main existence theorems admit several natural realizations. These realizations are constructed with help of a certain class of sub additive functions. The results obtained in this paper generalized and extend several ones obtained earlier in a lot of papers concerning asymptotic stability of solutions for some functional integral equations [cf.1,4,5,6,7]. Our approach consists mainly in the possibility of obtaining the global attractivity, asymptotic attractivity and positivity of solutions for considered nonlinear functional Differential equations.

2. AUXILIARY RESULTS

At the beginning we present some basic facts concerning the measures of noncompactness. We accept the following definitions of the concept of a measure

46 of noncompactness given in Dhage[1].The details measures of noncompactness
 47 appear in Banas and Goebel[8] and the references therein.

48 Let E be a Banach space and let $\mathcal{P}_p(E)$ be denote the class of all non-empty
 49 subsets of E with property \mathcal{P} . Here \mathcal{P} may be \mathcal{P}_{cl} = closed, \mathcal{P}_{bd} = bounded,
 50 \mathcal{P}_{rcp} = relatively compact. Thus, $\mathcal{P}_{cl}(E)$, $\mathcal{P}_{bd}(E)$, $\mathcal{P}_{cl,bd}(E)$ and $\mathcal{P}_{rcp}(E)$ denotes
 51 the classes of closed, bounded, closed and bounded and relatively compact
 52 subsets of E respectively.

53 A function $d_H(A, B) = \max\{\sup_{a \in A} d(A, B), \sup_{b \in B} d(b, A), \}$ 2.1

54 Satisfies all the conditions of a metric on $\mathcal{P}_{bd}(E)$ is called Hausdrorff-Pompeiu
 55 metric on E , where $d(a, B) = \inf\{\|a - b\|: b \in B\}$. It is known that the hyperspace
 56 $(\mathcal{P}_{cl}(E), d_H)$ is a complete metric space. In this paper, we adopt the following
 57 axiomatic definition of the measure of noncompactness in a Banach space given
 58 by Dhage[1]. The other useful forms appear in Banas and Goebel[8] and the
 59 references therein. We need the following definitions in the sequel.

60 **Definition:2.1.** A sequence $\{A_n\}$ of non-empty sets in $\mathcal{P}_{bd}(E)$ is said to
 61 converges to a set A , called the limiting set if $d_H(A_n, A) \rightarrow 0$ as $n \rightarrow \infty$. A
 62 mapping $\mu: \mathcal{P}_{bd}(E) \rightarrow \mathbb{R}^+$ is called continuous if for any sequence $\{A_n\}$ in
 63 $\mathcal{P}_{bd}(E)$ we have

64
$$d_H(A_n, A) \rightarrow 0 \Rightarrow |\mu(A_n) - \mu(A)| \rightarrow 0 \text{ as } n \rightarrow \infty.$$

65 **Definition:2.2.** A mapping $\mu: \mathcal{P}_{bd}(E) \rightarrow \mathbb{R}^+$ is said to be nondecreasing if
 66 $A, B \in \mathcal{P}_{bd}(E)$ are any two sets with $A \subseteq B$, then $\mu(A) \leq \mu(B)$, where \leq is a order
 67 relation by inclusion in $\mathcal{P}_{bd}(E)$.

68 **Definition:2.3.** A function $\mu: \mathcal{P}_{bd}(E) \rightarrow \mathbb{R}^+$ is called a measure of
 69 noncompactness if it satisfies

- 70 i. $\phi \neq \mu^{-1}(0) \subset \mathcal{P}_{rcp}(E)$,
- 71 ii. $\mu(\bar{A}) = \mu(A)$, where \bar{A} denotes the closure of A ,
- 72 iii. $\mu(\text{conv}A) = \mu(A)$, where $\text{conv}A$ denotes the convex hull of A ,
- 73 iv. μ is nondecreasing, and
- 74 v. If $\{A_n\}$ is a decreasing sequence of sets in $\mathcal{P}_{bd}(E)$ such that

$$\lim_{n \rightarrow \infty} \mu(A_n) = 0$$
, then the limiting set $A_\infty = \lim_{n \rightarrow \infty} A_n$ is non-empty.

75 The family $\ker \mu$ described in (i) is said to be the kernel of the measure of
 76 noncompactness μ and $\ker \mu = \{A \in \mathcal{P}_{bd}(E): \mu(A) = 0\} \subseteq \mathcal{P}_{rcp}(E)$. The
 77 measure μ is called complete if the $\ker \mu$ of μ consists of all possible relatively
 78 compact subsets of E .

79 The measure μ is called sublinear if it satisfies

- 80 vi. $\mu(\lambda A) = |\lambda| \mu(A)$ for $\lambda \in \mathbb{R}$, and
- 81 vii. $\mu(A + B) \leq \mu(A) + \mu(B)$.

82 There do exist the sublinear measures of noncompactness on Banach space E .
 83 Observe that the limiting set A_∞ from (v) is a member of family $\ker \mu$. In facts,

87 science $\mu(A_\infty) \leq \mu(A_n)$ for any n , we infer that $\mu(A_\infty) = 0$. There fore
 88 $A_\infty \in \ker \mu$.

90 **Definition:2.4.** A mapping $Q: E \rightarrow E$ is called D – set – Lipschitz if there exists
 91 a continuous nondecreasing function $\phi: \mathbb{R}^+ \rightarrow \mathbb{R}^+$ such that $\mu(Q(A)) \leq \phi(\mu(A))$
 92 for all $A \in \mathcal{P}_{bd}(E)$ with $Q(A) \in \mathcal{P}_{bd}(E)$, where $\phi(0) = 0$. Sometimes we call the
 93 function ϕ to be D-function of Q on E . When $\phi(r) = kr, k > 0$ then Q is called a
 94 K-set contraction on E . Further if $\phi(r) < r$ for $r > 0$, then Q is called a nonlinear
 95 D-set contraction on E .

96 **Theorem:2.1**(Dhage[1]): Let C be a non-empty, closed, convex and bounded
 97 subset of a Banach space E , and let $Q: C \rightarrow C$ be a continuous and nonlinear D-set
 98 contraction. Then Q has a fixed point.

100 **Remark.2.1:** Let $\text{Fix}(Q)$ denote the set of all fixed points of the operator Q which
 101 belong to C . It can be shown in theorem.2.1 $\text{Fix}(Q) \in \ker \mu$. In fact if $\text{Fix}(Q) \notin$
 102 $\ker \mu$, then $\mu(\text{Fix}(Q)) > 0$ and $Q(\text{Fix}(Q)) = \text{Fix}(Q)$. Now from nonlinear D-set
 103 contraction, $\mu(Q(\text{Fix}(Q))) \leq Q(\mu(\text{Fix}(Q)))$ This is a contradiction.

104 Since $\phi(r) < r$ for $r > 0$. Hence $\text{Fix}(Q) \in \ker \mu$. Our further considerations will
 105 be placed in Banach space $BC(\mathbb{R}_+, \mathbb{R})$ with standard supremum norm

$$\|x\| = \sup\{|x(t)|: t \in \mathbb{R}_+\}$$

106 for our purpose we will use the Hausdorff measure of noncompactness in
 107 $BC(\mathbb{R}_+, \mathbb{R})$ and is defined as follows. Let us fix a nonempty and bounded subset X
 108 of the space $BC(\mathbb{R}_+, \mathbb{R})$ and positive number T . For $x \in X, \epsilon \geq 0$ denote by

$$\omega^T(x, \epsilon) = \sup\{|x(t) - x(s)|: t, s \in [0, T], |t - s| \leq \epsilon\}$$

109 Next, let us put

$$\omega^T(X, \epsilon) = \sup\{\omega^T(x, \epsilon): x \in X\}$$

$$\omega_0^T(X) = \lim_{\epsilon \rightarrow 0} \omega^T(X, \epsilon).$$

110 It is known that ω_0^T is a measure of noncompactness in the Banach space
 111 $C([0, T], \mathbb{R})$ of continuous and real-valued functions defined on a closed and
 112 bounded interval $[0, T]$ in \mathbb{R} which is equivalent to Hausdroff or ball measure on
 113 noncompactness in it. Now one has

$$\chi(X) = \frac{1}{2} \omega_0^T(X)$$

114 For any bounded subset χ of $C([0, T], \mathbb{R})$ see Banas and Goebel [3] and the
 115 reference therein. We define

$$\omega_0(X) = \lim_{T \rightarrow \infty} \omega_0^T(X)$$

116 Now, for a fixed number $t \in \mathbb{R}_+$, let us denote $X(t) = \{x(t): x \in X\}$,

$$\|X(t)\| = \sup\{|x(t)|: x \in X\}.$$

117 and

$$\|X(t) - c\| = \sup\{|x(t) - c|: x \in X\}.$$

118 Let us consider the function μ defined on the family $\mathcal{P}_{bd}(X)$ by

124 $s\mu_a(X) = \max\{\omega_0(X), \lim_{t \rightarrow \infty} \sup \text{diam}X(t)\},$

125 $\mu_b(X) = \max\{\omega_0(X), \lim_{t \rightarrow \infty} \sup \|X(t)\|\},$

126 and $\mu_c(X) = \max\{\omega_0(X), \lim_{t \rightarrow \infty} \sup \|X(t) - c\|\}.$

127 For any bounded subset X of $BC(\mathbb{R}_+, \mathbb{R})$ define

128 $\delta(X) = \sup\{\lim_{t \rightarrow \infty} \sup(|x(t)| - x(t)) : x \in X\}.$

129 Define the functions μ_{ad} , μ_{bd} , $\mu_{cd} : \mathcal{P}_{bd}(E) \rightarrow \mathbb{R}_+$ by

130 $\mu_{ad}(X) = \max\{\mu_a(X), \delta(X)\} \quad 2.2$

131 $\mu_{bd}(X) = \max\{\mu_b(X), \delta(X)\} \quad 2.3$

132 $\mu_{cd}(X) = \max\{\mu_c(X), \delta(X)\} \quad 2.4$

133 for all $X \in \mathcal{P}_{bd}(E)$

134 It can be shown as in Banas[4] that the functions μ_a , μ_b , μ_c , μ_{ad} , μ_{bd} and μ_{cd} are
135 measures of noncompactness in the space $BC(\mathbb{R}_+, \mathbb{R})$. The $\text{ker}\mu_a$, $\text{ker}\mu_b$ and $\text{ker}\mu_c$ of
136 the measures μ_a , μ_b and μ_c consist of non empty and bounded subsets X are locally
137 equicontinuous on \mathbb{R}_+ .

138 In order to introduce further concepts used in this article, let us assume that
139 $E = BC(\mathbb{R}_+, \mathbb{R})$ and let Ω be a subset of X . Let $Q : E \rightarrow E$ be a operator and consider the
140 following operator equation in E ,

141 $Qx(t) = x(t) \quad 2.5$

142 For all $t \in \mathbb{R}_+$. Below we give different characterizations of the solutions for the
143 operator (2.5) on \mathbb{R}_+ .

144

145 **Definition:2.5.** We say that solutions of equation (2.5) are locally attractive if there
146 exists a closed ball $\bar{B}_r(x_0)$ in space $BC(\mathbb{R}_+, \mathbb{R})$ for some $x_0 \in BC(\mathbb{R}_+, \mathbb{R})$ such that for
147 arbitrary solutions $x = x(t)$ and $y = y(t)$ of equation (2.5) belonging to $\bar{B}_r(x_0) \cap \Omega$.
148 we have

149 $\lim_{t \rightarrow \infty} (x(t) - y(t)) = 0 \quad 2.6$

150 In the case when the limit (2.3) is uniform with respect to the set $\bar{B}_r(x_0) \cap \Omega$ i.e. when
151 for each $\epsilon > 0$, $\exists T > 0$ such that

152 $|x(t) - y(t)| \leq \epsilon \quad 2.7$

153 for all $x, y \in \bar{B}_r(x_0) \cap \Omega$ being solutions of (2.1) and for $t \geq T$, we will say that
154 solutions of (2.5) are uniformly locally attractive on \mathbb{R}_+ .

155 **Definition:2.6.** The solution $x = x(t)$ of equation (2.5) is said to be globally attractive if
156 (2.7) holds for each solution $y = y(t)$ of (2.5) on Ω . In the case when the condition
157 (2.9) is satisfied uniformly with respect to the set Ω i.e. if for every $\epsilon > 0$, $\exists T > 0$ such
158 that the inequality (2.7) is satisfied for all $x, y \in \Omega$ being the solution of (2.5) and
159 $t \geq T$, we will say that solutions of the equation (2.5) are uniformly globally attractive
160 on \mathbb{R}_+ .

161 The following definitions appear in Dhage[2]

162 **Definition:2.7.** A line $y(t) = c$ where c a real number is called a attractor for a
163 solution $x \in BC(\mathbb{R}_+, \mathbb{R})$ to the equation (2.5) if $\lim_{t \rightarrow \infty} (x(t) - c) = 0$. In such case
164 the solution x to the equation (2.6) is called to be asymptotic to the line $y(t) = c$ and
165 the line is asymptote for the solution x on \mathbb{R}_+ .

166 Let us mention that the concepts of global attractivity of solutions are recently
 167 introduced in Hu and Yan[7] while the concepts of local and global asymptotic
 168 attractivity have been presented in Dhage[2]. Similarly, the concepts of uniform local
 169 and global attractivity were introduced in Banas and Rzepka[5].

170 Next we introduce the new concept of local and global asymptotic positivity of
 171 solution for equation2.5) in $BC(\mathbb{R}_+, \mathbb{R})$.

172
 173 **Definition:2.8.** A solution x of equation (2.5) is called locally ultimately positive if
 174 there exist a closed ball $\bar{B}_r(x_0)$ in $BC(\mathbb{R}_+, \mathbb{R})$ for some $x \in BC(\mathbb{R}_+, \mathbb{R})$ such that
 175 $x \in \bar{B}_r(x_0)$ and

$$176 \lim_{t \rightarrow \infty} [|x(t)| - x(t)] = 0 \quad 2.8$$

177 When for each $\epsilon > 0, \exists T > 0$ such that

$$178 \quad | |x(t)| - x(t) | \leq \epsilon \quad 2.9$$

179 For all x being solutions of (2.5) and for $t \geq T$, we will say that solutions of equations
 180 (2.5) are uniformly locally ultimately positive on \mathbb{R}_+ .

181
 182 **Definition:2.9:** A solution $x \in C(\mathbb{R}_+, \mathbb{R})$ of equation (2.5) is called globally ultimately
 183 positive if equation (2.9) is satisfied. In this case when the limit (2.8) is uniform with
 184 respective to the solution set of the operator equation (2.5) in $C(\mathbb{R}_+, \mathbb{R})$. i.e. when for
 185 each $\epsilon > 0, \exists T > 0$ such that (2.9) is satisfied for all x being solutions of equations of
 186 (2.5) and for $t \geq T$, we will say that solutions of equations (2.5) are uniformly globally
 187 ultimately positive on \mathbb{R}_+ .

188 In the following section we prove the main results of this article.

190 3. ATTRCTIVITY AND POSITIVITY SOLUTION

191 Let \mathbb{R} be the real line and let \mathbb{R}_+ be the set of non negative real numbers.
 192 Consider the functional differential equation (in short FDE)

$$193 \quad \frac{d}{dt} \left[\frac{x(t)}{f(t, x(\alpha(t)))} \right] = g(t, x(\gamma(t))) \quad 3.1$$

194 for $t \in \mathbb{R}_+$, where $f: \mathbb{R}_+ \times \mathbb{R} \rightarrow \mathbb{R}$, $g: \mathbb{R}_+ \times \mathbb{R} \rightarrow \mathbb{R}$, and $\alpha, \gamma: \mathbb{R}_+ \rightarrow \mathbb{R}_+$.

195 By a solution of the FDE (3.1) we mean a function in $C(\mathbb{R}_+, \mathbb{R})$ that satisfies the
 196 equation (3.1), where $C(\mathbb{R}_+, \mathbb{R})$ is the space of continuous real-valued functions defined
 197 on \mathbb{R}_+ . For $t \in \mathbb{R}_+$, the FDE (3.1) reduces to the functional integral equation (in short
 198 FIE)

$$199 \quad x(t) = q(t) + f(t, x(\alpha(t))) + \int_0^{\beta(t)} g(t, x(\omega(s))) ds \quad 3.2$$

200 where : $\mathbb{R}_+ \rightarrow \mathbb{R}$, $\beta: \mathbb{R}_+ \rightarrow \mathbb{R}_+$.

201 The type of integral equation (3.2) has been studied in Dhage[3] and references given
 202 therein. For global attractivity of solutions via classical hybrid fixed point theory
 203 observe that the type of above integral equation (3.2) includes several classes of
 204 functional, integral and functional integral equations considered in the literature
 205 (cf[1,4,5,6,7] and references therein). Let us also mention that the following type of
 206 functional integral equation considerd in Banas and Dhage[6],

207
$$x(t) = f(t, x(\alpha(t))) + \int_0^{\beta(t)} g(t, s, x(\omega(s))) ds \quad 3.3$$

208 is also special case of the equation (3.2) which further includes the functional integral
 209 equation considered in Banas and Rzepk[5] where $\alpha(t) = \beta(t) = \gamma(t)$, $t \in \mathbb{R}_+$.
 210 Therefore FIE(3.2) means FDE(3.1) is more general and so the attractivity and
 211 positivity of this paper include the attractivity and positivity results for all the above
 212 mentioned integral equations which are also new to the literature.

213 The equation (3.2) will be considered under the following assumptions.

214 (A₀) The functions $\alpha, \beta, \gamma: \mathbb{R}_+ \rightarrow \mathbb{R}_+$ are continuous and satisfy $t \leq \alpha(t)$ for $t \in \mathbb{R}_+$.

215 (A₁) The function $q: \mathbb{R}_+ \rightarrow \mathbb{R}$ is continuous and bounded.

216 (A₂) The function $f: \mathbb{R}_+ \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous and there exists a bounded function

217 $\ell: \mathbb{R}_+ \rightarrow \mathbb{R}$ with bound L and a positive constant M such that

$$|f(t, x) - f(t, y)| \leq \frac{\ell(t) \max\{|x - y|\}}{M + \max\{|x - y|\}}$$

218 for $t \in \mathbb{R}_+$ and for $x, y \in \mathbb{R}$. Moreover, we assume that $L \leq M$.

219 (A₃) The function $t \rightarrow f(t, 0)$ is bounded on \mathbb{R}_+ with $F_0 = \sup\{|f(t, 0)|: t \in \mathbb{R}_+\}$.

220 (A₄) The function $g: \mathbb{R}_+ \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous and there exists a continuous
 221 function $b: \mathbb{R}_+ \times \mathbb{R}_+ \rightarrow \mathbb{R}_+$ such that $|g(t, s, x)| \leq b(t, s)$ for $t, s \in \mathbb{R}_+$.

222 Moreover, we assume that $\lim_{t \rightarrow \infty} \int_0^{\beta(t)} b(t, s) ds = 0$.

223 **Remark.3.1:** Hypothesis (A₂) is satisfied if the function and satisfied the condition,

$$|f(t, x) - f(t, y)| \leq \frac{\ell(t) |x - y|}{2M + |x - y|} \quad 3.4$$

225 for all $t \in \mathbb{R}_+$ and $x, y \in \mathbb{R}$, where $L \leq M$, and the function ℓ is defined as in hypothesis
 226 (A₂) which further yields the usual Lipschitz condition on the function f ,

$$|f(t, x) - f(t, y)| \leq \frac{\ell(t)}{2M} |x - y| \quad 3.5$$

228 for all $t \in \mathbb{R}_+$ and $x, y \in \mathbb{R}$ provided $L < M$. Our hypothesis (A₂) is more general that
 229 existing in the literature.

230 We will proceed for our main results.

231 **Theorem:3.1:** Under the above assumptions (A₀)- (A₄), FDE (3.1) has at least one
 232 solution in the space $BC(\mathbb{R}_+, \mathbb{R})$. Moreover, solutions of the equation FDE (3.1) are
 233 globally uniformly attractive on \mathbb{R}_+ .

234 **Proof:** Consider the operator Q defined on the space $BC(\mathbb{R}_+, \mathbb{R})$ be the formula

$$Qx(t) = q(x) + f(t, x(\alpha(t))) + \int_0^{\beta(t)} g(t, s, x(\omega(s))) ds \quad 3.6$$

236 Observe that for any $x \in BC(\mathbb{R}_+, \mathbb{R})$ the function Qx is continuous on \mathbb{R}_+ . Moreover for any
 237 fixed $t \in \mathbb{R}_+$ we obtain

$$\begin{aligned} 238 |Qx(t)| &\leq |q(x)| + |f(t, x(\alpha(t)))| + \int_0^{\beta(t)} |g(t, s, x(\omega(s)))| ds \\ 239 &\leq |q(x)| + |f(t, x(\alpha(t))) - f(t, 0)| + |f(t, 0)| + \int_0^{\beta(t)} b(t, s) ds \\ 240 &\leq \|q\| + \frac{L \max\{|x(\alpha(t))|\}}{M + \max\{|x(\alpha(t))|\}} + |f(t, 0)| + \int_0^{\beta(t)} b(t, s) ds \\ &\leq \|q\| + \frac{L \|x\|}{M + \|x\|} + F_0 + v(t) \end{aligned}$$

$$\leq \|q\| + \frac{L\|x\|}{M + \|x\|} + F_0 + V$$

241 where $v(t) = \int_0^{\beta(t)} b(t, s) ds$, $V = \sup\{v(t): t \in \mathbb{R}_+\}$ is finite by (A₄).

242 From the above estimate we deduce that

$$243 \|Q\| \leq \|q\| + L + F_0 + V \quad 3.7$$

244 for all $x \in BC(\mathbb{R}_+, \mathbb{R})$. This means that the operator Q transforms the space $BC(\mathbb{R}_+, \mathbb{R})$ into
245 itself from (3.7) the operator Q transforms continuously the space $BC(\mathbb{R}_+, \mathbb{R})$ into the closed
246 ball $\bar{B}_r(0)$, where $r = \|q\| + L + F_0 + V$. Because of this fact, the existence of solutions for
247 the FDE (3.1) is global in nature.

248 We will consider the operator Q as a mapping from $\bar{B}_r(0)$ into itself. Now we show
249 that the operator Q is continuous on the ball $\bar{B}_r(0)$. Let $\epsilon > 0$ and take $x, y \in \bar{B}_r(0)$ such that
250 $\|x - y\| < \epsilon$. Then we get

$$\begin{aligned} 251 |Qx(t) - Qy(t)| &\leq |f(t, x(\alpha(t))) - f(t, y(\alpha(t)))| \\ 252 &\quad + \int_0^{\beta(t)} |g(t, s, x(\alpha(s))) - g(t, s, y(\alpha(s)))| ds \\ 253 &\leq \frac{L \max\{|x(\alpha(t)) - y(\alpha(t))|\}}{M + \max\{|x(\alpha(t)) - y(\alpha(t))|\}} + \int_0^{\beta(t)} [|g(t, s, x(\alpha(s)))| + |g(t, s, y(\alpha(s)))|] ds \\ 254 &\leq \frac{L\|x-y\|}{M+\|x-y\|} + 2 \int_0^{\beta(t)} b(t, s) ds \\ 255 &\leq \epsilon + 2v(t). \end{aligned}$$

256 Hence, in virtue of assumption (A₄) we infer that there exists $T > 0$ such that $v(t) \leq \epsilon$ for
257 $t \geq T$. Thus for $t \geq T$ from (3.3) we derive that

$$258 |Qx(t) - Qy(t)| \leq 3\epsilon \quad 3.8$$

259 Further let us assume that $t \in [0, T]$ then evaluating similarly s above we get

$$\begin{aligned} 260 |Qx(t) - Qy(t)| &\leq \epsilon + \int_0^{\beta(t)} |g(t, s, x(\alpha(s))) - g(t, s, y(\alpha(s)))| ds \\ 261 &\leq \epsilon + \int_0^{\beta(t)} \omega_r^T(g, \epsilon) ds \\ 262 &\leq \epsilon \beta_T \omega_r^T(g, \epsilon) \end{aligned}$$

263 Where $\beta_T = \sup\{\beta(t): t \in [0, T]\}$ and

$$264 \omega_r^T(g, \epsilon) = \sup\{|g(t, s, x) - g(t, s, y)|: t \in [0, T], s \in [0, \beta_T], x, y \in [-r, r], |x - y| \leq \epsilon\} \quad 3.10$$

265 Obviously we have that $\beta_T < \infty$. Moreover from the uniform continuity of the function
266 $g(t, s, x)$ on the set $[0, T] \times [0, \beta_T] \times [-r, r]$. we derive that $\omega_r^T(g, \epsilon) \rightarrow 0$ as $\epsilon \rightarrow 0$. Now from
267 (3.9),(3.10) and above established facts we conclude that the operator Q maps continuously
268 the closed ball $\bar{B}_r(0)$ into itself.

269 Further on let us take nonempty subset X of the ball $\bar{B}_r(0)$. Next $T > 0$ and $\epsilon > 0$, let
270 us choose $x \in X$ and $t_1, t_2 \in [0, T]$ with $|t_1 - t_2| \leq \epsilon$. Without loss of generality we may
271 assume that $t_1 < t_2$. Then taking into account our assumptions, we get

$$\begin{aligned} 273 |(Qx)(t_2) - (Qx)(t_1)| &\leq |q(t_2) - q(t_1)| + |f(t_2, x(\alpha(t_2))) - f(t_1, x(\alpha(t_1)))| \\ 274 &\quad + \left| \int_0^{\beta(t_2)} g(t_2, s, x(\alpha(s))) ds - \int_0^{\beta(t_2)} g(t_1, s, x(\alpha(s))) ds \right| + \\ &\quad \left| \int_0^{\beta(t_2)} g(t_1, s, x(\alpha(s))) ds - \int_0^{\beta(t_1)} g(t_1, s, x(\alpha(s))) ds \right| \end{aligned}$$

$$\begin{aligned}
&\leq \omega^T(q, \epsilon) + \frac{L \max\{|x(\alpha(t_2)) - x(\alpha(t_1))|\}}{M + \max\{|x(\alpha(t_2)) - x(\alpha(t_1))|\}} + \omega_r^T(f, \epsilon) \\
&\quad + \int_0^{\beta(t_2)} \left| g(t_1, s, x(\alpha(s))) - g(t_2, s, x(\alpha(s))) \right| ds \\
&\quad + \left| \int_{\beta(t_1)}^{\beta(t_2)} g(t, s, x(\alpha(s))) ds \right| \\
275 \quad &\leq \omega^T(q, \epsilon) + \frac{L \max\{|\omega^T(x, \omega^T(\alpha, \epsilon))|\}}{M + \max\{|\omega^T(x, \omega^T(\alpha, \epsilon))|\}} + \omega_r^T(f, \epsilon) + \int_0^{\beta_T} \omega_r^T(g, \epsilon) ds + \omega^T(\beta, \epsilon) G_T^r
\end{aligned} \tag{3.11}$$

277 Where $\omega_r^T(q, \epsilon) = \sup\{|q(t_2) - q(t_1)| : t_1, t_2 \in [0, T], |t_1 - t_2| \leq \epsilon\}$
278 $\omega_r^T(f, \epsilon) = \sup\{|f(t_2, x) - f(t_1, x)| : t_1, t_2 \in [0, T], |t_1 - t_2| \leq \epsilon, x, y \in [-r, r]\}$
279 $\omega_r^T(g, \epsilon) = \sup\left\{ \begin{array}{l} |g(t_2, s, x) - g(t_1, s, x)| : t_1, t_2 \in [0, T], |t_1 - t_2| \leq \epsilon, \\ s \in [0, \beta_T], x, y \in [-r, r] \end{array} \right\}$
280 $G_T^r = \sup\{|g(t, s, x)| : t \in [0, T], s \in [0, \beta_T], x \in [-r, r]\}.$

281 from the above estimate we derive the following

$$\omega^T(Qx, \epsilon) \leq \omega^T(q, \epsilon) + \frac{L \max\{|\omega^T(x, \omega^T(\alpha, \epsilon))|\}}{M + \max\{|\omega^T(x, \omega^T(\alpha, \epsilon))|\}} + \omega_r^T(f, \epsilon) + \int_0^{\beta_T} \omega_r^T(g, \epsilon) ds + \omega^T(\beta, \epsilon) G_T^r$$

283 3.12

284 Observe that $\omega^T(q, \epsilon) \rightarrow 0$, $\omega_r^T(f, \epsilon) \rightarrow 0$ and $\omega_r^T(g, \epsilon) \rightarrow 0$ as $\epsilon \rightarrow 0$, which is a simple
285 consequence of the uniform continuity of the functions q, f, g on the set $[0, T]$,
286 $[0, T] \times [-r, r]$ and $[0, T] \times [0, \beta_T] \times [-r, r]$ respectively. Moreover it is obvious that the
287 constant G_T^r is finite and $\omega^T(\alpha, \epsilon) \rightarrow 0$, $\omega^T(\beta, \epsilon) \rightarrow 0$ as $\epsilon \rightarrow 0$. Thus linking the established
288 facts with the estimate (3.12) we get,

$$\omega_0^T(Qx) \leq \frac{L \omega_0^T(X)}{M + \omega_0^T(X)} \tag{3.13}$$

290 Now, taking into account our assumptions, for fixed $t \in \mathbb{R}_+$ and for $x, y \in X$ we deduce the
291 following

$$\begin{aligned}
292 \quad |Qx(t) - Qy(t)| &\leq \frac{L \max\{|x(\alpha(t)) - y(\alpha(t))|\}}{M + \max\{|x(\alpha(t)) - y(\alpha(t))|\}} + \\
293 \quad &\quad \int_0^{\beta(t)} \left[\left| g(t, s, x(\gamma(s))) \right| + \left| g(t, s, y(\gamma(s))) \right| \right] ds \\
294 \quad &\leq \frac{L \max\{|x(\alpha(t)) - y(\alpha(t))|\}}{M + \max\{|x(\alpha(t)) - y(\alpha(t))|\}} + 2v(t) \\
295 \quad &\leq \frac{L \max\{\text{diam}X(\alpha(t))\}}{M + \max\{\text{diam}X(\alpha(t))\}} + 2v(t)
\end{aligned}$$

296 Hence we obtain

$$\text{diam}(Qx)(t) \leq \frac{L \max\{\text{diam}X(\alpha(t))\}}{M + \max\{\text{diam}X(\alpha(t))\}} + 2v(t)$$

298 In view of assumptions (A_0) and (A_4) yields

$$\begin{aligned}
299 \quad \limsup_{t \rightarrow \infty} \text{diam}(Qx)(t) &\leq \frac{L \limsup_{t \rightarrow \infty} \max\{\text{diam}X(\alpha(t))\}}{M + \limsup_{t \rightarrow \infty} \max\{\text{diam}X(\alpha(t))\}} \\
300 \quad &\leq \frac{L \limsup_{t \rightarrow \infty} \text{diam}X(t)}{M + \limsup_{t \rightarrow \infty} \text{diam}X(t)}
\end{aligned} \tag{3.14}$$

301 Further using the measure of noncompactness μ_a defined by the (2.2) and keeping in mind
302 the estimate (3.13) and (3.14), we get

$$\mu_a(QX) = \max\{\omega_0(Qx), \limsup_{t \rightarrow \infty} \text{diam}QX(t)\}$$

$$\begin{aligned}
304 \quad & \leq \max \left\{ \frac{L\omega_0(X)}{M+\omega_0(X)}, \frac{L \lim_{t \rightarrow \infty} \sup \text{diam}X(t)}{M + \lim_{t \rightarrow \infty} \sup \text{diam}X(t)} \right\} \\
305 \quad & \leq \frac{L \max \{\omega_0(X), \lim_{t \rightarrow \infty} \sup \text{diam}QX(t)\}}{M + \max \{\omega_0(X), \lim_{t \rightarrow \infty} \sup \text{diam}QX(t)\}} \\
306 \quad & = \frac{L\mu_a(X)}{M+\mu_a(X)} \quad 3.15
\end{aligned}$$

307 Since $L \leq M$ by of assumption (A₂) from the above estimate, $\mu_a(QX) \leq \phi(\mu_a(X))$ where
308 $\phi(r) = \frac{Lr}{M+r} < r$ for $r > 0$. Hence we yield theorem (2.1) to deduce that the operator Q has a
309 fixed point x in the ball $\bar{B}_r(0)$. Obviously x is solution of the FIE (3.2) means solution of
310 FDE (3.1). Moreover taking into account that the image of the space $BC(\mathbb{R}_+, \mathbb{R})$ under the
311 operator Q is contained in the ball $\bar{B}_r(0)$ we infer that the set $\text{Fix}(Q)$ of all fixed points of Q is
312 contained in $\bar{B}_r(0)$. Obviously, the set $\text{Fix}(Q)$ of all contains all solutions of the FIE (3.2)
313 means FDE (3.1). From remark (2.1) the set $\text{Fix}(Q)$ belongs to the family $\text{ker}\mu_a$. Now, taking
314 into account the description of sets belonging to $\text{ker}\mu_a$ we deduce that all solutions for the
315 FIE(3.2) are globally uniformly attractive on \mathbb{R}_+ . This completes the proof.
316

317 **Remark:3.2:** When $q = 0, f(t, x)$ and $g(t, s, x)$ in our theorem 3.1 we obtain the global
318 attractivity result for the FDE(3.1). Note that the global attractivity result for (3.3) is also
319 proved in Banas and Dhage[6] under the same hypothesis, but under the stronger hypothesis
320 of (A₂) that $L < M$. Therefore, our theorem 3.1 generalize and improve the existence results
321 of Dhage[3] and Banas and Dhage[6] and thereby the results of Banas and Rezka[5] under
322 weaker conditions with a new measure of noncompactness in the Banach space $BC(\mathbb{R}_+, \mathbb{R})$.

323 To prove next result concerning the asymptotic positivity of the attractive solution we
324 need the following hypothesis in the sequel.

325 (A₅) The functions q and f satisfy

$$326 \quad \lim_{t \rightarrow \infty} [|q(t)| - q(t)] = 0 \text{ and } \lim_{t \rightarrow \infty} [|f(t, x)| - f(t, x)] = 0 \text{ for all } x \in \mathbb{R}_+.$$

327 **Theorem:3.2:** Under the hypotheses of theorem 3.1 and (A₅), the FDE (3.1) has at least one
328 solution on \mathbb{R}_+ . Moreover, solutions of the FDE(3.1) are uniformly globally attractive and
329 ultimately positive on \mathbb{R}_+ .

330 **Proof:** Consider the closed ball $\bar{B}_r(0)$ in the Banach space $BC(\mathbb{R}_+, \mathbb{R})$, where the real number
331 r is given as in the proof of theorem 3.1 and define a mapping $Q: BC(\mathbb{R}_+, \mathbb{R}) \rightarrow BC(\mathbb{R}_+, \mathbb{R})$
332 by (3.7). Then it is shown as in the proof of theorem 3.1 that Q defines a continuous mapping
333 from the space $BC(\mathbb{R}_+, \mathbb{R})$ into ball $\bar{B}_r(0)$. In particular, Q maps $\bar{B}_r(0)$ into itself. Next we
334 show that Q is a nonlinear-set-contraction with respective to the measure μ_{ad} of
335 noncompactness in Banach space $BC(\mathbb{R}_+, \mathbb{R})$. We know that for any $x \in \mathbb{R}$.
336

337 Now for any $x \in \bar{B}_r(0)$, one has

$$\begin{aligned}
338 \quad & ||Qx(t)| - Qx(t)| \leq ||q(t)| - q(t)| + \left| |f(t, x(\alpha(t)))| - f(t, x(\alpha(t))) \right| \\
339 \quad & \quad + \int_0^{\beta(t)} \left| |g(t, s, x(\gamma(s)))| - g(t, s, x(\gamma(s))) \right| ds \\
340 \quad & \leq ||q(t)| - q(t)| + \left| |f(t, x(\alpha(t)))| - f(t, x(\alpha(t))) \right| + 2v(t).
\end{aligned}$$

340 Taking the limit supremum over t , we have

$$\begin{aligned}
341 \quad \lim_{t \rightarrow \infty} \sup |Qx(t)| - Qx(t) | &\leq \lim_{t \rightarrow \infty} \sup |q(t)| - q(t) | + \\
342 \quad &\lim_{t \rightarrow \infty} \sup \left| \left| f(t, x(\alpha(t))) \right| - f(t, x(\alpha(t))) \right| \\
&\quad + 2 \lim_{t \rightarrow \infty} \sup v(t) \\
343 \quad &= 0
\end{aligned}$$

344 for all $x \in \bar{B}_r(0)$. This implies that $\delta(Qx) = 0$ for all subsets X of $\bar{B}_r(0)$. Further, using the
345 measure of noncompactness μ_a defined by the formula (2.2) and keeping in mind the
346 estimates (3.13) and (3.14), we obtain

$$\begin{aligned}
347 \quad \mu_{ad}(QX) &= \max\{\mu_{ad}(QX), \delta(QX)\} \\
348 \quad &\leq \max\left\{\frac{L\mu_a(X)}{M+\mu_a(X)}, 0\right\} \\
349 \quad &= \frac{L\mu_a(X)}{M+\mu_a(X)} \\
&\leq \frac{L\mu_{ad}(X)}{M+\mu_{ad}(X)}
\end{aligned}$$

350 Since $L \leq M$ in view of assumption (A₂), from the above estimate we infer that $\mu_{ad}(QX) \leq$
351 $\phi(\mu_{ad}(X))$, where $\phi(r) = \frac{Lr}{M+r} < r$ for $r > 0$. Hence we apply theorem 2.2 to deduce that the
352 operator Q has a fixed point x in the ball $\bar{B}_r(0)$. Obviously x is a solution of the FDE (3.1).
353 Moreover, taking into account that the image of the space $BC(\mathbb{R}_+, \mathbb{R})$ under the operator Q is
354 contained in the ball $\bar{B}_r(0)$ we infer that the set $\text{Fix}(Q)$ of all fixed points of Q is contained in
355 $\bar{B}_r(0)$. Obviously, the set $\text{Fix}(Q)$ contains all solutions of all the equation (3.1). On the other
356 hand, from remark 2.1 we conclude that the set $\text{Fix}(Q)$ belongs to the family $\text{ker}\mu_{ad}$ we
357 deduce that all solutions of the equation (3.1) are uniformly globally attractive and positive
358 on \mathbb{R}_+ . This completes the Proof.

359

360 REFERENCES

- 361 1. B. C. Dhage, Asymptotic stability of nonlinear functional integral equations via
362 measures of noncompactness, Comm. Appl. Nonliner Anal. 15(2) (2008), 89-101.
- 363 2. B. C. Dhage, Local asymptotic attractivity for nonlinear quadratic functional integral
364 equations, Nonlinear Analysis (2008), doi:10.1016/j.na.2008.02.109.
- 365 3. B. C. Dhage, Global attractivity results for nonlinear functional integral equations via
366 a Krasnoselskii type fixed point theorem, Nonlinear Analysis (2008),
367 doi:10.1016/j.na.2008.03.033.
- 368 4. J. Banas, Measures of noncompactness in the space of continuous tempered functions,
369 Demonstratio Math. 14(1981), 127-133.
- 370 5. J. Banas, B. Rzepka, An application of measures of noncompactness in the study of
371 asymptotic stability, Appl. Math. Letter 16(2003), 1-6.
- 372 6. J. Bans, B. C. Dhage, Global asymptotic stability of solutions of functional integral
373 equations, Nonlinear Analysis 69(2008), 1945-1952.
- 374 7. X. Hu, J. Yan, The global attractivity and asymptotic stability of solution of a
375 nonlinear integral equation, J. Math. Anal. Appl. 321(2006), 147-156.
- 376 8. J. Banas, K. Goebel, Measures of noncompactness in Banach space, in: Lecture notes
377 in Pure and Applied Mathematics, Vol.60, Dekker, New York, 1980.

378 9. R. R. Akhmerov, M. I. Kamenskii, A.S. Potapov, A. E. Rodhina and B. N. Sadovskii,
379 Measures of noncompactness and condensing operators, Birkhauser Verlag 1992.

380 10. J. Appel, Measures of noncompactness, condensing operators and fixed point: An
381 application-oriented survey, Fixed point theory 6(2005), 157-229.

382 11. T. A. Burton, B. Zhang, Fixed points and stability of an integral equation:
383 Noncompactness, Appl. Math. Letter 17(2004), 839-846.

384 12. T. A. Burton and T. Furumochi, A Note on stability by Schauder's theorem,
385 Funkcialaj Ekvcioj 44(2001), 73-82.

386 13. K. Deimling, Nonlinear functional Analysis, Springer Verlag, Berlin, 1985.

387 14. M. Kuczma, Functional equations in single variable, Monografie Math. 46,
388 Warszawa, 1968.

389 15. M. Väth, Volterra and Integral Equations of Vector Functions, Pure and Applied
390 Mathematics, Marcel Dekker, New York, 2000.

391 16. E. Zeidler, Nonlinear Functional Analysis and Its Application: Part-I, Springer
392 Verlag, 1985.

393 17. Shantaram N. Salunkhe, Study of Solution as Locally Asymptotic Attractivity for
394 Nonlinear Functional Integral Equation, Indian Journal of Advanced Mathematics,
395 Vol.5, Issue-I(2025), 50-54, DOI:10.54105/ijam.B1200.05010425.

396 18. Shantaram Narayan Salunkhe, Asymptotic Attractivity Result For Neutral Functional
397 Differential Equation, Int.J.Math.Trends and Technology, Vol.6,Issue-3(2021), 13-20.
398 DOI:10.14445/22315373/IJMTT-V67I3P503.

399 19. S.N.Salunkes, Approximation Method for Hybrid Functional Differential Equations,
400 Vol.65,Issue-6(2019), 21-25.