

1 **Degenerative Complications of Type 2 Diabetes: A Cross-Sectional Study in a Moroccan**
2 **Population**

3

4 **Abstract**

5 Diabetes is a well-established risk factor for the development of major degenerative
6 complications affecting various organs, with serious consequences in terms of morbidity and
7 mortality. Understanding the pathophysiological mechanisms and risk factors underlying these
8 complications may enable improved preventive and therapeutic strategies.

9 We conducted a cross-sectional study over a 2-month period, including 101 patients with
10 type 2 diabetes presenting with at least one degenerative complication. Epidemiological,
11 clinical, and paraclinical data were collected from medical records and supplemented by
12 bedside interviews.

13 The mean age of the patients was 68 years, with a male predominance (M/F ratio = 1.72). A
14 family history of diabetes and cardiovascular disease was reported in 57.42% and 21.78% of
15 cases, respectively. The mean disease duration was 20 years, and 62.37% of patients
16 were symptomatic at diagnosis. The median HbA1c was 9%, and median fasting plasma
17 glucose was 1.84 g/L.

18 Personal medical history included hypertension in 77.2% of cases, dyslipidemia in 77%,
19 smoking in 18.81%, and obesity in 29.7%. Insulin therapy was used in 75.2% of patients.
20 Microangiopathic complications included diabetic nephropathy in 45.5% of patients,
21 diabetic autonomic neuropathy in 37.62%, peripheral neuropathy in 31.68%,
22 diabetic retinopathy in 33.7%, and maculopathy in 13.9%.

23 Macroangiopathic complications were present in 80.2% of patients,
24 mainly ischemic heart disease (56.43%), lower-limb claudication (52.5%), and
25 stroke (31.7%).

26 When comparing three groups of patients — those with both macro- and microangiopathic
27 complications, those with microangiopathy only, and those with macroangiopathy only —
28 we found that patients with poor glycemic control (high HbA1c), requiring insulin therapy, and
29 experiencing more hypoglycemic episodes were more likely to develop microangiopathy. Age,
30 sex, hypertension, dyslipidemia, obesity, and smoking were comparable across groups.

31

32

33

34 **Introduction**

35 Diabetes represents a major public health challenge, with a steadily increasing prevalence and
36 heavy socioeconomic consequences [1]. This rapid global rise is explained by multiple factors,
37 including population aging, urbanization, and lifestyle changes, resulting in a
38 significant healthcare burden associated with the disease and its complications [2,3].

39 Patients with diabetes frequently exhibit insulin resistance and relative insulin deficiency,
40 predisposing them to microvascular and macrovascular complications. The risk of
41 developing degenerative complications is amplified by factors such as age, obesity, sedentary
42 lifestyle, possible genetic predisposition, and other yet unknown risk factors [4].

43 The severity of complications is closely related to the duration of hyperglycemia and
44 prolonged exposure to elevated blood glucose levels, highlighting the importance of
45 early glycemic control and risk factor management to improve prognosis [5]. However, the
46 mechanisms underlying the development of complications remain incompletely understood.
47 Even among patients with similar profiles, different complication patterns can be observed.

48 **Research question:** Are there epidemiological, genetic, or
49 therapeutic factors that explain this diversity?

50

51 **Materials and Methods**

52 **Study Design:**

53 We conducted a descriptive and analytical cross-sectional study in the Department of
54 Endocrinology at Cheikh Khalifa Ibn Zayed Al Nahyan Hospital in Casablanca over a 2-month
55 period (September–November 2023). We included 101 patients with type 2
56 diabetes presenting at least one degenerative complication. We excluded patients with type 1
57 diabetes, uncomplicated type 2 diabetes, and incomplete medical records.

58 Patients were classified into three groups according to the type of chronic complications:

- 59 1. Both micro- and macroangiopathic complications
- 60 2. Microangiopathy only
- 61 3. Macroangiopathy only

62 **Definition of variables:**

63 Physical inactivity was defined using the MARSCHALL score. Smoking included current smokers
64 and those who had quit within the past three years.

65 Diabetic retinopathy was diagnosed using standard ophthalmologic exams (fundus
66 examination).

67 Diabetic nephropathy was defined by a urinary albumin/creatinine ratio >3 mg/mmol and/or a
68 glomerular filtration rate <60 mL/min (MDRD).

69 Peripheral neuropathy was identified using the DN4 questionnaire and monofilament testing.
70 Coronary artery disease was defined by ECG findings suggestive of ischemic sequelae, a positive
71 stress test, or a history of angioplasty or coronary bypass surgery.

72 Lower-limb arteriopathy was confirmed by Doppler ultrasound or
73 arteriography showing atheromatous plaques, stenosis, or ischemic lesions.

74 Stroke was defined by a neurological deficit with ischemic lesions on CT or MRI.

75 **Data collection and ethics:**

76 Demographic, clinical, and biological data were collected while ensuring patient anonymity

77 and confidentiality. Informed consent was obtained from all participants.
78 Ethical committee approval was not required, as this study used routine clinical data.

79 **Statistical analysis:**

80 Descriptive statistics were represented as medians [IQR] for continuous variables and
81 frequencies [%] for categorical variables. Differences between the three groups
82 were analyzed using ANOVA for continuous variables and Chi-square or Fisher's exact test for
83 categorical variables. A bilateral p-value <0.05 was considered statistically significant. Analyses
84 were performed using JAMOVI for Windows (version 1.6.23.0).

85

86 **Results**

87 **Descriptive Results:**

88 The mean age was 68 years, with a male-to-female ratio of 1.72. Hypertension (77.2%) and
89 dyslipidemia (77%) were the most common comorbidities, followed by obesity (29.7%) and
90 smoking (18.81%). Ninety-eight percent of patients were sedentary. A family history of
91 diabetes and cardiovascular disease was noted in 58% and 21.78% of cases, respectively.

92 The mean diabetes duration was 20 years. The median HbA1c was 9%, and median fasting
93 glucose was 1.84 g/L. Insulin therapy was used by 75.2% of patients; 49.5% were on oral
94 antidiabetic drugs, mainly metformin (34.7%), DPP-4 inhibitors (23.8%), sulfonylureas (19.8%),
95 and SGLT2 inhibitors (5.9%). No patient was treated with GLP-1 analogues.

96 **Chronic Complications:**

97 Microangiopathic complications were found in 81.88% of cases: diabetic retinopathy (33.7%),
98 maculopathy (13.9%), nephropathy (45.5%), autonomic neuropathy (37.62%), and
99 peripheral neuropathy (31.68%).

100 Macroangiopathic complications were observed in 80.2% of patients,
101 mainly ischemic heart disease (56.43%), lower-limb arteriopathy (52.5%), and stroke (31.7%).

102 **Analytical Results:**

103 No significant difference was found between groups regarding median age or sex ($p>0.05$).
104 Patients with macroangiopathy only showed higher rates of dyslipidemia and hypertension
105 compared with those with microangiopathy only, though the differences were not
106 statistically significant ($p>0.05$), likely due to sample size limitations. A family history of
107 cardiovascular disease was more frequent in patients with macroangiopathy or both types of
108 complications, though not significant ($p>0.05$).

109 Conversely, insulin therapy use, poor glycemic control (elevated HbA1c and fasting glucose),
110 and hypoglycemia episodes were significantly more common in patients with microangiopathy
111 ($p<0.05$).

112

113 **Discussion**

114 Over the two-month study period, we included 101 patients, 81.88% of
115 whom had microangiopathy and 80.2% macroangiopathy. The mean age (68 years) reflects an
116 elderly and vulnerable population, and the male predominance suggests that men
117 may seek medical care later in the disease course.

118 High rates of hypertension (77.2%) and dyslipidemia (77%) highlight their major contribution
119 to the development of complications, consistent with findings from Jialin Li *et al.* [6].
120 Obesity was present in 29.7% and overweight in 32.7%, aligning with results from Govindarajan *et*
121 *al.* [7]. These findings emphasize the need for targeted weight management interventions.

122 Macroangiopathic complications were highly prevalent (80.2%),
123 primarily ischemic heart disease (56%), peripheral arterial disease (52.5%), and stroke (31.7%),
124 in agreement with previous studies.

125 Microangiopathic complications were also common: retinopathy (33.7%) and maculopathy
126 (13.9%) rates were comparable to those reported by Andaloussi *et al.* [8]; nephropathy
127 (45.5%) mirrored findings from Koubaa *et al.* [9]; and peripheral neuropathy (31.68%)
128 matched Najmeddine *et al.* [10].

129 A family history of cardiovascular disease (21.78%) was more frequent among patients
130 with macroangiopathy or combined complications, suggesting a potential genetic
131 contribution [11].

132 Poor glycemic control and insulin use were significantly higher in patients
133 with microangiopathy, increasing the risk of hypoglycemia. Repeated glycemic fluctuations
134 and hypoglycemia are known to impair endothelial function and promote microvascular
135 complications such as retinopathy and nephropathy [12–14].

136 Future targeted interventions to reduce these risk factors may improve outcomes.
137 Further studies on genetic susceptibility are warranted to refine preventive and
138 therapeutic strategies in this population.

139

140 Conclusion

141 The rising prevalence of complications in type 2 diabetes highlights the severity of this
142 condition and the need for effective risk factor management, particularly hypertension and
143 dyslipidemia. Poor glycemic control, often associated with insulin therapy, contributes to more
144 frequent hypoglycemic episodes and the development of microangiopathic complications.
145 This underscores the importance of close monitoring and treatment adjustment to
146 minimize glycemic variability. Furthermore, the potential genetic influence on complication
147 occurrence warrants further research.

148 Personalized approaches could enhance clinical outcomes and optimize patient management.

149

150 Strengths and Limitations

151 This study provides a detailed descriptive and analytical assessment of a
152 Moroccan diabetic cohort.

153 However, the relatively small sample size limits generalizability and may have underestimated
154 certain associations. Additionally, essential aspects of diabetes management — such as
155 nutrition, risk factor control, adherence, and follow-up — were not addressed.

156 **List of Tables:**

157 **Table 1:** Macroangiopathic and microangiopathic complications observed in patients

158 **Table 2:** Demographic, clinical, and paraclinical parameters of the three patient groups

159

160 **Références**

161 1. Farouqi A, Harti MA, Nejjar C. Prise en charge du diabète au Maroc : résultats de
162 l'International Diabetes Management Practices Study [IDMPS] – Vague 2. Médecine Mal
163 Métaboliques. déc 2010;4[6]:704-11.

164 2. Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes
165 mellitus—present and future perspectives. Nat Rev Endocrinol. avr 2012;8[4]:228-36.

166 3. IDF_Atlas_10th_Edition_2021.pdf [Internet]. [cité 24 oct 2023]. Disponible sur:
167 https://diabetesatlas.org/idfawp/resourcefiles/2021/07/IDF_Atlas_10th_Edition_2021.pdf

168 4. The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of
169 the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes
170 Care. 1 juill 1997;20[7]:1183-97.

171 5. referenciel_pratiques_diabete.pdf [Internet]. [cité 30 sept 2023]. Disponible sur:
172 https://sante.gouv.fr/IMG/pdf/referenciel_pratiques_diabete.pdf

173 6. Li J, Chattopadhyay K, Xu M, Chen Y, Hu F, Chu J, et al. Prevalence and associated factors
174 of vascular complications among inpatients with type 2 diabetes: A retrospective database
175 study at a tertiary care department, Ningbo, China. Fawzy MS, éditeur. PLOS ONE. 23 juin
176 2020;15[6]:e0235161.

177 7. Govindarajan Vengidesvarane A, Jasmine A, Varadarajan S, Shriraam V, Muthuthandavan
178 AR, Durai V, et al. Prevalence of Vascular Complications Among Type 2 Diabetic Patients in a
179 Rural Health Center in South India. J Prim Care Community Health. janv
180 2020;11:215013272095996.

181 8. Andaloussi ZR, Rezzoug B, Loudghiri MA, Jennane N, Hajji Z, Boulanouar A, et al.
182 Prévalence de la rétinopathie diabétique et facteurs de risque associés dans la région de
183 RABAT Prevalence of diabetic retinopathy and associated risk factors. 2015;

184 9. Koubaa AA, Younes K, Bouslah A, Maalel I, Abed B, Dahmen H, et al. LA NÉPHROPATHIE
185 DIABÉTIQUE EN PREMIÈRE LIGNE : EPIDÉMIOLOGIE ET FACTEURS DE RISQUE.

186 10. Nejmeddine K, Bensouda M, Salhi H, El Ouahabi H. Neuropathie diabétique douloureuse :
187 fréquence et facteurs de risque. Ann Endocrinol. sept 2020;81[4]:436.

188 11. Sebai I, Oueslati I, Khessairi N, Yazidi M, Talbi E, Chaker F, et al. Predictive factors of
 189 macroangiopathy in type 2 diabetic patients. Arch Cardiovasc Dis Suppl. août
 190 2019;111[3]:e337.

191 12. Gonzalez, J. S., et al. (2015). "The role of glycemic variability in the development of
 192 diabetes-related complications." Diabetes Care, 38(1), 59-67.

193 13. Ceriello, A. (2011). "Glycaemic variability: how to measure it and its clinical relevance." Diabetes and Metabolism, 37(3), 185-187.

194 14. American Diabetes Association. (2019). "Standards of Medical Care in Diabetes—2019." Diabetes Care, 42(Supplement 1), S1-S2.

197

198 **Table 1:** Macroangiopathic and microangiopathic complications observed in patients
 199

Variables	Total N=101
<u>Chronic complications:</u>	
Microangiopathy, n [%]	82 [81.88]
Rétinopathy/maculopathy, n [%]	34 [33.7]
Nephropathy, n [%]	46 [45.5]
eGFR, median [IQR]	71 [41-91]
Peripheral neuropathy, n [%]	32 [31.68]
Macroangiopathy, n [%]	81 [80.2]
Ischemic heart disease, n [%]	57 [56.43]
Ischemic stroke (CVA), n [%]	32 [31.7]
Peripheral arterial disease (PAD), n [%]	53 [52.5]

200

201

202

203 **Table 2:** Demographic, clinical, and paraclinical parameters of the three patient groups

204

Variables	Total N=10 1	Patients with micro+macroangiopathie N=62 s N=62	Patients with microangiopathie N=20 s N=20	Patients with macroangiopathie N=19 s N=19	P e
Age, median [IQR] (years)	68.0 [62- 75]	68.5 [63-75]	65.0 [60-71]	67.0 [62-75.5]	0.540
Female, n [%]	37 [36.6]	22 [35.5]	8 [40]	7 [36.8]	0.939
Medical history					
Hypertension, n [%]	78 [77.2]	51 [82.3]	13 [65]	14 [73.7]	0.218
Dyslipidemia, n [%]	78 [77.2]	48 [77.4]	15 [75]	15 [78.9]	1.000
Obesity, n [%]	30 [29.7]	19 [30.6]	6 [30]	5 [26.3]	0.936
BMI, median [IQR] (kg/m ²)	26.9 [23.5- 31.1]	27.1 [23.5-31.6]	28.1 [25.4-31.1]	25.3 [23.3-29.1]	–
Sedentary lifestyle, n [%]	99 [98]	60 [96.8]	20 [100]	19 [100]	0.526
Smoking, n [%]	19 [18.8]	11 [17.7]	4 [20]	4 [21.1]	0.857
Family history of diabetes, n [%]	58 [57.4]	38 [61.3]	13 [65]	7 [36.8]	0.072
Family history of nephropathy, n [%]	2 [1.9]	1 [1.6]	1 [5]	0 [0]	0.598
Family history of cardiovascular disease, n [%]	22 [21.8]	14 [22.6]	4 [20]	4 [21.1]	1.000
Diabetes profile					
HbA1c, median [IQR] (%)	9 [7.7- 10.1]	9 [7.7-10.1]	9.8 [8.07-11.4]	8 [6.85-9.4]	0.021
Fasting glucose, median [IQR] (g/L)	1.84 [1.35- 2.35]	1.83 [1.36-2.34]	2.35 [1.57-3.24]	1.73 [1.35-1.98]	0.040
Treatment					
Diet only, n [%]	19	11 [17.7]	2 [10]	6 [31.6]	0.213

Variables	Total N=10 1	Patients with micro+macroangiopathie s N=62	Patients with microangiopathie s N=20	Patients with macroangiopathie s N=19	P e
[18.8]					
Oral antidiabetic drugs (OAD)					
Sulfonylureas, n [%]	20 [19.8]	11 [17.7]	5 [25]	4 [21]	0.769
Metformin, n [%]	35 [34.7]	23 [37.1]	4 [20]	8 [42.1]	0.283
SGLT2 inhibitors, n [%]	6 [5.9]	4 [6.5]	0 [0]	2 [10.5]	0.367
DPP4 inhibitors, n [%]	24 [23.8]	15 [24.2]	3 [15]	6 [31.6]	0.474
Insulin, n [%]	76 [75.2]	49 [79]	19 [95]	8 [42.1]	0.001
Hypoglycemia episodes per week					
0, n [%]	83 [82.2]	51 [82.3]	15 [75]	17 [90]	0.034
1, n [%]	10 [9.9]	8 [12.9]	2 [10]	0 [0]	
2, n [%]	7 [6.9]	2 [3.2]	3 [15]	2 [10.5]	
≥4, n [%]	1 [1.0]	1 [1.6]	0 [0]	0 [0]	

205

206