

1 3D Printing in Dentistry: From current applications to future potential

3 Abstract

4 Advancements in 3D printing have transformed dentistry by enabling the precise fabrication of
5 patient-specific prosthetics, scaffolds, and implants. However, conventional 3D printing
6 materials are limited by their static properties, restricting their adaptability to dynamic oral
7 environments. The emergence of 4D printing, incorporating time as an additional dimension,
8 allows the use of smart materials capable of responding to specific stimuli. This technology
9 shows promise in tissue reconstruction, endodontics, dental implants, and prosthetic devices by
10 improving adaptability, reducing fracture risk, and enhancing tissue integration. Innovations
11 such as shape-memory elastomers, hydroxyapatite-reinforced polymers, and surface-modified
12 metals enhance mechanical strength, bioactivity, and antibacterial properties. Despite the
13 potential of metal 3D printing, its high cost and technical complexity limit its widespread
14 application. Ongoing research focuses on optimizing biomaterial selection, printing techniques,
15 and digital workflows to maximize clinical outcomes in regenerative and restorative dentistry.

16 Background

17 Three-dimensional (3D) printing, also known as additive manufacturing (AM), has become an
18 integral component of digital dentistry, fundamentally altering the way dental devices are
19 designed and fabricated. Unlike subtractive manufacturing techniques, additive manufacturing
20 builds objects layer by layer from digital datasets, allowing the production of complex
21 geometries with high precision and reduced material waste. Over the past decade, advances in
22 computer-aided design/computer-aided manufacturing (CAD/CAM), imaging technologies, and
23 printable biomaterials have accelerated the adoption of 3D printing across multiple dental
24 specialties.^{1,2}

25 In contemporary clinical practice, 3D printing is widely applied in prosthodontics for the
26 fabrication of crowns, bridges, complete and partial dentures, provisional restorations, and
27 implant-supported frameworks. These applications have demonstrated improved accuracy,
28 reproducibility, and efficiency compared with conventional laboratory workflows, while also
29 enabling greater customization to individual patient anatomy.^{3,4} Orthodontics has similarly
30 benefited from additive manufacturing through the production of diagnostic models, clear
31 aligners, retainers, and indirect bonding trays, enhancing treatment planning and
32 predictability.^{2,5}

33 In oral and maxillofacial surgery and implant dentistry, 3D printed surgical guides and
34 anatomical models derived from cone-beam computed tomography (CBCT) data have improved
35 preoperative planning, implant positioning accuracy, and intraoperative efficiency.^{1,4} These
36 patient-specific guides contribute to reduced surgical time and increased procedural safety.
37 Beyond direct patient care, 3D printing has also gained prominence in dental education and
38 training, where printed models provide cost-effective, reproducible, and anatomically accurate
39 tools for preclinical simulation and skill development.⁷

40 Several additive manufacturing technologies are currently employed in dentistry, including
41 stereolithography (SLA), digital light processing (DLP), fused deposition modeling (FDM),
42 selective laser sintering (SLS), and material jetting. Each technique differs in terms of resolution,
43 printing speed, mechanical properties, and material compatibility, influencing its suitability for
44 specific dental applications.^{3,6} Printable materials used in dentistry include photopolymer resins,
45 thermoplastics, metals, and emerging ceramic-based systems, many of which have been
46 developed to meet regulatory and biocompatibility requirements for intraoral use.^{3,5}

47 Despite its rapid growth, the clinical implementation of 3D printing in dentistry is not without
48 limitations. Challenges remain related to long-term material stability, mechanical strength, post-
49 processing requirements, accuracy across different printers, and standardization of clinical
50 protocols.^{2,6} Looking ahead, ongoing research into artificial intelligence-assisted design, hybrid
51 manufacturing workflows, and bioprinting is expected to expand the scope of additive
52 manufacturing toward regenerative and tissue-engineering applications. Continued evidence-
53 based evaluation is essential to define best practices and ensure safe, predictable clinical
54 outcomes.^{1,3}

55 **Materials Used in Dental 3D Printing:**

56 The paradigm shift from analog, subtractive manufacturing to digital or 3D represents one of the
57 most significant technological disruptions in the history of dentistry. While Computer-Aided
58 Design and Computer-Aided Manufacturing (CAD/CAM) initially gained prominence through
59 subtractive milling, 3D printing has expanded the geometric and functional possibilities of dental
60 biomaterials. By constructing objects layer-by-layer, it circumvents the geometric limitations of
61 milling tools, reduces material waste and enables the fabrication of complex internal structures.⁸

62 The efficacy and safety of 3D-printed dental devices are undoubtedly linked to the underlying
63 materials science. As the field advances toward 2026, the industry is witnessing a transition
64 from inert prototyping materials to bioactive, high-performance smart materials.⁹

65 **Polymer-Based Materials in Dental 3D Printing**

66 Polymers are the most ubiquitous class of materials in dental 3D printing, utilizing vat
67 photopolymerization (SLA/DLP) and extrusion (FDM) to achieve a wide range of mechanical
68 properties.⁸

69 **1. Photopolymer Resins**

70 Liquid monomers polymerized by UV light (385 nm or 405 nm) formulated with photoinitiators
71 and specific additives.

72 **a Diagnostic and Model Resins**

73 Methacrylate formulations for high reactivity and low shrinkage. A matte finish and specific
74 opacity are critical to prevent overcure and ensure readability by desktop scanners. High-
75 temp variants are required for aligner manufacturing to withstand the heat/pressure of
76 vacuum thermoforming without deformation.⁸

77 Used in diagnostic models and orthodontic aligner molds.

78 **b Surgical Guide Resins**

79 Class I biocompatible. High flexural modulus is essential to prevent bending during drilling,
80 while optical transparency allows visualization of guide seating. Must maintain dimensional
81 stability after autoclaving.¹⁰

82 Used in Implant surgical guides.

83 **c Restorative Resins**

84 Provisional (Temporary): Typically unfilled methacrylates designed for short-term
85 aesthetics and polishability (Flexural strength >50 MPa).⁸

86 Permanent: Ceramic-Polymer Nanohybrids with high ceramic loading (30–50%). These
87 Class IIa materials offer high flexural strength (>120–150 MPa) and wear resistance
88 comparable to composites.⁸

89 Used in temporary and permanent crowns, bridges and inlays.

90 **d Denture Base and Teeth Resins**

91 Bases require high impact strength; teeth require wear resistance and translucency. Multi-
92 material jetting now allows for monolithic printing of both base and teeth with seamless
93 interfaces.¹²

94 Used in full and partial digital dentures.

95 **2. High-Performance Thermoplastics (PAEK Family)**

96 Semi-crystalline thermoplastics processed via FDM or SLS, offering mechanical properties that
97 challenge metallic alloys.

98 **a PEEK (Polyetheretherketone)**

99 Elastic modulus (3–4 GPa) closely matches human cortical bone, reducing stress shielding
100 compared to titanium. High melting point (~343°C) and rapid crystallization require heated
101 chambers to prevent warping.¹³

102 Used in RPD frameworks, healing abutments and provisional bridges.

103 **b PEKK (Polyetherketoneketone)**

104 Slower crystallization rate than PEEK allows for a wider processing window and superior
105 layer adhesion. Exhibits ~80% higher compressive strength and superior shock
106 absorbance, protecting prosthetic screws from stress.¹³

107 Used in Implant-supported frameworks and high-stress bars.

108

109 **3. Metallic Materials**

110 Metals are processed primarily via Selective Laser Melting (SLM) to create dense, load-bearing
111 structures.

112 **a Titanium Alloys (Ti-6Al-4V)**

113 Exceptional biocompatibility. SLM printing enables the fabrication of porous, trabecular-like
114 outer lattices for enhanced osseointegration (secondary stability) while maintaining a dense
115 core.¹²

116 Used in Dental implants and reconstruction meshes.

117 **b Cobalt-Chromium (CoCr)**

118 High stiffness (Modulus ~220 GPa) and corrosion resistance. 3D-printed CoCr exhibits
119 higher Vickers hardness (371 ± 10 HV) than cast alloys allowing for thinner, more delicate
120 clasp designs without fracture risk.¹²

121 Used in RPD frameworks and PFM copings.

122 **c Metal Powder**

123 Strict requirements for sphericity (>98%) and particle size (15–45 μm) to ensure flowability
124 and uniform density. Irregular particles cause porosity defects.¹²

125 **4. Ceramics and Glass-Ceramics**

126 Ceramics offer superior aesthetics and biocompatibility but present processing challenges due
127 to brittleness. 3D printing ceramics presents difficulties primarily due to their high melting points,
128 which often lead to the formation of cracks during the cooling phase. Furthermore, the selection
129 of raw materials significantly influences both the resulting porosity and the ultimate mechanical
130 properties of the ceramic product.¹⁰

131 **a Zirconia (ZrO₂)**

132 Printed via SLA using ceramic slurry. Zirconia (Bioceramic) is employed extensively within
133 dentistry as they exhibit characteristics comparable to natural dentition including
134 compressive strength, thermal conductivity, radiopacity, color stability, and aesthetic
135 properties. Nevertheless, these materials are characterized by inherent brittleness,
136 hardness and may present challenges in processing.¹⁴ 3D-printed Zirconia using SLA
137 technique achieves flexural strengths of 942-1519 MPa, whereas conventional methods
138 yield flexural strength of 900-1200 MPa.¹⁵

139 Used in posterior crowns, bridges, inlays/onlays and implant abutments.

140 **b Lithium Disilicate**

141 Using DLP 3D printing technique for this material results in increased density, flexural
142 strength >400 MPa but significantly higher translucency and accuracy. Structures created
143 through 3D printing can achieve properties comparable to those produced by traditional
144 milling methods.¹⁵

145 Used in anterior veneers and single crowns.

146

147 **5. Novel and Advanced Materials**

148 **a) Graphene-Reinforced Composites**

149 Incorporation of Graphene Oxide (GO) or Nanoplatelets (GNPs) into polymers (like
150 PMMA). Low concentrations (~0.027 wt%) significantly enhance flexural strength and
151 hardness by inhibiting crack propagation.¹⁶ Also exhibits antimicrobial properties against
152 *Candida albicans*.¹⁷

153 Used in reinforced dentures and long-term splints.

154 **b) 4D Printing and Smart Materials**

155 Utilizes Shape Memory Polymers (SMPs) that transform shape upon exposure to stimuli
156 (heat/moisture) post-printing. This adds the dimension of time to the fabrication process.⁹

157 **6. Synthetic Polymers**

158 Synthetic polymers such as Polycaprolactone (PCL), Polylactic Acid (PLA), Pluronic and
159 Polyethylene Glycol (PEG) are extensively utilized in biological 3D printing and show promise
160 for 4D printing applications. These polymers offer advantages like low cost, mass production,
161 chemical stability and appropriate degradation rates. PEG specifically improves the mechanical
162 properties of bioinks. Pluronic, a block copolymer, forms self-assembled gels at room
163 temperature. However, the key drawback is their lower biocompatibility compared to natural
164 polymers.¹⁸

165

166

167 **7. Natural Biopolymers**

168 Natural biopolymers are biocompatible and biodegradable, mimicking the extracellular matrix
169 (ECM) structure and properties. Common examples for 4D printing bioinks include hyaluronic
170 acid (HA), collagen, agarose, chitosan, and alginate. HA-based hydrogel bioinks offer high
171 mechanical properties and stability and hydrogels simulate the ECM microenvironment
172 supporting cell functions. Collagen can be used alone or in combination (alginate, gelatin) to
173 improve mechanical properties. Agarose often requires additives (collagen, fibrinogen, alginate)
174 to enhance cell growth and mechanical properties. Chitosan has good biocompatibility but low
175 mechanical strength, which can be improved with calcium ion addition. Cellulose is used in
176 scaffolds and drug delivery with cellulose materials like nanocrystals added to hydrogels to
177 increase viscosity and printing accuracy.¹⁸

178 **8. Cells**

179 Cells are crucial for bioinks used in tissue and organ regeneration. For 4D printing applications,
180 suitable cell types often include Mesenchymal Stem Cells (MSCs) and osteoblasts. Bioinks can
181 be formulated by combining cells with scaffold biomaterials or solely by cell aggregates or

182 spheroids. Various dental cells (Dental Pulp Stem Cells, Periodontal Ligament Stem Cells) and
183 non-dental cells (bone marrow stem cells, pre-osteoblasts) are currently employed in 4D printing
184 for the regeneration of maxillofacial structures and teeth.¹⁸

185 **9.Growth Factors**

186 Growth factors are signalling molecules that control cell growth and differentiation by binding to
187 the ECM. Their selective release is vital for bioactivity. They are incorporated into materials like
188 natural/synthetic polymers within sponges, micro/nanoparticles and hydrogels to promote tissue
189 regeneration such as bone (e.g., Stromal cell Derived Growth Factor-1, Bone Morphogenic
190 Protein).¹⁸

191 The landscape of dental additive manufacturing materials has evolved from a niche prototyping
192 capability into a comprehensive clinical ecosystem. As of now the domain is defined by the
193 synergy between material chemistry and machine physics. We are witnessing the displacement
194 of traditional materials: PEKK is challenging Titanium in implant frameworks due to its superior
195 shock-absorbing biomechanics, Nanohybrid Resins are bridging the gap between the elasticity
196 of composites and the aesthetics of ceramics and 4D Smart Materials are poised to transform
197 passive appliances into active therapeutic devices.^{8,9,13}

198
199 **Current Applications of 3D Printing in Dentistry:**

200 **Applications In Orthodontics:**

201 **Clear Aligners:**

202 Clear aligner therapy has been revolutionized by 3D printing technology, which enables creation
203 of complex geometric structures with high precision and has transformed orthodontic treatment
204 worldwide.^{19,20} There are two main approaches:

205 **Traditional Thermoforming Method:**

206 • Most current clear aligners are produced through thermoforming using thermoplastic
207 materials, though this process alters material properties and affects overall
208 performance.²¹

209 **Direct 3D Printing (Emerging):**

210 • Direct 3D printing offers creation of highly precise clear aligners with soft edges that are
211 digitally designed and identically reproduced for entire treatment sets, offering better fit,
212 higher efficacy, and reproducibility.²¹

213 • Scientific evidence is primarily available for Tera Harz TC material, which is the only
214 studied material approved for orthodontic tooth movements.²²

215 ● Direct-printed aligners distinguish themselves with shape memory and design flexibility
216 properties, exerting more consistent force profiles than thermoformed aligners with
217 higher accuracy, trueness and precision.²³

218 **Orthodontic Models and Appliances**

219 ● 3D-printed models are utilized for diagnosis and treatment planning, with orthodontists
220 using this technology to produce many different appliances with faster turnaround
221 times.^{24,25}

222 ● Models can be printed rapidly - for example, 11 models in nine minutes achieving ROI in
223 four to five cases

224 **Market Growth**

225 The orthodontics segment dominated the dental 3D printing market in 2024 with 40% market
226 share, with the market projected to grow at a CAGR of 26.42% from 2025 to 2034.²⁶

227 **Applications in Prosthodontics:**

228 **Crowns and Bridges**

229 3D printing creates detailed restorations including crowns, bridges, and implant-supported
230 frameworks using technologies like stereolithography and digital light processing.²⁷

231 **Material Properties:**

232 ● 3D-printed resins contain from 3% to 50% filler content with various methacrylate resins,
233 though they currently have lower flexural strength, modulus, and hardness than
234 conventional and milled materials.²⁸

235 ● Advanced 3D-printed provisional restorations exhibit flexural strength ranging from 60 to
236 90 MPa and fracture resistance of 1000-1200 N, consistently matching or surpassing
237 traditional manufacturing technique.²⁹

238 **Production Efficiency:**

239 ● Single-unit restorations are printable in approximately 20 minutes, allowing clinicians to
240 prepare a tooth, scan it, initiate printing, and proceed with other treatments while the
241 restoration is manufactured.²⁹

242 **Dentures**

243 3D printing has transformed the creation of dentures and removable partial dentures, allowing
244 for precise modeling and manufacturing that fits comfortably and securely.²⁷

245 **Surgical Guides**

246 Specialized software is used to plan and fabricate guides that help surgeons accurately place
247 dental implants, with examples including Simplant, NobelGuide, and X-Guide.²⁷

248 **3D PRINTING TECHNOLOGIES USED**

249 **Main Technologies:**

- 250 1. **Stereolithography (SLA)** - Widely used for creating custom dental prostheses such as
251 crowns and bridges, progressively replacing conventional fabrication methods due to its
252 capacity to produce complex structures with intricate geometries.²⁷
- 253 2. **Digital Light Processing (DLP)** - A rapid printing method that uses a light source to
254 cure layers at once, widely used for dental restorations and orthodontic models, though it
255 enhances mechanical properties it is restricted to photopolymers that emit odors.²⁷
- 256 3. **Laser Sintering/Melting** - Successfully used since 2002 for metal alloys, now a
257 standard process for production of CoCr crowns and bridges with stress-free and
258 accurately fitting frameworks.³⁰

259 **ADVANTAGES**

260 3D printing offers numerous clinical advantages including increased patient satisfaction and
261 reduced production time.³¹

262 **Key Benefits:**

- 263 • High customization and precision
- 264 • Reduced production time
- 265 • Cost-effectiveness
- 266 • Material conservation
- 267 • Better fit and patient comfort
- 268 • Ability to create complex geometries
- 269 • Same-day/chairside delivery capability

270

271 **Applications In Maxillofacial surgery and Implant dentistry:**

272 The world is changing at a fast pace with changing realities resulting in a diverse population due
273 to migration. This demands an individualized approach to each and every patient with unique
274 anatomical features. The medical profession is adapting to the patient's needs by providing a
275 customized approach. The Oral and Maxillofacial surgeons and implantologists have welcomed
276 the additive technology or 3D printing, which has made them achieve surgical precision by
277 managing time effectively resulting in reduction of post-operative complications.

278 Researchers continue to incorporate new technologies in an attempt to achieve the best
279 possible results. 3D printing which comes under additive manufacturing technologies, stands
280 as a good example with bone substitute biomaterials like titanium, ceramics and

281 polyetheretherketone (PEEK), which are commonly used in Oral and Maxillofacial Surgery.³⁸
282 Titanium alloy is known for its high modulus of elasticity and high strength when compared to
283 bone, which leads to reduced stress on the bone leading to osteopenia. Ceramics weaken
284 when there is a rise in PH. PEEK on the other hand is chemically stable and is inert in
285 changing PH levels. These biomaterials lack osteoinductive properties. 3D printing plays a vital
286 role in overcoming these shortcomings by engineered approach and precise composition. The
287 3D printed honey-comb pattern not only improves the stress bearing capability but also makes
288 it much lighter. This enhances the osteointegration of the implant without compromising its
289 mechanical properties. Nanohydroxyapatite biocomposites have proved to be compatible with
290 3D printing having bone mimicking properties. The fillers used in these biocomposites
291 determine the flowability during 3D printing and the structural stability of these biocomposites
292 after polymerization.³³

293
294 Some of the commonly used 3D printing technologies in OMFS include;
295 1. Stereolithography (SLE),
296 2. Powder Bed Fusion / Selective Laser Sintering (SLS),
297 3. Material extrusion / Fused Deposition Modeling (FDM),
298 4. Direct Metal Laser Sintering (DMLS),
299 Other technologies include Direct Energy Deposition, Binder Jetting, Material Jetting, Vat
300 Polymerization (Stereolithography Apparatus -SLA, or Direct Light Processing-DLP), and
301 Sheet Lamination (Laminated Object Manufacturing -LOM).^{38,39}

302
303 In Oral and Maxillofacial Surgery, 3D printing has been used for:
304 **1. Study models as patient education tools:**
305 A virtual 3D model is required for 3D printing and this is made possible with the use of
306 Computer-Aided Design (CAD) and Virtual Surgical Planning (VSP) tool box. 3D printed study
307 models help in educating the patients so as to obtain realistic rather than a conceptualized
308 informed consent.³⁸

309 **2. Customized cutting and positioning guides:**
310 Surgical planning by utilizing CAD and 3D printed models to accurately perform osteotomies
311 by fabricating positioning guides to replace the defects with 3D printed bone substituted
312 biomaterials before the actual procedure, enhancing preoperative preparedness.^{37,38}

313 **3. Orthognathic surgery:**
314 Virtual surgical planning and 3D printing have replaced the traditional 2D radiography
315 (cephalometric analysis) and the dental stone models. Fabrication of ideal splints could be
316 attained with careful application of these technologies.³⁸

317 **4. Tissue Engineering:**

318 Regenerative scaffolds have played a vital role in Tissue Engineering. These regenerative
319 scaffolds provide structural support to those deficient tissues and help in their regeneration.
320 These scaffolds are made of scaffold matrix, stem cells and bioactive factors.³⁷

321 **5. Maxillofacial Implants:**

322 Universal implants would undergo manipulation to fit those maxillofacial defects consuming a
323 lot of operating time and yet would not be esthetically pleasing. The complex anatomy of these
324 maxillofacial structures are hard to replicate with the conventional practices. The possibility of
325 3D printing these implants pre-operatively with precision, enhances the esthetics and
326 replicates the complex anatomy resulting in successful outcomes.^{37,38,39}

327 **6. Management of TMJ diseases:**

328 End stage TMJ diseases like osteoarthritis, ankylosis, tumors, and comminuted fractures
329 require complete reconstruction of the joint. The commercially available prostheses match the
330 anatomy of many but not all of the population. 3D printing has been used in all the three
331 components of the joint, the fossa, head and the mandibular component. Different biomaterials
332 are used in printing these components. Complex design and high costs are the major
333 disadvantages. The data available on total replacement of the joint with 3D printing technology
334 is very limited and needs more research.^{37,38}

335 **7. Dental Implants**

336 3D printing is mainly used in these three circumstances in Implant dentistry

337 A. Fabrication of surgical implant guides
338 B. Custom made dental implants
339 C. Implant supported prostheses

340 **A. Fabrication of surgical implant guides:**

341 In Implant dentistry, guided implant surgeries use light curing polymers to fabricate surgical
342 guides. Both the subtractive technologies like the CAD/CAM and the additive technology like
343 the 3D printing have shown to be accurate in milling and printing the surgical implant guides
344 especially when new industrial 3D printers were used rather than the moderately accurate in-
345 office desktop printers.³⁷

346 **B. Custom made dental Implants:**

347 Customized dental implants are usually porous and also fracture resistant. These properties
348 help in better osteointegration and have bone-like properties. 3D printed customized dental
349 implants when used as single implants have shown 94.5% survival rate at 3 years. Studies are
350 carried out to replace both anterior and posterior teeth with implants simulating the anatomical
351 roots which have shown good primary stability. Further studies are required to standardize
352 these customized implants.³⁴

353

354 CAD or CBCT and intra-oral scanners create digital models which guide the 3D printing
355 technologies to print zirconia, titanium and polymer-based implants. Implants created by 3D
356 printing mimic the trabecular pattern of the bone improving their biointegration. Although 3D
357 printing has shown promising results with regards to accuracy, time and healing, less data and
358 increased cost of the technology pose questions about their feasibility. 3D printed with hydroxy
359 appetite zirconia implants integrate faster and show higher biomechanical properties even
360 though zirconia is not used in those high stress bearing areas due to its brittleness.

361
362 Bioengineered, 3D printed biohybrid implants mimic the proprioceptive function of the
363 periodontal ligaments giving patients the natural feel that may soon be possible. Robotic
364 surgeries incorporating 3D printing and CBCT have been initiated with future clinical trials.³⁵

365

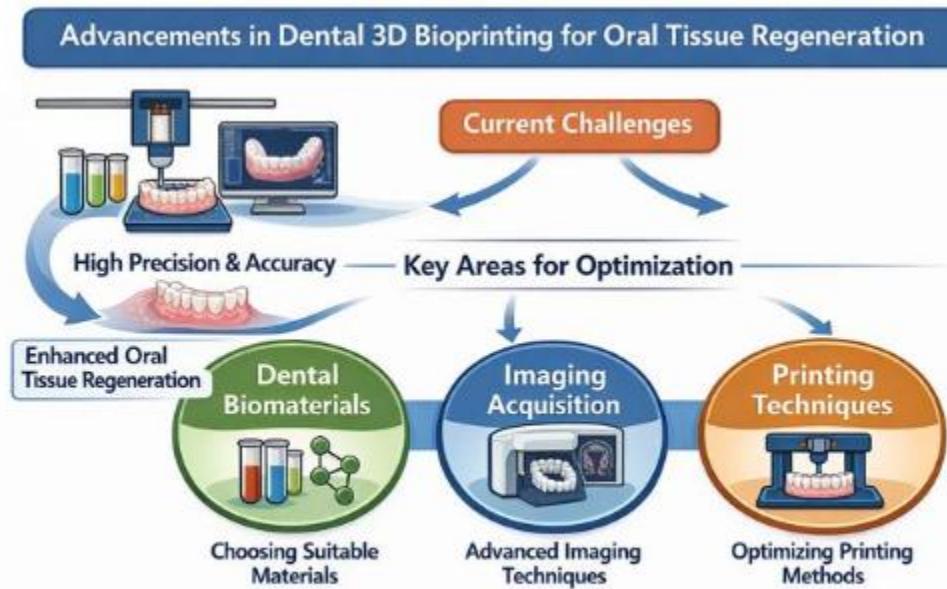
366 **C. Implant supported prostheses:**

367 3D printed implant supported prostheses have their own limitations even though it does show
368 promising results with the industrial 3D printers, subtractive technology at present is the most
369 widely used and accepted technology since they deliver better mechanical properties and
370 marginal fit.³⁴

371 The 3D printing is used in giving provisionals or temp crowns during the tissue healing after
372 implant placement. These provisionals help in attaining esthetics and function until a
373 permanent abutment crown is fabricated.³⁶

374 Stainless steel has been used to thread into the implant body so that a temporary crown could
375 be fabricated. Stainless steel has proved to be cost effective, it has also reduced the lab time
376 and showed a success rate of around 85%.³⁶

377 **Future Potential of 3D Printing in Dentistry:**


378

379 3D printing technology has evolved significantly in recent decades; however, it still has certain
380 limitations, particularly related to the materials used. A fundamental limitation of current 3D
381 printing materials is their static nature, which restricts their ability to adapt to the dynamic oral
382 environment and various internal and external stimuli. To overcome this challenge, 4D printing
383 has been introduced, in which time is incorporated as an additional dimension into conventional
384 3D printing, enabling the use of smart materials that can respond to specific stimuli. Due to its
385 adaptive properties, 4D printing demonstrates significant potential for applications in tissue
386 reconstruction, implants, targeted drug delivery, diagnostic devices, and artificial substitutes that
387 closely mimic human tissues.¹¹ Thus, shape-memory instruments or prosthetics produced using
388 4D printing technology could help prevent instrument fracture by adapting to root canal
389 curvature during endodontic procedures. Additionally, dental implants with variable apical
390 hardness may reduce the risk of nerve injury and sinus perforation. This approach also enables
391 the development of biomaterials that conform to the contours of hard-tissue defects.
392 Furthermore, 4D printing allows for the efficient production of prosthetic devices while utilizing
393 low-viscosity materials.¹⁰

394

395 The prospects for 3D printing in dental prostheses production are very promising, with
396 expectations that it will become increasingly prevalent in dentistry as technology continues to
397 advance.³² Future 3D printers will become more simplified in use, print faster at greater
398 resolution, and manufacturers will refine processes to directly print orthodontic aligners,
399 reducing environmental waste and speeding up manufacturing.²⁵

400 Recent technological advancements in the digital workflow have increased interest in 3D
401 printing for tissue regeneration, enabling 3D bioprinting to produce patient-specific scaffolds with
402 high precision and accuracy. However, further research is required to optimize key aspects of
403 the process, including the selection of appropriate biomaterials, imaging acquisition methods,
404 and printing techniques.⁴⁰ Figure 1.

Further Research Needed to Enhance Dental 3D Bioprinting Processes

405
406 Fig 1. Dental 3D Bioprinting Challenges
407
408 In addition, material innovations are being explored to further enhance the performance of
409 dental prosthetics using this technology. Researchers are investigating their physical and
410 biological properties to improve clinical outcomes. This includes incorporating hydroxyapatite
411 into polymers to enhance osteoinductivity, applying surface modifications to metals to improve
412 antibacterial properties and control degradation, and studying stem cell interactions with printed
413 biomaterials to optimize bioactivity and promote early tissue reactions while reducing
414 inflammation.¹⁸ More recently, advances in 4D printing materials have led to the development of
415 shape memory elastomers (SMEs), which exhibit dual- or multi-shape capabilities. These
416 materials possess a permanent shape and a temporary shape, allowing them to reversibly
417 change form in response to specific stimuli. Due to their low tensile strength and high elongation
418 at break, SMEs can undergo significant deformation without rupturing, which may help reduce
419 the risk of prosthetic fracture under functional or environmental stresses.⁴¹
420

421 Alongside advances in polymer and smart materials, metal 3D printing utilizes a laser to fuse
422 metal powder particles layer by layer, enabling the fabrication of dental prostheses with superior
423 strength compared to those made from polymers or resins. However, metal 3D printing is not
424 suitable for all dental applications due to its high cost, technical complexity, and limited long-
425 term clinical evidence; therefore, it remains an area under investigation.³² Challenges include
426 elevated expenses, requirement for innovative materials and technologies, high costs, material
427 limitations, and post-processing requirements.²⁷ While 3D printing achieves clinically acceptable
428 accuracy levels, it currently exhibits lower mechanical strength and stability compared to milling
429 and traditional methods.³¹

430

431

432 **References:**

433

434 1.Oberoi G, Nitsch S, Edelmayer M, et al. 3D Printing-Encompassing the Facets of Dentistry.
435 Front Bioeng Biotechnol. 2018 Nov 22;6:172.

436

437 2.Javaid M, Haleem A, et al. Current status and applications of additive manufacturing in
438 dentistry: A literature-based review. J Oral Biol Craniofac Res. 2019 Jul-Sep;9(3):179-185.
439

440 3.Revilla-León M, Özcan M, et al. Additive Manufacturing Technologies Used for Processing
441 Polymers: Current Status and Potential Application in Prosthetic Dentistry. J Prosthodont. 2019
442 Feb;28(2):146-158.

443

444 4.Mangano F, Gandolfi A, et al. Digital dentistry: new materials and techniques. *Int J Dent.*
445 2018;2018:1-9.

446

447 5.Tahayeri A, Morgan M, Fugolin AP, et al. 3D printed versus conventionally cured provisional
448 crown and bridge dental materials. *Dent Mater.* 2018 Feb;34(2):192-200.
449

450 6.Sultan AA, Elshiyab S, et al. The use of 3D printing technology in prosthodontics: a review. *J*
451 *Prosthodont.* 2019;28(1):3-12.

452

453 7.Chen Y, Wei J, et al. Application of 3D printing technology in dentistry: a review. *Polymers*
454 *(Basel).* 2025;17(7):886.

455

456 8.Tichá D, Tomášik J, Oravcová L', et al. Three-Dimensionally-Printed polymer and composite
457 materials for dental applications with focus on orthodontics. *Polymers*. 2024 Nov
458 12;16(22):3151.

459 9.Chen Y, Wei J, et al. Application of 3D printing technology in dentistry: A Review. *Polymers*.
460 2025 Mar 26;17(7):886.

461 10.Jeong M, Radomski K, Lopez D, Liu JT, et al. Materials and Applications of 3D Printing
462 Technology in Dentistry: An Overview. *Dent J (Basel)*. 2023 Dec 19;12(1):1.

463 11.Perambudhuru Y, Goyal L, Dewan M, Mahajan A, et al. Application of 4D printing in
464 dentistry: A narrative review. *J Adv Periodontol Implant Dent*. 2024 Mar 16;16(1):55-63.

465 12.Mistry G, Sardar C, Pandey P, et al. 3D printed full-arch versus digital reference dental
466 models: A systematic review. *Bioinformation*. 2024 Sep 30;20(9):1100-1105.

467 13.Galante R, Figueiredo-Pina CG, Serro AP, et al. Additive manufacturing of ceramics for
468 dental applications: A review. *Dent Mater*. 2019 Jun;35(6):825-846.

469 14.Lin WS, Chen L, et al. 3D-Printed Zirconia and Lithium Disilicate in Dentistry and Their
470 Clinical Applications. *International Journal of Prosthodontics*. 2025;38(1).

471 15.Lebkrut K, Klaisiri A, Swasdison S, et al. Effect of Graphene Oxide Quantities on
472 Microhardness of Cured-Surface Coating Agents. *Polymers*. 2025 ;17(11):1472.

473 16.Martuci R, Oliveira SJ, Martuci M, et al. Antimicrobial Effect of Graphene in Dentistry: A
474 Scoping Review. *Dentistry Journal*. 2025;13(8):355.

475 17.Javaid M, Haleem A, Singh RP, et al. Significance of 4D printing for dentistry: Materials,
476 process, and potentials. *Journal of Oral Biology and Craniofacial Research*. 2022 ;12(3):388-95.

477 18.Cai H, Xu X, Lu X, et al. Dental Materials Applied to 3D and 4D Printing Technologies: A
478 Review. *Polymers (Basel)*. 2023 May 22;15(10):2405.

479 19.Niu C, Li D, Zhang Y, et al. Prospects for 3D- printing of clear aligners — a narrative review.
480 *Front Mater*. 2024 Jul 30;11:1438660.

481 20.Narongdej P, Hassanpour M, Alterman N, Rawlins- Buchanan F, Barjasteh E.
482 Advancements in clear aligner fabrication: a comprehensive review of direct- 3D printing
483 technologies. *Polymers (Basel)*. 2024 Jan 29;16(3):371.

484 21.Tartaglia GM, Mapelli A, Maspero C, Santaniello T, Serafin M, Farronato M, Caprioglio A.
485 Direct 3D printing of clear orthodontic aligners: current state and future possibilities. *Materials*
486 (*Basel*). 2021 Apr 5;14(7):1799.

487 22.Jungbauer R, Sabbagh H, Janjic Rankovic M, Becker K. 3D Printed Orthodontic Aligners—A
488 Scoping Review. *Appl Sci*. 2024 Nov 5;14(22):10084.

489 23.Torkomian T, de la Iglesia F, Puigdollers A. 3D- printed clear aligners: an emerging
490 alternative to the conventional thermoformed aligners? A systematic review. *J Dent.* 2025 Apr
491 15;155:105616.

492 24.Perlea P, Stefanescu C, Dalaban MG, Petre AE. Experimental study on dimensional
493 variations of 3D printed dental models based on printing orientation. *Clin Case Rep.* 2024 Mar
494 5;12(3):e8630.

495 25.Roberson GA, Sinha PK. 3D printing in orthodontics: a practical guide to printer technology
496 and selection. *Orthod Craniofac Res.* 2022 Jun;28

497 26.Chacko K. Dental 3D printing market size, share and trends 2025 to 2034. *Precedence
498 Research*; 2025 Dec 5.

499 27.Alyami MH. The Applications of 3D-Printing Technology in Prosthodontics: A Review of the
500 Current Literature. *Cureus.* 2024 Sep 3;16(9):e68501.

501 28.Bora PV, Sayed Ahmed A, Alford A, Pittman K, Thomas V, Lawson NC. Characterization of
502 materials used for 3D printing dental crowns and hybrid prostheses. *J Esthet Restor Dent.*
503 2024;36(1):220–230.

504 29.Liang X, Yu B, Dai Y, Wang Y, Hu M, Zhong HJ, He J. Three-Dimensional Printing Resin-
505 Based Dental Provisional Crowns and Bridges: Recent Progress in Properties, Applications, and
506 Perspectives. *Materials (Basel).* 2025 May 10;18(10):2202.

507 30.Schweiger J, Edelhoff D, Güth JF. 3D Printing in Digital Prosthetic Dentistry: An Overview of
508 Recent Developments in Additive Manufacturing. *J Clin Med.* 2021 May 7;10(9):2010.

509 31.Jun MK, Kim JW, Ku HM. Three-dimensional printing in dentistry: a scoping review of clinical
510 applications, advantages, and current limitations. *Oral.* 2025;5(2):24.

511 32.Rezaie F, Farshbaf M, Dahri M, Masjedi M, Maleki R, Amini F, Wirth J, Moharamzadeh K,
512 Weber FE, Tayebi L. 3D Printing of Dental Prostheses: Current and Emerging Applications. *J
513 Compos Sci.* 2023 Feb;7(2):80.

514 33.Chan RSM, Lee SJ, Wang F, et al. Engineered 3D-printable nanohydroxyapatite
515 biocomposites with cold plasma-tailored surface features to boost osseointegration. *ACS Appl
516 Mater Interfaces.* 2025;17(16):23522–23535.

517 34.Guillermo Pradés | Belén Morón-Conejo | Francisco Martínez-Rus et al. Current
518 applications of 3D printing in dental implantology: A scoping review mapping the evidence
519 *Clinical Oral Implants Research*, 35, 1011–1032.

520 35.James JR, Kharat A, Chinnakutti S, Kamble S, Mandal M, Das A. The Future of Dental
521 Implants: A Narrative Review of Trends, Technologies, and Patient Considerations. *Cureus.*
522 2025;17(8):e90380.

523 36.Les Kalman, 3D printing of a novel dental implant abutment, *J Dent Res Dent Clin Dent Prospect* 2018; 12(4):299-303|

525 37. Xiaoxiao Wang , Min Mu , Jiazhen Yan , et al. 3D printing materials and 3D printed surgical devices in oral and maxillofacial surgery: design, workflow and effectiveness, *Regenerative Biomaterials*, Volume 11, 2024, rbae066

528 38. Henrique Hadad,Fernanda BDJ Boos Lima,Iman Shirinbak,et al. The Impact of 3D Printing on Oral and Maxillofacial Surgery *Journal of 3D Printing in Medicine* Volume 7, 2023 - Issue 2

530 39. Adeeb Zoabi, Idan Redenski, Daniel Oren1,et al. 3D Printing and Virtual Surgical Planning in Oral and Maxillofacial Surgery, *Journal of Clinical Medicine*. 2022; 11(9):2385.

532 40.Nesic D, Schaefer BM, Sun Y, Saulacic N, Sailer I, et al. 3D Printing Approach in Dentistry: The Future for Personalized Oral Soft Tissue Regeneration. *J Clin Med*. 2020 Jul 15;9(7):2238.

534 41.Aafreen M M, Cholan PK, Ilango P, Parthasarathy H, Tadepalli A, Ramachandran L. Exploring the 4D printing linked bio-smart materials in dentistry: a concise overview. *Front Dent Med*. 2025 Apr 16;6:1558382.

537

538

539