

1 **Key role of EGFR, ErbB2 and PRproteins in gene and protein interactions**
2 **with Vimentin, FOXC1/2, FAK, and the BRCA1in prevention of triple**
3 **negative breast cancer**

4

5 **Abstract:**

6 Studies on protein–protein interactions and RNA–protein interactions between transcription
7 factors and receptors that act as tumor suppressor proteins play key roles in designing new
8 anticancer drugs for treatment. The BRCA1 RING domain exhibits protein–protein
9 interactions with Vimentin, FOXC2, Focal adhesion kinase and EGFR, whereas the EGFR
10 nucleic acid contig shows gene–protein interactions with Vimentin, FOXC2, Focal adhesion
11 kinase and BRCA1. ErbB2 and the progesterone receptor play key roles in protein–protein
12 interactions with the BRCA1 RING domain and ErB2 in TNBC, and the PR nucleic acid
13 contig shows gene–protein interactions with vimentin, FOXC2, focal adhesion kinase and the
14 BRCA1 RING domain, clearly indicating that the transaction of proteins occurs mostly
15 although noncovalent interactions.

16 **Key words:** BRCA1 RING domain, Vimentin, FOXC2, Focal adhesion kinase and BRCA1,
17 Protein–protein interactions, Gene–protein interactions

18 **Introduction:**

19 BRCA1 (breast cancer gene 1) and BRCA2 (breast cancer gene 2) repair damaged DNA, and
20 usually, offspring inherit the protein from their parents, with each gene being from their
21 paternal or maternal partner. Mutated BRCA1 and BRCA2 are responsible for more than 60%
22 of breast or ovarian cancers in inherited individuals. One of the important factors to be
23 considered is genetic predisposition to the disease, and studies on mutations that genetically
24 predispose BRCA1 and BRCA2 to mutations can prevent cancer-related deaths ¹.

25 The nongenetic factors that are likely to contribute to breast cancer include early menopause,
26 alcohol and tobacco consumption, exposure to radiation, obesity, decreased physical activity,
27 urbanization, a sedentary lifestyle, a high-fat diet, frequent spontaneous miscarriages, lack of
28 breastfeeding, hormone replacement therapy, aging, geographical location, socioeconomic
29 conditions, reproductive events, exogenous hormones, breast density, and family history of
30 breast cancer or other cancers ^(2,3,4-14).

31 Human epidermal growth factor receptor 2 (HER2) is overexpressed in approximately 20-
32 30% of cancers and can result in more aggressive cancers with a high recurrence rate and
33 increased mortality. Trastuzumab is a HER2 receptor blocker used to treat most HER2-
34 positive cancers, and emerging patterns of trastuzumab resistance have been recorded earlier;
35 however, the development of therapeutic agents, such as monoclonal antibodies and other
36 targeted therapies, can overcome trastuzumab resistance and help in the treatment of most
37 HER2-positive breast cancers ^{15,16}.

38 The progesterone receptor modulates estrogen receptor expression, and PR expression
39 depends strongly on estrogen and can help improve the prognosis in most TNBC patients
40 with a positive PR17. The estrogen receptor and progesterone receptor are mostly expressed
41 in approximately 15-30% of luminal epithelial cells, and studies have shown that the PR also
42 contains portions of ER α . Studies by Rachel Schiff revealed that ER+/PR- tumors share gene
43 profiles with both the ER+/PR+ and ER-/PR- luminal subtypes, and patients with these
44 genotypes have a poor prognosis concluded by Perou¹⁸.

45 **Methodology:**

46 Protein–protein interactions were studied using the PDB ids of RCSB through the H dock
47 server, and RNA–protein interactions were studied by developing nucleic acid contigs from
48 the protein sequence and through the H Dock server by selecting ssRNAs. A model with a
49 low positive free energy is selected from the top 10 predicted models, and receptor–ligand
50 interface data with negative free energy are captured.

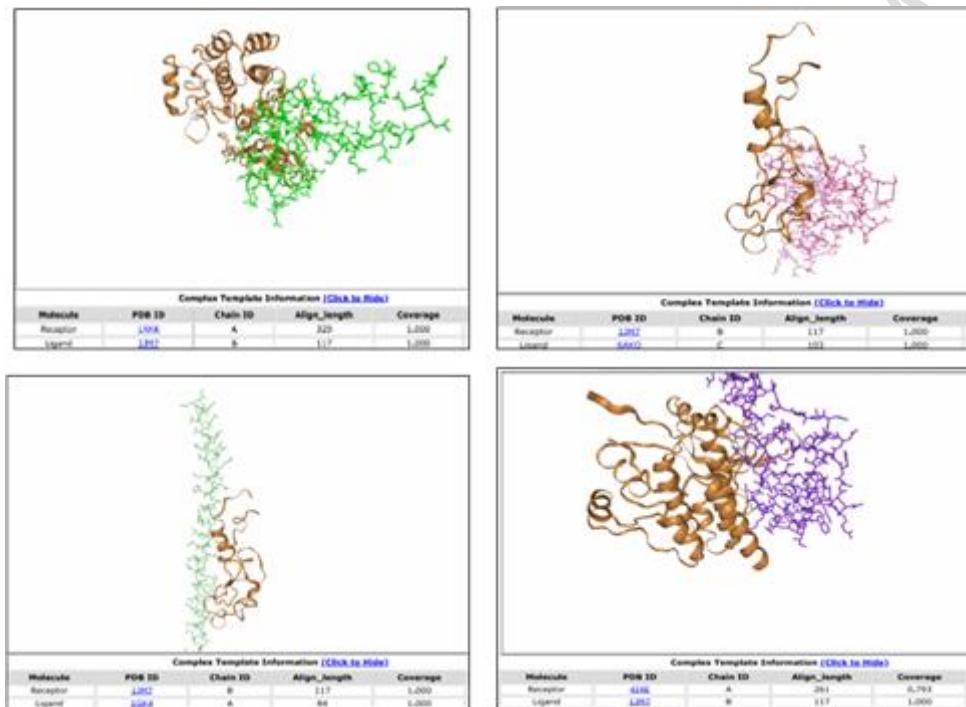
51 1. The amino acid contig of EGFR:

52 SGSGEAPNQALLRILKETEFKKIKVLGSGAFTVYKGLWIPEGEKVKIPVAIKELREAT
53 SPKANKEILDEAYVMASVDNPHVCRLLGICLTSTVQLITQLMPFGCLLDYVREHKDNI
54 GSQYLLNWCVFVCVQIAKGMNYLEDRRRHDLAARNVLKTPQHVKITDFGLAKLLG
55 AEEKEYHAEGGKVPIKWMALESILHRIYTHQSDVWSYGVTVWELMTFGSKPYDGIP
56 ASEISSILEKGERLPQPPICHTDVMIMVMACWMIDWGDERMHLPSPTDSNFYRALM
57 DEEDMDDVVADEYLIPQQG

58 [RNA contig of EGFR generated with seq id 7EAI (RCSB PDB):
59 GGUUCUGGUGAAGCUCCAAAUGAAGCUCUUCUUAGAAUUCUUAAACAAACUA
60 AUUUUAAAAAAUUAAGUUCUUGGUAGUGGUGCUUUUGGUACUGUUUAUAA
61 AGGUCUUUGGAUCCUCAAGGUAAAAAGUAAAAUCCUGUUGCUAAAACA
62 ACUUCGUCAAGCUACUAGUCCUAAGCUAAUAAACAAUUAAGAUCAAGCU
63 UAUGUUUAUGGUAGUGUUGAUAAUCCUCAUGUUUGUCGUUCUUGGUAUUU
64 GUCUUACUUUAUGUACUGUUGAACUUUAACUGAACUUAUGCCUUUUGGUUGU
65 CUUCUUGAUUAUGUUCGUACACAUAAAUAUAAUUGGUUCUGAAUAUCUUU
66 UAAACUGGUGUCGAGAUCGCCAAGGGCAUGAACUACCUACAGGAUCGAC
67 GGCUAGUGUUCUUCUAAAAA

68 2. Amino acid contig of HER2/erB2:

69 MKFLNVNALVFM-
70 YYISIYIADYKDDDDKHHHHHHHHHLEVLFQGPYPYDVPDYATQVCTGTDMKLRLPASPETHLDMLRHLYQGCQVVQGNLEYL
71 PTNASLSFLQDIQEVTQGYVLIAHNQVRQVPLQRRLRIVRGTQLFEDNYALAVLDNGDPLNNTPVTGASPGGLRELQLRSLTEILKGG
72 VLIQRNPQLCYQDTILWKDIFHKNNQLALTLIDTNRSRACHPCSPMCKGSRCWGESSEDQSLTRVCAGGCARCPALPTDCCHEQ
73 CAAGCT

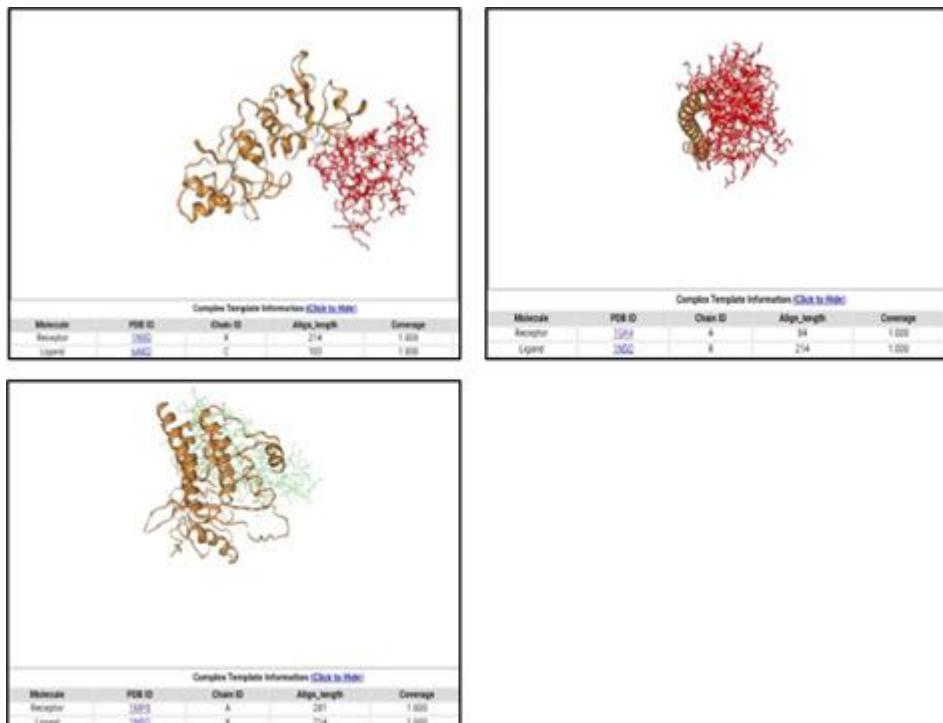

74 {RNA Contig sequence of HER2/erbB2 generated with SNP id:9QBF:RCSBPDB: Due to the large size of the contig, I limited the writing of
75 the RNA contig to first 276 aminoacids
76 (AUGAAAUUCUUGUUAUGUCGCUCUGUAUCAUGGUUGUGUAUAAGUUACAUCUAUGCCGAUUACAAGGACGAC
77 GACGAUAAACACCACCAUCAUCACCAACCAUCAUCACCUACAAGUCCUCUUGAAGGUCCUUACCCAUACGUUCCAGA
78 CUAUGCCACGAAGUGUGUACUGGUACAGACAUAGAAACUGCGCCUACCUGCAAGUCCACAAACGCACUUUAUGUUGCAC
79 UCUUUACGAAGGAUGUGAGGUAGUAGACGGAAACCUACAGCUAACAUACUGCCAACAAACGCCAGCUCCUCGAAGAC
80 AUAGAACAGGUAGGAAGGAAUCGUGUCAGUCACAAACGAAGUUCGUGAAGUUCUAGCGACUGCGUAUCGCUAU
81 GUACGGCACAGAACUCUUUCAGGACAACAUUUGUGC

82 3. Amino acid contig of the PR:

83 GQDIQLIPPLINLLMSIEPDYAGHDHDHNTKPDTSSLLTSLNQLGERQLLSVVKWSKSLPGFRNLHIDDQITLIQYSWMSLMVFGL
 84 GWRSYKHVSGQMLYFAPDLILNEQRMKESSFYSLCLTMWQIPQEFVKLQVSQEEFLCLLLLLNTIPLEGLRSQTQFEEMRSYYIRE
 85 LIKAIGLRQKGVVSSSQRFYQLTKLLDNLHDLVKQLHLYCLNTFIQSRALSVEFPEMMSEVIAAQLPKILAGMVKPPLLHKK.

86 [RNA contig sequence of the progesterone receptor was built with a sequence id: 1A28: RCSBPDB:
 87 GGCAGGACAUUGAACUAAUACCACCGCUAAUAAAUCUACUGAUGUCAUACAACCUGACGUCAUUAUGCCGGACACG
 88 AUUACACUAAACCAGAUACUUCUUCUUCUCCUACUCACCUCUGAACGAGCUGGGCAACGUGAACUACUCAGCGUUGU
 89 UAAAUGGAGCAAAGUCUCCCUGGCUUUCGCAACUACAUUAUAUGACGAAUAACACUAAUAGAAUAUGUUGGAUG
 90 UCUCUAAUGGUCUUUGGCCUAGGCUGGCGCUCAUUAACAUAGUUUCCGGCGACAGUGUUAACUUUGCCCCGACCUA
 91 UACUUAUCAAGAACGUAGAAGCAAUCUCCUCAUUCUCAUGUCUACAAUAGUGGGAAAUCCUGAACAGUUUGU
 92 UAAAUCUAGAGGUUAUCAGAACAAUUCUCUGUAUGAAGGUUAUCUCCUGCUAAAACAUUAUCCCA

93 **Results:**

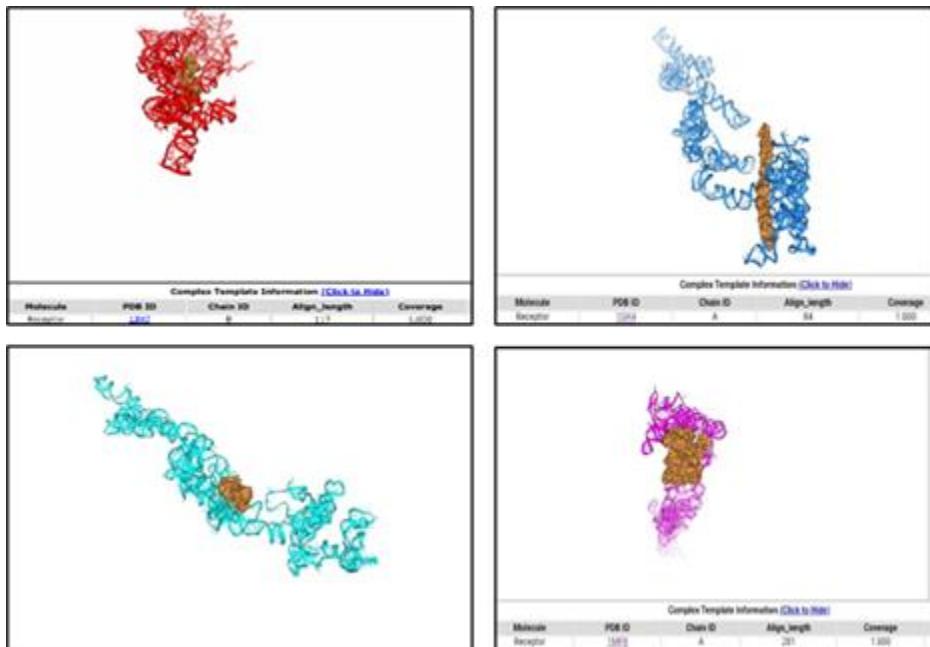


94
 95 Figure 1 Protein-protein interactions between the BRCA1 RING domain and EGFR (A),
 96 FOXC2 (B), vimentin (C) and focal adhesion kinase (D).

97 Figure 1A shows that the BRCA1 RING domain participates in protein-protein interactions
 98 with epidermal growth factor receptor (EGFR) at the receptor-ligand interface with the
 99 amino acid pair ASP-ASN; ASN-PRO, ASN-VAL; ARG-PHE, ARG-CYS; SER-CYS;
 100 SER-PRO; PHE-PRO; PHE-ILE; and GLU-ARG, which are involved in major van der
 101 Waals interactions and ionic interactions. The amino acid pairs with low energy values were
 102 recorded to reduce the ambiguity in the data. Figure 1B shows the protein-protein
 103 interactions between BRCA1 and FOXC2 for the amino acid pairs CYS-SER, PRO-ARG,
 104 VAL-SER, VAL-PHE, CYS-GLY, THR-ASN, PRO-GLN, ASN-ASP, LEU-ASN, LEU-ARG
 105 LEU-ASP, HIS-ARG, and HIS-PRO at the receptor-ligand interface with van der Waals and
 106 ionic interactions. Figure 1C shows that the vimentin and BRCA1 ligand-receptor interfaces
 107 contain amino acid pairs such as ARG-VAL, ARG- GLU, LYS- TYR, ARG-GLU, ARG-
 108 TYR, LEU-TYR, LEU-HIS, ASP-GLU, GLU-ILE, GLU-MET, LYS-ARG, GLU-ARG, and
 109 ARG-ASN with van der Waals and ionic interactions. Figure 1D Focal adhesion kinase

110 (FAK) shows protein–protein interactions with BRCA1 at interfaces containing amino acids
111 such as ASP-ILE, PRO-ILE, GLN-ARG, VAL-ILE, LYS-ILE, TYR-ASN, ASP-ARG, GLN-
112 ASP, ARG-LEU, SER-LYS, ALA-ARG, ARG-LYS, and GLN-GLN, which exhibit major van
113 der Waals interactions and ionic interactions with few recorded hydrophobic interactions.

114


116 Figure 2: Protein–protein interactions of the total BRCA1 contig with FOXC2, vimentin and
117 focal adhesion kinase.

118 Figure 2A shows the results of protein interaction studies between the BRCA1 total amino
119 acid contig and FOXC2, which revealed interactions between amino acids at the binding
120 surface with low energy values recorded at HIS-ASN, HIS-LEU, THR-ASN, GLU-ASN,
121 ASP-GLN, ASP-LYS, TYR-GLN, LEU-SER, and PRO-TYR, revealing ionic and van der
122 Waals interactions. Figure 2B shows that the BRCA1 and vimentin pairs had low energy
123 values for amino acid pairs such as LEU-LYS, THR-ASN, LEU-GLU, MET-MET, GLU-
124 ARG, GLU-THR, PHE-GLY, GLU-GLN, TYR-LYS, ILE-GLN, ILE-VAL, GLN-VAL, and
125 GLN-LYS through noncovalent interactions such as hydrophobic interactions, van der Waals
126 forces and ionic interactions. As shown in Figure 2C, BRCA1 interacts with focal adhesion
127 kinases at the amino acid positions ARG-HIS, ILE-HIS, GLN-LYS, GLN-HIS, LEU-HIS,
128 THR-ARG, THR-HIS, GLY-ARG, GLU-ARG, VAL-SER, ARG-LEU, SER-THR, SER-
129 ASN, and SER-LEU at the binding interface with vascular forces more strongly than with
130 ionic interactions.

131 Figure 3A shows that BRCA1 interacts with EGFR at the 21st position Lys with the c1
132 position of adenine (588), the C1 position of uracil at the 654th position with ARG (24), the
133 27th position of ARG with the C4 position adenine, the 33rd position Arg with the N3
134 position cytosine (504), the 37th position Cys with cytosine at N2 (536) and the C3 position

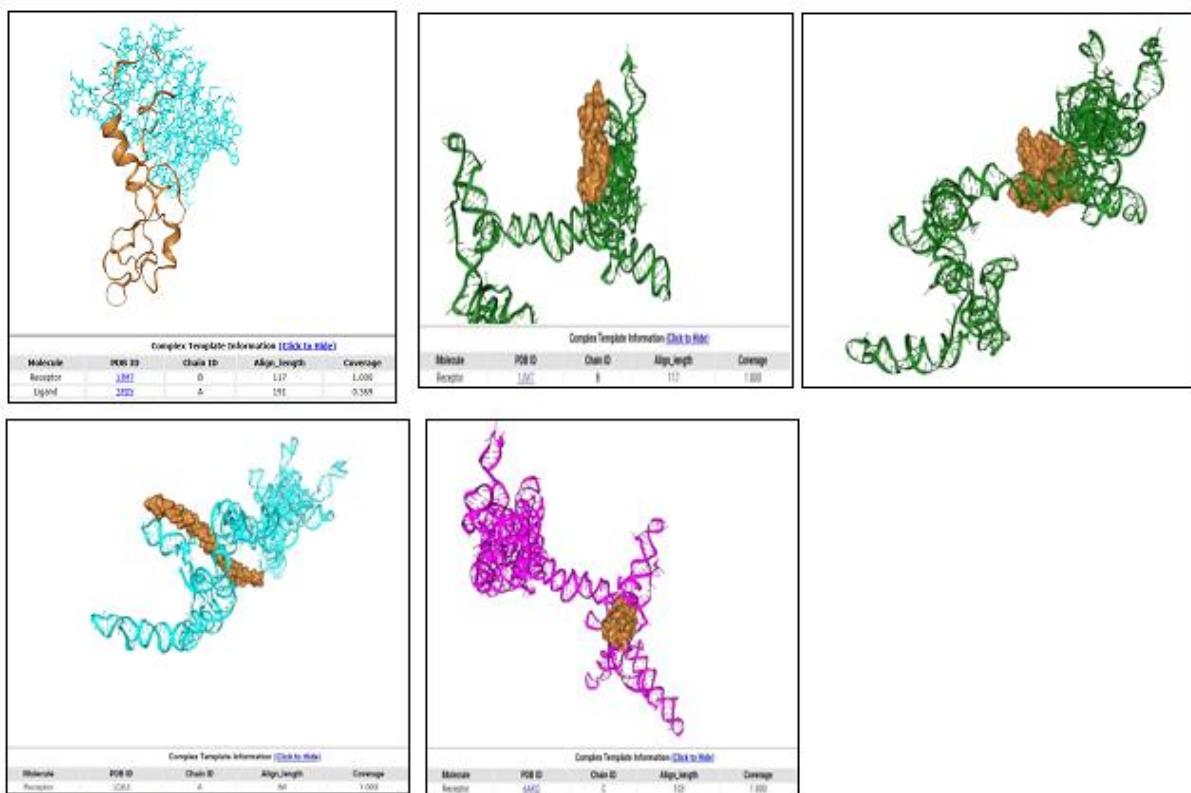
135 cytosine (537). At position 72, Ile with OP2 was adenine (547), and at position 83, Cys was
136 adenine at position C6 (628).

137

138

139 Figure 3 Protein–gene interactions between the BRCA1 ring domain and the EGFR contig
140 (A), between vimentin and the EGFR contig (B), between FOXC2 and the EGFR contig (C)
141 and between FAK and EGFR (D).

142


143 Figure 3B shows that EGFR interacts with vimentin at 31 Tyr with 28 cytosine residues, 35
144 Ile with 13 guanine residues and 14 cytosine residues, and the 38th position of LEU with
145 782,783 adenine and uracil residues. 39, Gln with 15 and 783 positions of uracil; 45, MET
146 with 713 positions of adenine; 72, Thr with 887 positions of uracil; 75, Lys; and 76, Leu with
147 888 adenine and 867 guanine. The 76 position Leu with the 887 position uracil in the gene.

148

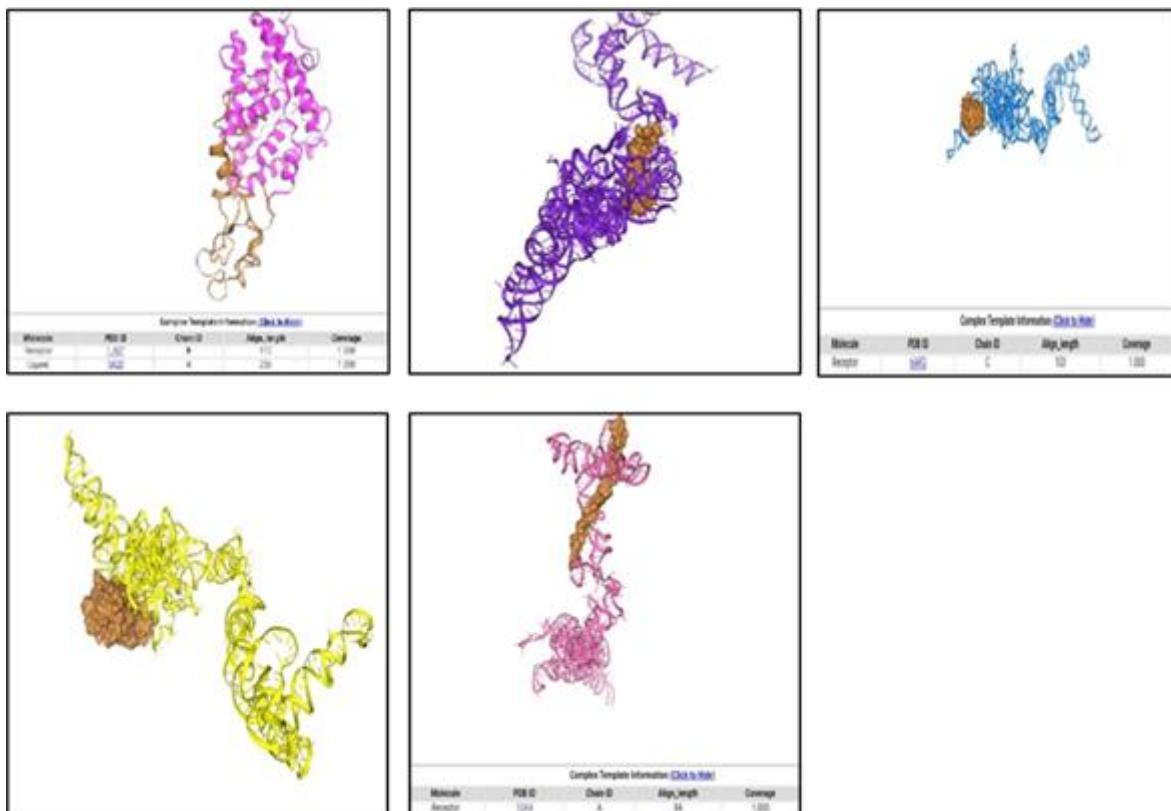
149 As shown in Figure 3C, EGFR interacts with FOXC2 at the 45th position of Gln with the
150 666th position uracil, at the 52nd position Arg with 160 and 161th positions cytosine and
151 uracil, at the 53rd position His with adenine (136) and guanine (667), at the Ser (56) and Leu
152 (57) with guanine (125) and at the Ser (56) with uracil (162), at the Leu (57) with uracil (135)
153 and guanine (164), at the Glu (59) with uracil (134) and guanine (165), at the Lys (63) with
154 uracil (162) and cytosine (163), at the Asp (82) with adenine (183), at the Arg (97) with uracil
155 (171) and guanine (184) of the nucleic acid sequence.

156

157 According to Figure 3D, EGFR interacts with focal adhesion kinase at sites such as Tyr (165)
158 with adenine (760), Lys (176) with guanine (748), Ile (189) with uracil (749), and Arg (192)
159 with guanine (748), and positions with a free energy change less than 2.0 are recorded and
160 mentioned here.

161

162 Figure 4 Protein–protein interactions between BRCA1 and HER3 (seq id:3P0Y) (A) and
 163 gene–protein interactions between erb2 and BRCA1 with seq.id 2A91 (B), between erbB2
 164 and FOXC2 with seq.id 2A91 (C), between erbB2 and vimentin with seq.id 2A91 (D) and
 165 between erbB2 and FAK with seq.id 2A91 (E).


166 Figure 4A shows that HER3 proteins interact with the BRCA1 ring domain at amino acid
 167 pairs such as Cys (41) - Asn (417), Asp (97) - Gln (425), Asp (97) - His (449), Glu (100) - His
 168 (416) & Asn (417), Pro (103) - Leu (415) & Asn (417), Arg (104) - Val (332), and Phe (108) -
 169 Leu (415) at the receptor–ligand interface through ionic interactions followed by van der
 170 Waals and dipole–dipole interactions.

171 As shown in Figure 4B, the ErbB2 gene interacts with the BRCA1 protein at various sites,
 172 such as Phe (45) with uracil (347), Cys (46) and Pro (59) with guanine (346), Thr (63) with
 173 guanine (367), Trp (66) with cytosine (750), Asn (88) with guanine (751), His (91) with
 174 adenine (344), and Asn (93) with uracil (343).

175 As shown in Figure 4D, the ErbB2 gene interacts with vimentin at sites such as Arg (15 and
 176 18) at cytosine (162), Glu (27) at uracil (12), Tyr (31) at uracil (11), Tyr (31) at adenine (255)
 177 and guanine (256), and Gln (39) at guanine (260).

178 Figure 4E shows that ErbB2 and FOXC2 have gene–protein interactions at Tyr (165) with
 179 adenine (760), Lys (176) and Arg (192) with guanine (748), and Ile (189) with uracil (749).
 180 As shown in Figure 4C, Focal adhesion kinase interacts with ErbB2 at the nucleotide
 181 positions Phe (191) and uracil (554), Asn (224) and Asp (225) and adenine (449), Arg (229)

182 and adenine (447), Glu (231) and uracil (555), Glu (234) and adenine (321) and uracil (446),
183 and Met (238) and Tyr (247) with adenine (323), Tyr (256) and uracil (555).

204 As shown in Figure 5D, the progesterone receptor interacts with focal adhesion kinase, which
205 results in gene–protein interactions at various positions, such as Pro (39) with cytosine (16),
206 Asp (57) with adenine (323), Arg (136) with adenine (337), Asp (153) with guanine (6), and
207 Glu (266) with guanine (253).

208 Figure 5E shows that nucleic acid interactions with the progesterone receptor occur with the
209 protein vimentin at Glu (2) with uracil (695), Glu (27) with uracil (490), Ala (29), Asp (33)
210 and Gln (32) with cytosine (664), Asn (30) with uracil (490 and 491), Tyr (30) with uracil
211 (490), Thr (34) with uracil (491), Arg (37) with uracil (491 and 492), Leu (53) and Gln (57)
212 with adenine (551), Tyr (56) with uracil (505) and cytosine (506).

213 **Discussion:**

214 The roles of progesterone hormone and progesterone receptor in cancer treatment have been
215 debated over the past several years, and by the early 20th century, it was determined that the
216 presence of estrogen receptor alone cannot be a solution and that the PR is one of the targets
217 of estrogen and the first baseline hormonal therapy for breast cancer¹⁸. The human epidermal
218 growth factor receptor 2 (HER2) receptor is a membrane protein tyrosine kinase that affects
219 proliferation and growth when activated. The HER2 oncogene is located at chromosome
220 number 17q12, and HER2 gene amplification is one of the major mechanisms responsible for
221 HER2 overexpression, which is associated with most current HER2-positive cancers¹⁹.

222 BRCA1 is a tumor suppressor gene that plays a key role in repairing DNA damage, regulating
223 the cell cycle, maintaining genome stability and regulating several other physiological
224 responses²⁰. Women with BRCA1 mutations can develop not only most aggressive breast
225 cancers, such as triple-negative breast cancer but also a high risk of exposure to other
226 cancers, such as ovarian cancer²⁰.

227 **Declarations:**

228 Ethics approval: NA

229 Consent to participate: NA

230 Consent for Publication: NA

231 **Availability of data and material:**

232 Figure 1

233 **FIGURE 1a: BRCA1-EGFR**

234 ACCESSION NUMBER: 1JM7- BRCA1

235 ACCESSION NUMBER: 1XKK- EGFR

236 URL: [RCSB PDB - 1JM7: Solution structure of the BRCA1/BARD1 RING-domain heterodimer](https://www.rcsb.org/structure/1JM7)

237 URL: [RCSB PDB - 1XKK: EGFR kinase domain complexed with a quinazoline inhibitor- GW572016](https://www.rcsb.org/structure/1XKK)

238 **FIGURE 1B: BRCA1- FOXC2:**

239 ACCESSION NUMBER: BRCA1- 1JM7

240 ACCESSION NUMBER: FOXC2 - 6AKO

241 URL: [RCSB PDB - 1JM7: Solution structure of the BRCA1/BARD1 RING-domain heterodimer](https://www.rcsb.org/structure/1JM7)

242 URL: [RCSB PDB - 6AKO: Crystal Structure of FOXC2 DBD Bound to DBE2 DNA](https://www.rcsb.org/structure/6AKO)

243 FIGURE 1C: BRCA1 VIMENTIN:
244 ACCESSION NUMBER: BRCA1- 1JM7
245 ACCESSION NUMBER: VIMENTIN-1GK4
246 URL: [RCSB PDB - 1JM7: Solution structure of the BRCA1/BARD1 RING-domain heterodimer](https://www.rcsb.org/pdb/explore/structure?structureId=1JM7)
247 URL: [RCSB PDB - 1GK4: HUMAN VIMENTIN COIL 2B FRAGMENT \(CYS2\)](https://www.rcsb.org/pdb/explore/structure?structureId=1GK4)
248 FIGURE 1D: BRCA1-FAK:
249 ACCESSION NUMBER: BRCA1- 1JM7
250 ACCESSION NUMBER: FAK-4I4E
251 URL: [RCSB PDB - 1JM7: Solution structure of the BRCA1/BARD1 RING-domain heterodimer](https://www.rcsb.org/pdb/explore/structure?structureId=1JM7)
252 URL: [RCSB PDB - 4I4E: Structure of Focal Adhesion Kinase catalytic domain in complex with hinge binding pyrazolobenzothiazine compound.](https://www.rcsb.org/pdb/explore/structure?structureId=4I4E)
253 Figure 2
254 Figure 2A: BRCA1-FOXC2:
255 ACCESSION NUMBER: BRCA1- 1JM7
256 ACCESSION NUMBER: FOXC2 - 6AKO
257 URL: [rcsb.org/entry/1JM7/display>1JM7_1|Chain A|BREAST CANCER TYPE 1 SUSCEPTIBILITY PROTEIN|Homo sapiens \(9606\)](https://www.rcsb.org/fasta/explore/1JM7/display?1JM7_1|Chain A|BREAST CANCER TYPE 1 SUSCEPTIBILITY PROTEIN|Homo sapiens (9606))
258 URL: [RCSB PDB - 6AKO: Crystal Structure of FOXC2 DBD Bound to DBE2 DNA](https://www.rcsb.org/pdb/explore/structure?structureId=6AKO)
259 FIGURE 2B: BRCA1 VIMENTIN:
260 ACCESSION NUMBER: BRCA1- 1JM7
261 ACCESSION NUMBER: VIMENTIN-1GK4
262 URL: [rcsb.org/fasta/entry/1JM7/display>1JM7_1|Chain A|BREAST CANCER TYPE 1 SUSCEPTIBILITY PROTEIN|Homo sapiens \(9606\)](https://www.rcsb.org/fasta/explore/1JM7/display?1JM7_1|Chain A|BREAST CANCER TYPE 1 SUSCEPTIBILITY PROTEIN|Homo sapiens (9606))
263 URL: [RCSB PDB - 1GK4: HUMAN VIMENTIN COIL 2B FRAGMENT \(CYS2\)](https://www.rcsb.org/pdb/explore/structure?structureId=1GK4)
264 FIGURE 2C: BRCA1-FAK axis
265 ACCESSION NUMBER: BRCA1- 1JM7
266 ACCESSION NUMBER: FAK-4I4E
267 URL: [rcsb.org/fasta/entry/1JM7/display>1JM7_1|Chain A|BREAST CANCER TYPE 1 SUSCEPTIBILITY PROTEIN|Homo sapiens \(9606\)](https://www.rcsb.org/fasta/explore/1JM7/display?1JM7_1|Chain A|BREAST CANCER TYPE 1 SUSCEPTIBILITY PROTEIN|Homo sapiens (9606))
268 URL: [RCSB PDB - 4I4E: Structure of Focal Adhesion Kinase catalytic domain in complex with hinge binding pyrazolobenzothiazine compound.](https://www.rcsb.org/pdb/explore/structure?structureId=4I4E)
269 Figure 3
270 Figure 3 A: BRCA1-EGFR:
271 ACCESSION NUMBER: BRCA1- 1JM7
272 ACCESSION NUMBER: EGFR-7AEI
273 URL: [rcsb.org/fasta/entry/1JM7/display>1JM7_2|Chain B|BRCA1-ASSOCIATED RING DOMAIN PROTEIN 1|Homo sapiens \(9606\)](https://www.rcsb.org/fasta/explore/1JM7/display?1JM7_2|Chain B|BRCA1-ASSOCIATED RING DOMAIN PROTEIN 1|Homo sapiens (9606))
274 URL: [rcsb.org/fasta/entry/7AEI/display>7AEI_1|Chain A|Epidermal growth factor receptor|Homo sapiens \(9606\)](https://www.rcsb.org/fasta/explore/7AEI/display?7AEI_1|Chain A|Epidermal growth factor receptor|Homo sapiens (9606))
275 Figure 3B: EGFR- VIMENTIN:
276 ACCESSION NUMBER: EGFR-7AEI
277 ACCESSION NUMBER: VIMENTIN-1GK4
278 URL: [rcsb.org/fasta/entry/7AEI/display>7AEI_1|Chain A|Epidermal growth factor receptor|Homo sapiens \(9606\)](https://www.rcsb.org/fasta/explore/7AEI/display?7AEI_1|Chain A|Epidermal growth factor receptor|Homo sapiens (9606))
279 URL: [RCSB PDB - 1GK4: HUMAN VIMENTIN COIL 2B FRAGMENT \(CYS2\)](https://www.rcsb.org/pdb/explore/structure?structureId=1GK4)
280 Figure 3C: EGFR- FOXC2
281 ACCESSION NUMBER: EGFR-7AEI
282 ACCESSION NUMBER: FOXC2 - 6AKO
283 URL: [rcsb.org/fasta/entry/7AEI/display>7AEI_1|Chain A|Epidermal growth factor receptor|Homo sapiens \(9606\)](https://www.rcsb.org/fasta/explore/7AEI/display?7AEI_1|Chain A|Epidermal growth factor receptor|Homo sapiens (9606))
284 URL: [RCSB PDB - 6AKO: Crystal Structure of FOXC2 DBD Bound to DBE2 DNA](https://www.rcsb.org/pdb/explore/structure?structureId=6AKO)
285 Figure 3D EGFR-FAK
286 ACCESSION NUMBER: EGFR-7AEI

287 ACCESSION NUMBER: FAK-4I4E
288 URL: rcsb.org/fasta/entry/7AEI/display?7AEI_1Chain A|Epidermal growth factor receptor|*Homo sapiens* (9606)
289 URL: [RCSB PDB - 4I4E: Structure of Focal Adhesion Kinase catalytic domain in complex with hinge binding pyrazolobenzothiazine compound](https://rcsb.org/pdb/explore/collection/414E).
290 **FIGURE 4**
291 **FIGURE 4A: BRCA1-ErB2**
292 ACCESSION NUMBER: BRCA1- 1JM7
293 ACCESSION NUMBER: ErB2- 2A91
294 URL: [RCSB PDB - 1JM7: Solution structure of the BRCA1/BARD1 RING-domain heterodimer](https://rcsb.org/pdb/explore/collection/1JM7)
295 URL: [RCSB PDB - 2A91: Crystal structure of ErbB2 domains 1-3](https://rcsb.org/pdb/explore/collection/2A91)
296 **FIGURE 4B: BRCA1: HER2/ErB2**
297 ACCESSION NUMBER: BRCA1- 1JM7
298 ACCESSION NUMBER: HER2/ErB2-9QBF
299 URL: rcsb.org/fasta/entry/1JM7/display?1JM7_2Chain B|BRCA1-ASSOCIATED RING DOMAIN PROTEIN 1|*Homo sapiens* (9606)
300 URL: rcsb.org/fasta/entry/9QBF/display?9QBF_1Chain A|Receptor tyrosine-protein kinase erbB-2, Green fluorescent protein|*Homo sapiens* (9606)
301 **FIGURE 4C: HER2/ErB2; FOXC2**
302 ACCESSION NUMBER: HER2/ErB2-9QBF
303 ACCESSION NUMBER: FOXC2 - 6AKO
304 URL: rcsb.org/fasta/entry/9QBF/display?9QBF_1Chain A|Receptor tyrosine-protein kinase erbB-2, Green fluorescent protein|*Homo sapiens* (9606)
305 URL: [RCSB PDB - 6AKO: Crystal Structure of FOXC2 DBD Bound to DBE2 DNA](https://rcsb.org/pdb/explore/collection/6AKO)
306 **FIGURE 4D: HER2/ErB2; VIMENTIN**
307 ACCESSION NUMBER: HER2/ErB2-9QBF
308 ACCESSION NUMBER: VIMENTIN-1GK4
309 URL: rcsb.org/fasta/entry/9QBF/display?9QBF_1Chain A|Receptor tyrosine-protein kinase erbB-2, Green fluorescent protein|*Homo sapiens* (9606)
310 URL: [RCSB PDB - 1GK4: HUMAN VIMENTIN COIL 2B FRAGMENT \(CYS2\)](https://rcsb.org/pdb/explore/collection/1GK4)
311 **FIGURE 4E: HER2/ErB2; FAK**
312 ACCESSION NUMBER: HER2/ErB2-9QBF
313 ACCESSION NUMBER: FAK-4I4E
314 URL: rcsb.org/fasta/entry/9QBF/display?9QBF_1Chain A|Receptor tyrosine-protein kinase erbB-2, Green fluorescent protein|*Homo sapiens* (9606)
315 URL: [RCSB PDB - 4I4E: Structure of Focal Adhesion Kinase catalytic domain in complex with hinge binding pyrazolobenzothiazine compound](https://rcsb.org/pdb/explore/collection/414E).
316 **FIGURE 5**
317 **FIGURE 5A BRCA1:PR**
318 ACCESSION NUMBER: 1JM7- BRCA1
319 ACCESSION NUMBER: 1A28 - PR
320 URL: [RCSB PDB - 1JM7: Solution structure of the BRCA1/BARD1 RING-domain heterodimer](https://rcsb.org/pdb/explore/collection/1JM7)
321 URL: [RCSB PDB - 1A28: HORMONE-BOUND HUMAN PROGESTERONE RECEPTOR LIGAND-BINDING DOMAIN](https://rcsb.org/pdb/explore/collection/1A28)
322 **FIGURE 5B: BRCA1-PR**
323 ACCESSION NUMBER: 1JM7- BRCA1
324 ACCESSION NUMBER: 1A28 - PR
325 URL: rcsb.org/fasta/entry/1JM7/display?1JM7_2Chain B|BRCA1-ASSOCIATED RING DOMAIN PROTEIN 1|*Homo sapiens* (9606)
326 URL: rcsb.org/fasta/entry/1A28/display?1A28_1Chains A, B|PROGESTERONE RECEPTOR|*Homo sapiens* (9606).
327 **FIGURE 5C: PR-FOXC2**
328 ACCESSION NUMBER: 1A28 – PR
329 ACCESSION NUMBER: FOXC2 - 6AKO
330 URL: rcsb.org/fasta/entry/1A28/display?1A28_1Chains A, B|PROGESTERONE RECEPTOR|*Homo sapiens* (9606).

331 URL: [RCSB PDB - 6AKO: Crystal Structure of FOXC2 DBD Bound to DBE2 DNA](https://www.rcsb.org/pdb/explore/structure?structureId=6AKO)

332 **FIGURE 5D: PR-FAK**

333 ACCESSION NUMBER: 1A28 – PR

334 ACCESSION NUMBER: FAK-414E

335 URL: [rcsb.org/fasta/entry/1A28/display?1A28_1](https://www.rcsb.org/fasta/entry/1A28/display?1A28_1)Chains A, B|PROGESTERONE RECEPTOR |*Homo sapiens* (9606).

336 URL: [RCSB PDB - 4I4E: Structure of Focal Adhesion Kinase catalytic domain in complex with hinge binding pyrazolobenzothiazine compound.](https://www.rcsb.org/pdb/explore/structure?structureId=4I4E)

337 **FIGURE 5E: PR-VIMENTIN**

338 ACCESSION NUMBER: 1A28 – PR

339 ACCESSION NUMBER: VIMENTIN-1GK4

340 URL: [rcsb.org/fasta/entry/1A28/display?1A28_1](https://www.rcsb.org/fasta/entry/1A28/display?1A28_1)Chains A, B|PROGESTERONE RECEPTOR |*Homo sapiens* (9606).

341 URL: [RCSB PDB - 1GK4: HUMAN VIMENTIN COIL 2B FRAGMENT \(CYS2\)](https://www.rcsb.org/pdb/explore/structure?structureId=1GK4)

342 The first Author/Corresponding Author Dr. Eswari Beeram will be contacted to obtain the raw data.

343 Competing interests:

344 The authors declare that they have no competing interests.

345 Funding: NA

346 Author contributions:

347 Author: 1: The first author performed the experimental work and wrote the manuscript.

348 Author: 2 Second author reviewed the manuscript

349 Author: 3 Third author reviewed the manuscript

350 Author: 4 Fourth author reviewed the manuscript

351 Author: 5 Fifth author reviewed the manuscript.

352 Limitations statement:

353 The amino acid sequence is encoded at only 100-300 amino acids due to the large size of the

354 contig in the case of eErb2/HER2. When predicting SOX10 expression, the methodology

355 used for the study was limited because the data generated represented by some protein IDs

356 ultimately limited the study to only 8 proteins instead of 10 proteins, and I am unable to study

357 all the proteins and genes involved in TNBC.

358 **Acknowledgment**

359 Here, I am thankful to hdock.phys.hust.edu.cn for providing the web server for the work.

360 References:

361 1. [BRCA Gene Changes: Cancer Risk and Genetic Testing Fact Sheet - NCI](#)

362 2. Ayub SG, Rasool S, Ayub T, Khan SN, Wani KA, Andrabi KI. Mutational analysis of

363 the BRCA2 gene in patients with Kashmi descent. Molecular medicine reports.

364 2014;9(2):749–53. doi: 10.3892/mmr.2013.1862. [DOI] [PubMed] [Google Scholar]

365 3. Calderon-Garciduenas AL, Ruiz-Flores P, Cerdá-Flores RM, Barrera-Saldana HA.

366 Clinical follow-up of Mexican women with early onset of breast cancer and mutations

367 in the BRCA1 and BRCA2 genes. *Salud publica de Mexico*. 2005;47(2):110–5. doi:
368 10.1590/s0036-36342005000200004. [\[DOI\]](#) [\[PubMed\]](#) [\[Google Scholar\]](#)

369 4. Breast cancer and breastfeeding: collaborative reanalysis of individual data from 47
370 epidemiological studies in 30 countries, including 50302 women with breast cancer
371 and 96973 women without the disease. *Lancet (London, England)* 2002;360(9328):187–95. doi: 10.1016/S0140-6736(02)09454-0. [\[DOI\]](#) [\[PubMed\]](#)
373 [\[Google Scholar\]](#)

374 5. Bray F, McCarron P, Parkin DM. The changing global patterns of female breast
375 cancer incidence and mortality. *Breast cancer research: BCR*. 2004;6(6):229–39. doi:
376 10.1186/bcr932. [\[DOI\]](#) [\[PMC free article\]](#) [\[PubMed\]](#) [\[Google Scholar\]](#)

377 6. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and
378 mortality from cancer in a prospectively studied cohort of US adults. *The New
379 England journal of medicine*. 2003;348(17):1625–38. doi: 10.1056/NEJMoa021423.
380 [\[DOI\]](#) [\[PubMed\]](#) [\[Google Scholar\]](#)

381 7. Chen W, Pan K, Ouyang T, Li J, Wang T, Fan Z. et al. BRCA1 germline mutations
382 and tumor characteristics in Chinese women with familial or early-onset breast cancer.
383 *Breast cancer research and treatment*. 2009;117(1):55–60. doi: 10.1007/s10549-008-
384 0066-6. [\[DOI\]](#) [\[PubMed\]](#) [\[Google Scholar\]](#)

385 8. Datta K, Biswas J. Influence of dietary habits, physical activity and affluence factors
386 on breast cancer in East India: a case–control study. *Asian Pacific journal of cancer
387 prevention: APJCP*. 2009;10(2):219–22. [\[PubMed\]](#) [\[Google Scholar\]](#)

388 9. Hamajima N, Hirose K, Tajima K, Rohan T, Calle EE, Heath CWJr. et al. Alcohol,
389 tobacco and breast cancer--collaborative reanalysis of individual data from 53
390 epidemiological studies, including 58,515 women with breast cancer and 95,067
391 women without the disease. *British journal of cancer*. 2002;87(11):1234–45. doi:
392 10.1038/sj.bjc.6600596. [\[DOI\]](#) [\[PMC free article\]](#) [\[PubMed\]](#) [\[Google Scholar\]](#)

393 10. Lord SJ, Bernstein L, Johnson KA, Malone KE, McDonald JA, Marchbanks PA. et al.
394 Breast cancer risk and hormone receptor status in older women by parity, age of first
395 birth, and breastfeeding: a case–control study. *Cancer epidemiology, biomarkers &
396 prevention: a publication of the American Association for Cancer Research, cosponsored by the
397 American Society of Preventive Oncology*. 2008;17(7):1723–30.
398 doi: 10.1158/1055-9965.EPI-07-2824. [\[DOI\]](#) [\[PMC free article\]](#) [\[PubMed\]](#) [\[Google
399 Scholar\]](#)

400 11. Schulz M, Hoffmann K, Weikert C, Nothlings U, Schulze MB, Boeing H. Identification
401 of a dietary pattern characterized by high-fat food choices associated
402 with increased risk of breast cancer: the European Prospective Investigation into
403 Cancer and Nutrition (EPIC)-Potsdam Study. *The British journal of nutrition*.
404 2008;100(5):942–6. doi: 10.1017/S0007114508966149. [\[DOI\]](#) [\[PubMed\]](#) [\[Google
405 Scholar\]](#)

406 12. Beral V. Breast cancer and hormone-replacement therapy in the Million Women
407 Study. *Lancet (London, England)* 2003;362(9382):419–27. doi: 10.1016/s0140-
408 6736(03)14065-2. [\[DOI\]](#) [\[PubMed\]](#) [\[Google Scholar\]](#)

409 13. Huo D, Adebamowo CA, Ogundiran TO, Akang EE, Campbell O, Adenipekun A. et
410 al. Parity and breastfeeding are protective against breast cancer in Nigerian women.
411 British journal of cancer. 2008;98(5):992–6. doi: 10.1038/sj.bjc.6604275. [DOI]
412 [PMC free article] [PubMed] [Google Scholar]

413 14. Tereschenko IV, Basham VM, Ponder BA, Pharoah PD. BRCA1 and BRCA2
414 mutations in Russian familial breast cancer. Human mutation. 2002;19(2):184. doi:
415 10.1002/humu.9008. [DOI] [PubMed] [Google Scholar]

416 15. Mitri et al., (2012). The HER2 Receptor in Breast Cancer: Pathophysiology, Clinical
417 Use, and New Advances in Therapy; Chemother Res Pract; 743193.
418 doi: 10.1155/2012/743193 PMCID: PMC3539433 PMID: 23320171

419 16. Clarke RB, Howell A, Potten CS, Anderson E. Dissociation between steroid receptor
420 expression and cell proliferation in the human breast. *Cancer Res.* 1997;57(22):4987–
421 4991. [PubMed] [Google Scholar]

422 17. Horwitz KB et al., (2020). 90 YEARS OF PROGESTERONE: Progesterone and
423 progesterone receptors in breast cancer: past, present, future. *Journal of Molecular
424 Endocrinology;* Vol.65(1); <https://doi.org/10.1530/JME-20-0104>.

425 18. Creighton CJ, Kent Osborne C, van de Vijver MJ, et al. Molecular profiles of
426 progesterone receptor loss in human breast tumors. *Breast Cancer Res Treat.*
427 2009;114(2):287–299. doi: 10.1007/s10549-008-0017-2 [DOI] [PMC free article]
428 [PubMed] [Google Scholar]

429 19. Krishnamurti U et al., (2014). HER2 in breast cancer: a review and update. *Adv Anat
430 Pathol* ;21(2):100-7; doi: 10.1097/PAP.0000000000000015.

431 20. Fu Xi et al., (2022). BRCA1 and Breast Cancer: Molecular Mechanisms and
432 Therapeutic Strategies *Front. Cell Dev. Biol.* Volume10; <https://doi.org/10.3389/fcell.2022.813457>; PMID: 24508693;
433 DOI: [10.1097/PAP.0000000000000015](https://doi.org/10.1097/PAP.0000000000000015).

435

436

437

438