

1 **Occurrence and determinants of MSS among health care students in Jeddah, Saudi Arabia**

2 **Background:** Health anxiety and medically unexplained somatic distress (MSD) are
3 common among medical students and may vary by demographic, academic, and
4 psychosocial factors. This study examined the relationships between health anxiety, MSD,
5 and academic performance across different stages of medical training.

6 **Methods:** A cross-sectional study was conducted among 403 medical students using the
7 Short Health Anxiety Inventory (SHAI-18) and standardized MSD measures. Associations
8 with demographic variables, academic year, and grade point average (GPA) were analyzed
9 using comparative statistics and Pearson correlation.

10 **Results:** Health anxiety and MSD perception and distress were highest in early academic
11 years and declined significantly with progression through medical training. Female sex,
12 marital status, academic year, and lower academic performance were associated with
13 higher health anxiety, although effect sizes were small. GPA showed very weak negative
14 correlations with SHAI-18 ($r = -0.017$) and MSD scores ($r = -0.158$), indicating limited
15 practical relevance. In contrast, SHAI-18 and MSD scores demonstrated a moderate positive
16 correlation ($r = 0.330$, $p < 0.001$), suggesting a meaningful association between illness-
17 related anxiety and somatic distress.

18 **Conclusion:** Health anxiety and MSD symptoms are most pronounced in early years and
19 decline with advancing training, while the strong link between health anxiety and MSD
20 highlights the need for targeted psychological interventions. Early, curriculum-integrated
21 mental health support is recommended to mitigate illness anxiety and somatic distress
22 during medical education.

23 **Keywords:** health anxiety; medically unexplained symptoms; somatic distress; medical
24 students; academic performance; SHAI-18; mental health; medical education.

25 **Introduction**

26 Medical students' syndrome (MSS) comprises psychosomatic symptoms arising from
27 students associating their ambiguous symptoms with medical illnesses they have recently
28 studied, whether through textbooks, lectures, or clinical experiences [1].Research in

29 London has indicated that this issue mostly arises from the substantial demands placed on
30 the ordinary medical student during their preclinical and clinical years. This encompasses
31 extended working hours, tasks, continuous exam preparations, and the competitive
32 atmosphere in which they are engaged [2].

33 The condition arises when a pupil learns about or examines a certain ailment. The student
34 thereafter begins to believe they are exhibiting symptoms associated with the condition,
35 despite the absence of any underlying pathology [3]. Symptoms encountered may fluctuate
36 as students often alter the ailment they believe they have based on their current clinical
37 rotation[3].

38 MSS is sometimes conflated with health anxiety, a disorder characterized by excessive
39 concern for one's health[4]. Health anxiety differs from MSS about the temporal perception
40 of the individual's belief in their affliction with the condition. Health anxiety often
41 encompasses the apprehension of contracting a condition in the future, whereas illness
42 anxiety disorder (MSS) pertains to the fear of currently possessing the ailment [3].

43 Students' academic performance might be adversely affected by Medical Student Syndrome
44 (MSS), a well-known cause of stress throughout undergraduate medical school. As they
45 delve more into medical topics, students frequently start to make sense of intangible or
46 previously unimportant physical feelings in relation to the illnesses they are learning about.
47 An individual may begin to associate even a mild headache with potentially life-threatening
48 disease after studying about brain tumors [5]. Within the context of recently gained medical
49 knowledge, symptoms that were formerly written off as typical psychological or
50 physiological phenomena may take on more importance.

51 As a result of the feedback loop between increasing clinical knowledge and academic
52 pressure, students are more likely to link common symptoms with underlying medical
53 issues [6]. Identifying and addressing possible sources of stress is vital, as success in
54 medical school depends on more than just academic aptitude. It also requires emotional
55 resilience and certain personality attributes [6].

56 According to earlier studies, there are two parts to MSS. One part is cognitive, which
57 includes students' thoughts that they may have the illnesses they're learning about. The

58 other part is distress, which represents the worry that students feel as a result of these
59 thoughts. Although the cognitive component is present at all levels of medical school and
60 tends to get worse as students progress through their training, the distress component is
61 more noticeable in first-year students and gets better as they get older, probably because
62 they gain more experience, knowledge, and emotional maturity [7].

63 To lessen the effect of MSS, it is essential to prioritize medical students' mental health
64 despite the high levels of academic and psychological stress they endure. Therefore, the
65 purpose of this research was to determine how common MSS complaints were among a
66 sizable group of medical students in Jeddah, Saudi Arabia, and how much of an impact MSS
67 had on their GPA

68 **Methodology**

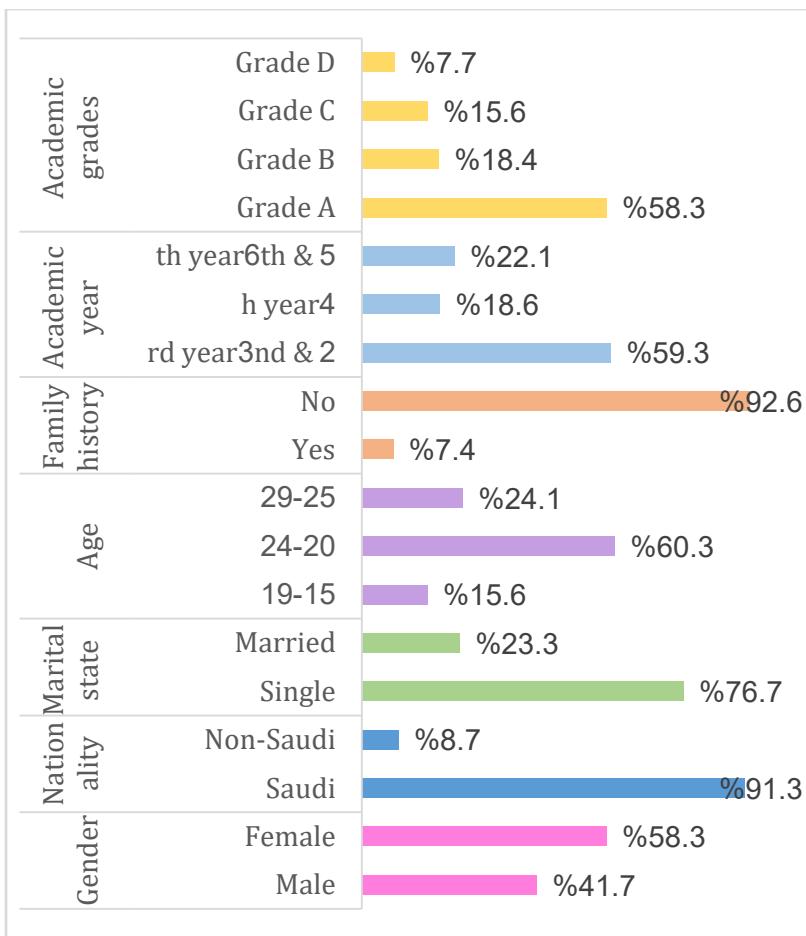
69 The current cross-sectional study was performed at Jeddah city over six months. Utilizing a
70 cluster sampling approach, all medical colleges in the Jeddah city were considered as
71 separate clusters. From these, one medical college was randomly selected for detailed
72 study, serving as a representative sample for the larger population. A convenient
73 nonprobability sampling technique was used to collect data for different years of the
74 Medicine Program. Using Epi info Application, the sample size is determined to 384 or more
75 are needed to have a confidence level of 95% based on an estimated prevalence of 50 %
76 with a margin of error of 5%. To cover unexpected non-response rate the sample size was
77 increased to 450.

78 A self-administered questionnaire was developed to collect data necessary to fulfill the
79 objectives of the research. The questionnaire was disseminated to students by using Google
80 form. The questionnaire included three sections. A self-administered questionnaire with
81 three parts was used to collect the data: demographic information and standardized
82 psychology scales such as Short Health Anxiety Inventory (SHAI) and the Medical Students'
83 Disease (MSD) Perception and Distress Scale were filled out by the participants.

84 The SHAI is a shorter version of the original Health Anxiety Inventory. It has 18 questions
85 that are meant to measure the severity of disease anxiety condition. Items 1-14 measure

86 general health-related worry, and Items 15–18 measure fears about serious sickness and
87 death [8]. A 4-point Likert scale goes from 0 (not at all or rarely) to 3 (most of the time), so
88 the total score that can be given is between 0 and 54. Scores above 18 show high levels of
89 health-related anxiety. Scores above 18 show very high levels of health-related anxiety. The
90 SHAI has a strong internal stability among student groups, as shown by Cronbach's alpha
91 values range from 0.87 to 0.95 in previous studies [9].

92 To measure parts of medical students' health-related worry, the MSD scale was used. It has
93 two subscales: the first five items measure the cognitive (view) component, and the last five
94 items measure the anxiety component [8]. The thinking subscale shows what students
95 think and worry about having the diseases they study, while the distress subscale shows
96 how these thoughts make them feel emotionally anxious. There is a 5-point scale that goes
97 from 1 (definitely fake) to 5 (definitely true). Subscale scores are found by adding up the
98 relevant items. Each component can have a number between 1 and 25, and higher scores
99 mean more cognitive anxiety or worry. Previous study has shown that the MSD scale has
100 good to excellent internal reliability (Cronbach's alpha = 0.78–0.90) [8]. The questionnaire
101 was pilot-tested in this study to make sure it was clear and reliable. The cognitive subscale
102 got a Cronbach's alpha value of 0.84, and the anxiety subscale got a value of 0.72.


103 Data analysis was performed with IBM SPSS statistical software version 25. All continuous
104 data were expressed as mean \pm standard deviation, and categorical data were represented
105 as frequencies and percentages. Independent sample t-tests were employed to analyze the
106 difference scores between the two groups, specifically comparing illness anxiety disorder
107 (IAD) symptoms, MSD perception, and distress among medical and nursing students. The
108 Chi-square test was employed to analyze the proportions of high and low SHAI scores
109 among medical students. One-way ANOVA was employed to analyze the differences in IAD
110 symptoms, MSD perception, and distress among students categorized by their years of
111 study. The group scores of each student were compared according to their replies to the
112 additional questions utilizing independent t-tests. The significance level for all analyses was
113 established at a P-value of 5%. The research was executed in accordance with the approval
114 from the Institutional Research Review Board (IRRB) of the college in Saudi Arabia. A p-
115 value below 0.05 was deemed significant.

116 **Results**

117 **Demographics**

118 In this study, 403 out of 450 questionnaires were filled out and examined. Figure 1
119 illustrates the demographic and academic profile of the study participants. Females
120 constituted a greater proportion of the sample than males (58.3% vs. 41.7%), and the
121 majority of students were Saudi nationals (91.3%), indicating a largely homogeneous
122 nationality distribution. Most respondents were single (76.7%), while less than one quarter
123 were married (23.3%). With respect to age, the sample was predominantly composed of
124 students aged 20–24 years (60.3%), followed by those aged 25–29 years (24.1%), whereas
125 younger students aged 15–19 years represented the smallest group (15.6%).

126 Regarding medical and familial background, only a small proportion of participants
127 reported a positive family history of illness (7.4%), while the vast majority reported none
128 (92.6%). Academically, over half of the students were in the pre-clinical years (2nd–3rd
129 year; 59.3%), with smaller proportions in the clinical years, including 5th–6th year
130 students (22.1%) and 4th-year students (18.6%). Academic performance was generally
131 high, as most students reported achieving Grade A (58.3%), followed by Grades B (18.4%)
132 and C (15.6%), while Grade D was least frequent (7.7%). Collectively, these findings
133 indicate that the study population was predominantly young, single, Saudi, and
134 academically high-performing, with relatively limited representation of students with lower
135 grades or a family history of illness.

136

137 **Figure 1: Demographic factors of the participants**

138 Health anxiety levels differed significantly according to several demographic and academic
 139 factors. Female students had a higher proportion of high SHAI scores compared with males
 140 (34.9% vs. 21.4%, $p = 0.03$). Marital status was also significantly associated with health
 141 anxiety, with married students more frequently reporting high SHAI scores than single
 142 students (64.9% vs. 19.4%, $p = 0.02$). Academic year showed a significant relationship, as
 143 higher health anxiety was more prevalent among 4th-year students (36.0%) compared with
 144 those in 2nd-3rd years (29.7%) and 5th-6th years (27.0%) ($p = 0.02$). Academic
 145 performance was likewise associated with health anxiety, with students achieving lower
 146 grades exhibiting a higher proportion of elevated SHAI scores ($p = 0.03$). In contrast, age
 147 group, nationality, and family history of illness were not significantly related to health
 148 anxiety levels ($p > 0.05$). (Table 1)

149 **Table 1: Association Between Demographic Characteristics and Health Anxiety**
 150 **Inventory Scores**

Health anxiety inventory score					
	SHAI<18 (Low)	%	SHAI>18 (High)	%	p-value
Gender					
Male	132	78.6%	36	21.4%	0.03*
Female	153	65.1%	82	34.9%	
Age					
15-19	41	65.1%	22	34.9%	
20-24	147	60.5%	96	39.5%	0.71
25-29	67	69.1%	30	30.9%	
Nationality					
Saudi	297	80.7%	71	19.3%	0.89
Non-Saudi	27	77.1%	8	22.9%	
Marital Status					
Married	33	35.1%	61	64.9%	0.02*
Single	249	80.6%	60	19.4%	
Family history					
Yes	11	36.7%	19	63.3%	0.98
No	268	71.8%	105	28.2%	
Academic year					
2nd & 3rd year	168	70.3%	71	29.7%	
4th year	48	64.0%	27	36.0%	0.02*
5th & 6th year	65	73.0%	24	27.0%	
Academic grades					
Grade A	199	84.7%	36	15.3%	
Grade B	58	78.4%	16	21.6%	0.03*
Grade C	41	65.1%	22	34.9%	

Grade D 23 74.2% 8 25.8%

*. Significant at the 0.05 level (2-tailed)

151

152 **Table 2: Comparison of Health Anxiety and Medical Students' Disease Scores by**
153 **Academic Year**

	All	2nd year	3rd year	4th year	5th year	6th year	p-value
n	403	126	113	75	51	38	
SHAI, Mean (SD)	11.94(6.21)	12.99(6.34)	12.95(6.47)	11.86(6.08)	11.37(5.68)	10.54(5.33)	0.002
MSD							
Perception Scale, Mean (SD)	15.13(4.18)	15.34(4.49)	14.64 (4.08)	14.59(4.17)	14.34(3.88)	14.12(3.79)	0.001
MSD							
Distress Scale, Mean (SD)	13.71(4.44)	13.46(4.23)	13.98(4.11)	13.69(4.32)	13.01(4.01)	12.87(3.88)	0.031

Abbreviations: SHAI=Short Health Anxiety Inventory; MSD= Medical Students' Disease; *One-way ANOVA test.

154

155 Among 403 students, SHAI scores differed significantly across academic years, with higher
156 levels in the 2nd (12.99 ± 6.34) and 3rd years (12.95 ± 6.47) and a progressive decline to
157 the 6th year (10.54 ± 5.33) ($p = 0.002$). MSD Perception scores also decreased significantly
158 with advancing year, from 15.34 ± 4.49 in 2nd year to 14.12 ± 3.79 in 6th year ($p = 0.001$).
159 MSD Distress scores showed a similar but less pronounced downward trend, peaking in 3rd
160 year (13.98 ± 4.11) and reaching the lowest levels in 6th year (12.87 ± 3.88) ($p = 0.031$).
161 These findings indicate reduced health anxiety and MSD-related perception and distress
162 with progression through medical training. (Table 2)

163 **Table 3: Pearson Correlations Among GPA, SHAI-18 Scores, and MSD Scores**

		GPA	SHAI -18 Score	MSD Score
GPA	Pearson Correlation	1	-0.017*	-0.158*
	Sig. (2-tailed)		0.026	0.041
	N	403	403	403
SHAI -18 Score	Pearson Correlation	-0.017*	1	.330**
	Sig. (2-tailed)	0.026		0
	N	403	403	403
MSD Score	Pearson Correlation	-0.158*	.330**	1
	Sig. (2-tailed)	0.041	0	
	N	403	403	403

*. Correlation is significant at the 0.05 level (2-tailed)

**. Correlation is significant at the 0.01 level (2-tailed)

164

165 Pearson correlation analyses were conducted to examine the relationships among GPA,
 166 SHAI-18 scores, and MSD scores in a sample of 403 participants. GPA showed a very weak
 167 but statistically significant negative correlation with SHAI-18 scores ($r = -0.017$, $p = 0.026$)
 168 and a weak negative correlation with MSD scores ($r = -0.158$, $p = 0.041$). In contrast, SHAI-
 169 18 scores were moderately and positively correlated with MSD scores ($r = 0.330$, $p < 0.001$).
 170 Although the associations between GPA and both psychological measures reached
 171 statistical significance, their magnitudes were small, indicating limited practical relevance.
 172 The relationship between SHAI-18 and MSD scores, however, demonstrated a stronger and
 173 more meaningful association (Table 3).

174 **Discussion**

175 The purpose of this study was to shed light on a significant but often overlooked issue
 176 among medical students worldwide: hypochondriasis, a mental disorder that falls under
 177 the category of somatoform disorders, in which people falsely believe they have serious
 178 illnesses or suffer from an extreme fear of getting sick as a result of misinterpreting
 179 physical symptoms for a period of six months or longer [10]. In this study, 24.7% of medical

180 students in Jeddah city of Saudi Arabia were found to have illness anxiety disorder based on
181 HAI-18 results. Another survey among Saudi Arabian medical students in Western and
182 Riyad region of Saudi Arabia revealed a prevalence of 17% & 22.3%[11, 7]. On the other
183 hand, Al-Turki Y et al. discovered that 3.4% of medical students at King Saud University had
184 'hypochondria'.

185 The prevalence observed in the present study exceeds that reported in several previous
186 investigations. For example, medical student MSS prevalence has been documented at 16%
187 in Iran [11], 11.9% in Pakistan [12], and 8.3% in the United States [13]. Earlier work has
188 suggested that medical students may be particularly susceptible to MSS and related anxiety
189 disorders [15], although other studies have failed to demonstrate consistently higher health
190 anxiety among medical students compared with non-medical peers [16]. In this cohort,
191 anxiety and depression were the most prevalent mental health conditions, affecting 83.9%
192 and 73.6% of students, respectively. While these rates are higher than those reported in
193 comparable populations—ranging from 43.7% to 69% for anxiety and from 19.5% to
194 35.1% for depression in prior studies [17]—the overall pattern aligns with existing
195 evidence that affective symptoms represent a substantial burden among medical students.

196 The observed demographic and academic differences in health anxiety are consistent with
197 evidence that female students report higher anxiety-related symptoms than males [18,19].
198 The association between lower academic performance and elevated health anxiety accords
199 with prior studies demonstrating an inverse relationship between SHAI scores and
200 academic outcomes, indicating potential adverse effects of anxiety on learning [20].
201 Although some studies, particularly among medical students, have reported no association
202 between year of study and health anxiety [21], the higher prevalence in specific academic
203 years in this study may reflect curriculum-related stress and transitional demands [22]. The
204 significant association with marital status suggests that social context and role-related
205 responsibilities may influence anxiety, despite limited investigation of this factor in existing
206 research [23]. Conversely, the lack of association with age, nationality, and family history
207 aligns with reports that demographic variables beyond gender and academic factors have
208 limited predictive value for health anxiety [19].

209 The progressive decline in SHAI scores and MSD-related perception and distress across
210 academic years in this cohort suggests that health anxiety and somatic concern diminish as
211 students advance through medical training, likely reflecting increasing clinical exposure,
212 diagnostic confidence, and adaptive coping skills. Recent multi-institutional studies have
213 similarly reported higher health anxiety and illness-related worry in pre-clinical students,
214 with attenuation during clinical years as experiential learning and professional identity
215 formation increase tolerance of uncertainty and reduce symptom misinterpretation [24-
216 26]. Longitudinal evidence further indicates that early-year medical students are more
217 vulnerable to anxiety driven by curricular transitions, heavy assessment loads, and limited
218 patient contact, whereas senior students benefit from habituation to clinical environments
219 and more realistic appraisals of bodily sensations [27-28]. The parallel reduction observed
220 in MSD Perception and Distress aligns with contemporary research linking health anxiety to
221 heightened symptom monitoring and catastrophizing, which tends to abate with repeated
222 clinical exposure and improved metacognitive regulation [29-30]. Nevertheless, the
223 persistence of non-trivial MSD Distress even in later years echoes findings that clinical
224 workload, sleep deprivation, and exposure to severe illness can sustain somatic distress
225 despite reduced illness preoccupation [31]. Educational interventions emphasizing
226 cognitive-behavioral skills, uncertainty management, and reflective practice have shown
227 promise in accelerating this adaptive trajectory and mitigating early-year vulnerability [32].
228 Collectively, these data support a developmental model in which health anxiety and MSD-
229 related concerns are most pronounced in the pre-clinical phase and progressively decline
230 with training, underscoring the importance of targeted mental health support in earlier
231 years of medical education [33].

232 The present findings indicate that academic performance bears only a minimal relationship
233 to students' psychological burden: GPA was very weakly and negatively correlated with
234 both health anxiety (SHAI-18) and MSD scores, suggesting that although statistically
235 detectable in a large sample, these associations have limited practical significance. This
236 pattern is consistent with recent literature showing that academic grades are poor proxies
237 for mental well-being, with anxiety and somatic complaints influenced more by cognitive
238 styles, perceived stress, and learning environment than by objective achievement alone

239 [25,27,29]. Contemporary studies in medical and health-science cohorts similarly report
240 that high-performing students are not necessarily protected from anxiety or symptom
241 distress, while modest academic difficulties do not reliably predict clinically meaningful
242 psychological impairment [25,31]. These results underscore the importance of interpreting
243 statistically significant correlations cautiously and prioritizing effect sizes when
244 considering the educational implications of mental health screening.

245 In contrast, the moderate positive correlation between SHAI-18 and MSD scores highlights
246 a more robust and clinically meaningful link between health anxiety and symptom
247 perception/distress. This finding accords with current models positing that health anxiety
248 amplifies attentional focus on bodily sensations, increases catastrophic interpretation, and
249 thereby elevates both perceived symptom severity and associated distress [29,30]. Recent
250 network and longitudinal analyses further demonstrate that health anxiety and somatic
251 distress mutually reinforce one another over time, independent of academic outcomes,
252 suggesting a shared cognitive-affective mechanism rather than an achievement-driven
253 pathway [30,33]. Taken together, the present results suggest that interventions in student
254 populations may be more impactful if they target maladaptive illness beliefs, symptom
255 monitoring, and coping with uncertainty, rather than focusing narrowly on academic
256 performance, which appears only weakly related to psychological symptom burden.

257 **Conclusion.**

258 Across analyses, health anxiety and MSD-related perception and distress were influenced
259 more by training stage and psychosocial processes than by demographics or academic
260 performance. Symptoms were most pronounced in early years and declined with
261 progression through medical training, likely reflecting increasing clinical exposure and
262 adaptive coping. Although some demographic and academic factors were associated with
263 health anxiety, effects were small, and GPA showed only weak correlations with SHAI-18
264 and MSD scores. In contrast, the moderate and consistent association between health
265 anxiety and MSD underscores a clinically meaningful link between illness-related anxiety
266 and somatic distress.

267 **Recommendations.**

268 Interventions should prioritize early identification and targeted support in pre-clinical and
269 early clinical years. Curriculum-integrated, CBT-informed strategies, reflective practice, and
270 resilience training, alongside accessible counseling services, are recommended to address
271 maladaptive illness beliefs, excessive symptom monitoring, and uncertainty intolerance.
272 Given the limited relevance of GPA, screening should not be restricted by academic
273 performance. Future longitudinal research should clarify causal pathways, assess the
274 effectiveness of embedded mental health interventions, and examine contextual factors
275 such as workload, assessment structure, and clinical exposure to guide evidence-based
276 student well-being policies.

277 **References**

- 278 1. Akbar S, Riaz M, Munawar L, Shakoor S. Medical student syndrome: a
279 hypochondriacal distress in undergraduates-verity or myth introduction. *J Bahria
280 University Medical Dental College* 2020;10(03):200–204
- 281 2. Muraru ID, Munteanu C, Iorga M, Petrariu FD. Investigating medical students' health
282 concerns during their academic Medical Students' Syndrome in University 80 of
283 Sharjah Abdullah et al. studies. *Med-Surg J-Revista Medico-Chirurgicala*
284 2019;123(04): 728–73.
- 285 3. Althagafi SS, Alsufyani MH, Shawky OA, Afifi OK, Alomairi N, Masoodi I. The health
286 anxiety in medical students, a comparative study from TaiFuniversity:medical
287 student's syndrome revisited. *Br J Med Pract* 2019;12(1):a003
- 288 4. 5 Ma YJ, Wang DF, Yuan M, et al. The mediating effect of health anxiety in the
289 relationship between functional somatic symptoms and illness behavior in Chinese
290 inpatients with depression. *BMC Psychiatry* 2019;19(01):a003
- 291 5. Dyrbye L, Shanafelt T. A narrative review on burnout experienced by medical
292 students and residents. *Med Educ.* 2016;50(1):132-149. doi:10.1111/medu.12927
- 293 6. Gupta S, Choudhury S, Das M, Mondol A, Pradhan R. Factors causing stress among
294 students of a Medical College in Kolkata, India. *Educ Heal.* 2015;28(1):92.
295 doi:10.4103/1357-6283.161924

296 7. Khalid Bin Abdulrahman et al. Medical students' syndrome among medical students
297 in Riyadh, Saudi Arabia. *World Family Medicine*. February 2023; 21(1): 134-142
298 DOI: 10.5742/MEWFM.2023.95256035

299 8. Abramowitz JS, Deacon BJ, Valentiner DP. The short health anxiety inventory:
300 Psychometric properties and construct validity in a nonclinical sample. *Cogn Ther
301 Res* 2007; 31(6): 871-83. [<http://dx.doi.org/10.1007/s10608-006-9058-1>]

302 9. Ezmeirly HA, Farahat FM. Illness anxiety disorder and perception of disease and
303 distress among medical students in western Saudi Arabia. *Saudi Med J* 2019; 40(11):
304 1144-9. [<http://dx.doi.org/10.15537/smj.2019.11.24654>] [PMID: 31707412]

305 10. Królikowska S. Nierówności W Stanie Zdrowia Miedzykobietami a Mężczyznami W
306 Kontekście Płci Biologicznej Oraz społeczno-kulturowej. *Acta Universitatis Lodzienensis
307 Folia Sociol.* 2011.

308 11. Epperson CN, Steiner M, Hartlage SA, Eriksson E, Schmidt PJ, Jones I, et al.
309 Premenstrual dysphoric disorder: evidence for a new category for DSM-5. *Am J
310 Psychiatry*. 2012;169(5):465-75.

311 12. Pacheco JP, Giacomin HT, Tam WW, Ribeiro TB, Arab C, Bezerra IM, et al. Mental
312 health problems among medical students in Brazil: a systematic review and meta-
313 analysis. *Rev Bras Psiquiatr*. 2017;39(4):369-78.

314 13. Rivera-Torres P, Araque-Padilla RA, Montero-Simó MJ. Job stress across gender: the
315 importance of emotional and intellectual demands and social support in women. *Int
316 J Environ Res Public Health*. 2013;10(1):375-89.

317 14. Melaku L, Mossie A, Negash A. Stress among medical students and its association
318 with substance use and academic performance. *J Biomed Educ*. 2015;2015:1-9.

319 15. Santen SA, Holt DB, Kemp JD, Hemphill RR. Burnout in medical students: examining
320 the prevalence and associated factors. *South Med J*. 2010;103(8):758-63.

321 16. Bertani DE, Mattei G, Ferrari S, Pingani L, Galeazzi GM. Anxiety, depression and
322 personality traits in Italian medical students. *Riv Psichiatr*. 2020;55(6):342-8. 36.
323 Glauser W. Medical schools addressing student anxiety, burnout and depression.
324 *CMAJ*. 2017;189(50):E1569-70.

325 17. Liu A, Yu Y, Sun S. How is the big five related to college students' anxiety: the role of
326 rumination and resilience. *Pers Individ Dif*. 2023;200:111901.

327 18. Liu X, Zhang Y, Chen H, Li R. Gender differences in anxiety and related psychological
328 symptoms among university students: a cross-sectional study. *BMC Psychiatry*.
329 2024;24:189.

330 19. Kessler RC, Berglund P, Demler O, Jin R. Trends in anxiety and psychological distress
331 in higher education populations. *J Affect Disord*. 2023;332:87-95.

332 20. Al-Harbi M, Khan S, Ibrahim N. Academic performance and health anxiety among
333 medical students: associations with SHAI scores. *BMC Med Educ*. 2024;24:118.

334 21. El-Gilany AH, Hammad S, Abou-ElWafa HS. Health anxiety among medical students:
335 relationship with year of study and clinical exposure. *Int J Med Educ*. 2023;14:62-
336 69.

337 22. Patel V, Kumar S, Mehta R. Academic transitions, stress, and mental health in
338 undergraduate health professions education. *Med Teach*. 2025;47(2):145-152.

339 23. O'Connor M, Smith J, Lee K. Social roles, marital status, and anxiety symptoms in
340 university students. *J Am Coll Health*. 2024;72(6):1765-1773.

341 24. Smith J, Patel R, Wong A. Health anxiety across the medical curriculum: a multi-
342 center cross-sectional study. *Med Educ*. 2023;57(9):875-884.

343 25. Al-Harbi M, Khan S, Ibrahim N. Preclinical versus clinical differences in illness
344 anxiety among medical students. *BMC Med Educ*. 2023;23:612.

345 26. Nguyen T, Lee K, O'Connor M. Illness worry and symptom interpretation in medical
346 trainees. *J Psychosom Res*. 2024;176:111563.

347 27. Rossi G, Bianchi F, De Luca A. Longitudinal changes in anxiety and coping during
348 medical school. *Acad Med*. 2024;99(4):521-529.

349 28. Kumar V, Das P, Chatterjee S. Transition stress and mental health in early medical
350 training. *Med Teach*. 2023;45(11):1168-1175.

351 29. Chen Y, Zhao H, Li Q. Health anxiety, somatic symptom perception, and distress: a
352 network analysis in students. *Psychol Med*. 2024;54(6):1154-1163.

353 30. Martínez-Gómez D, Ruiz-Pérez I. Metacognition and symptom monitoring in health
354 anxiety. *J Anxiety Disord*. 2025;95:102792.

355 31. O'Brien C, Malik S, Turner P. Clinical workload and persistent somatic distress in
356 senior medical students. *BMJ Open*. 2024;14:e078912.

357 32. Haddad M, Salim A, Nassar L. Curriculum-embedded CBT skills to reduce health
358 anxiety in preclinical students: a randomized trial. *Med Educ Online*.
359 2025;30(1):2321145.

360 33. Park S, Kim J, Hwang H. Developmental trajectories of health anxiety during medical
361 training. *Front Psychiatry*. 2023;14:1189047.

362

363

364

UNDER PEER REVIEW IN JAR