

1 **Evaluation of Corneal Wound Healing Activity of *Glycyrrhiza glabra* Ophthalmic**
2 **Formulation by *In-vitro* Scratch Assay.**

3
4 **PURPOSE:** To formulate a novel ophthalmic formulation with *Glycyrrhiza glabra* for
5 improving corneal wound healing by *in vitro* scratch assay using Statens Serum Institut Rabbit
6 Corneal (SIRC) Cells. **METHODS:** In the present study, corneal wound healing activity was studied
7 on statens serum institut rabbit corneal cell line. The method used to conduct the study was
8 scratch assay method. The scratch was introduced into the confluent monolayer of cell line and
9 treated with *Glycyrrhiza glabra* ophthalmic formulation. Evaluation of wound healing activity
10 was compared with control group. Observations were noted at the beginning of study and at
11 regular time intervals. Scratch measurement was observed. Quantitative parameters like
12 percent wound closure, rate of cell migration, interleukin-6 concentration levels were measured.
13 The study was performed according to protocols and standard operating procedures (SOP). All
14 laboratory data has been accurately recorded and verified. **RESULT:** The result of this experiment
15 obtained with statistical analysis of trial group and control group. Results were expressed as
16 mean+/-SD and data analysed by one-way, two-way analysis of variance (ANOVA) followed by
17 turkey's multiple comparison test. From the results it can be observed that *Glycyrrhiza glabra*
18 ophthalmic formulation has shown statistically significant increase in percent wound closure
19 ($p<0.05$) after completion of treatment as compared to control wells. Which indicated its wound
20 healing potential in SIRC cell line by scratch assay method. **CONCLUSION:** Analysis of result
21 concludes that *Glycyrrhiza glabra* ophthalmic formulation is proven as an ayurvedic alternative
22 treatment modality for treatment of corneal wounds. *Glycyrrhiza glabra* ophthalmic
23 formulation has shown statistically significant results, which is cost effective and preservative
24 free. This formulation can be used for treating corneal wounds.

25 **KEYWORDS:** Corneal wound healing, *Glycyrrhiza glabra*, ophthalmic formulation, *In vitro*, Scratch
26 assay.

27

28 **1. INTRODUCTION**

29 ‘Corneal blindness’ is a major cause of visual impairment in developing countries like India and
30 has been recognized as an important public health issue. This condition encompasses a range of
31 eye conditions which alter the transparency of cornea, leading to corneal scarring and
32 eventually blindness. Cornea is a thin, transparent, avascular membrane known as window to
33 the eyes. It plays an important role in vision and immunological defence. Cornea being the
34 anterior most structure of the eye; often affected by infections, trauma, chemical injuries,
35 foreign body penetration, ultra-violet rays which leads to corneal wounds. Prolonged usage of

36 contact lens, refractive error correction surgeries, pseudophakia induced bullous keratopathy,
37 corneal abrasions hamper the optical performance.

38 The prevalence of corneal blindness in adult Indian population is 4.5 per 1000 (95%). According
39 to the National Programme for Control of Blindness (NPCB); 1,20,000 people are corneal blind in
40 the country.¹ The burden of corneal diseases in India is reflected by the fact that 90% of the
41 global cases of ocular trauma and corneal ulceration. There is significant burden of corneal
42 blindness in the adult Indian population.

43 Corneal wound healing plays a pivotal role in restoration of barrier and maintain integrity of
44 cornea. Cell migration is the crucial step of wound healing. This process is well orchestrated
45 with the involvement of several cell types. The stages of wound healing include- Haemostasis,
46 inflammation, proliferation, migration and re-modelling.² For treating corneal wounds, topical
47 instillation is considered as convenient and effective method. However, new eye drops which will
48 exhibit anti-inflammatory effect along with faster wound healing are still desired in ophthalmic
49 practice. This study aimed to formulate a novel ophthalmic formulation with *Glycyrrhiza*
50 *glabra* to improve corneal wound healing. The characteristics of this ophthalmic formulation and
51 its efficacy in re-epithelialization were evaluated.

52 The basic principle of two-dimensional wound healing assay is destruction of confluent cellular
53 monolayer, generating a cell-free region, which is available to cells for migration and
54 repair.³ Novel therapeutic approach to restore the corneal integrity and prevent secondary
55 infection and visual loss can be achieved by prescribing ayurvedic medicines. Effective,
56 convenient and inexpensive treatment modality should be used for corneal epithelial
57 regeneration.

58 *Glycyrrhiza glabra* is a classical, widely used ayurvedic medicinal plant. Traditionally decoction of
59 *Glycyrrhiza glabra* are used for treating cough, cold and wounds. Active constituents are
60 Glycyrrhizin, triterpene saponin, glycyrrhetic acid, aglycon of glycyrrhizin.⁴ Since no elaborated
61 scientific data were available concerning the corneal wound healing activity of *Glycyrrhiza*
62 *glabra*, the present study was conducted.

63

64 2. MATERIAL AND METHODS

65 This experimental study for assessing corneal wound healing is divided into two sub types. First
66 includes development of *Glycyrrhiza glabra* ophthalmic formulation and second consists of
67 scratch assay experiment. Drug preparation done by standard operative procedure for extract
68 preparation. Physicochemical analysis performed before instillation of drug in cells. A
69 comprehensive general examination of cells performed. Corneal cell culture prepared. Scratch
70 with pipette tip created in confluent monolayer. Observations made with help of phase contrast

71 microscope. Parameters for quantitative assessment of corneal wound healing are rate of cell
72 migration, wound closure, levels of interlukin-6 and percentage wound closure. Data analysed
73 and results concluded at the end of study. All these parameters were assessed in three groups.
74 Control, standard and trial group. Number of readings acquired and mean values with standard
75 deviations were calculated. Quantitative representation in form of tables and graph assessed.
76 Efficacy of prepared drug in comparison with standard silver nitrate compound studied and
77 conclusion drawn. Further scope of this experiment analysed.

78 **2.1 Development of *Glycyrrhiza glabra* ophthalmic formulation**

79 I. Macroscopic and microscopic assessment of *Glycyrrhiza glabra*
80 II. Extract preparation procedure
81 III. Physicochemical analysis of *Glycyrrhiza glabra* ophthalmic formulation

82 **2.2 Scratch assay experiment**

83 a. Corneal cell culture preparation
84 b. Scratch wound assay
85 c. Incubation period
86 d. Instillation of medication
87 e. Observations based on parameters
88 f. Data acquisition by phase contrast microscope
89 g. Data analysis by computing software

90 **2.3 Phytochemical assessment of *Glycyrrhiza glabra***

91 This test reveals presence of alkaloids, saponins, glycosides, carbohydrates, tannins and
92 steroids. Aqueous and alcoholic extract are studied and results are compared. For testing
93 carbohydrates benedict's test performed. Alkaloids tested with wagner's test and amino acid
94 tested by ninhydrin test. Saponin by foam test, steroids by salkowski reaction and taninns by
95 potassium dichromate test which reveals negative result for aqueous extract and positive result
96 for alcoholic extract.

97

98

99 **2.4 Standardization of *Glycyrrhiza glabra***

100 Analytical tests were performed on dried sample of *Glycyrrhiza glabra*. Debris in sample were
101 cleaned. Parametric observations are mentioned in the table below.

102 Table 1: parametric observations of *Glycyrrhiza glabra*

Parameters	Observation	Findings
Colour	Yellowish brown	Complies
Odour	Characteristic	Complies
Taste	Sweetish	Complies
Weight	50 gm	NA
pH	6.13	NA
Loss on drying	5.65 %	NA
Total Ash	0.11 %	NMT 10 %
Acid insoluble ash	0.08 %	NMT 2.5 %
Water soluble extractive	33.80 %	NLT 20 %
Alcohol soluble extractive	14.69 %	NLT 10 %

103

104 Figure 1: *Glycyrrhiza glabra* powder

105

106

107

108

109 **2.5 Aqueous extract preparation of *Glycyrrhiza glabra***

110 • 50 gm dry powder of *Glycyrrhiza glabra* was weighed with help of electronic weighing
111 machine.

112 • Debris were removed from sample, was soaked in water overnight and filtered.

113 • Soxhlet apparatus was assembled with aseptic precautions under sterile condition.

114 • Distilled water taken in measuring cylinder for aqueous extract preparation.

115 • Soxhlet extractor fixed into round bottom flask and it was placed over heating mantle.

116 • Condenser fixated,in-let and out let pipes attached for water supply.

117 • Temperature of heating mantle maintained between 70 to 90 degree celsius.

118 • 250 ml of filtered solution of yashtimadhu kept for heating in soxhlet apparatus.

119 • Condensation of vapours occurred and collected drop by drop.

120 • Clear, transparent solution of *Glycyrrhiza glabra* obtained.

121 • Final extraction filtered through Whatman's filter paper.

122 • Extract collected in transparent sterile container and stored at 4 degree celsius.

123

124

125 Figure 2: Filtered sample of *Glycyrrhiza glabra*

126

127

128

129

130

131

132 Figure 3: Aqueous extraction by soxhlet apparatus

133

134 Table 2: analysis of standardization parameters of *Glycyrrhiza glabra* extract

Parameters	Findings
Sample name	<i>Glycyrrhiza glabra</i> extract
Sample quantity	50 ml
Colour	Clear, colourless
Taste	Slightly bitter
Odour	Aromatic
Rancidity	No pink discolouration observed
pH of aqueous solution (10%)	7.10
Specific gravity	0.97 gm/ml
Refractive index	1.3898
Density	0.98 gm/ml
Viscosity	6.74 Pa.s

135

136 **2.6 Experimental procedure of scratch assay⁵**

137 Test sample was filtered before using for study. Scratch assay performed based on protocol.

138 Chemicals and materials used are mentioned as follows:

139 Chemicals and materials

140 • Cell culture plates – 12 well plates (Abdos)

141 • Cell culture flask – T25 flask (Abdos)

142 • Trypsin/ EDTA – 0.25% trypsin and 0.02% EDTA in Dulbecco's phosphate buffered saline

143 • DMSO – dimethyl sulfoxide
144 • Cell culture medium – Eagle's minimum essential medium (MEM) containing 10% foetal
145 bovine serum.
146 • Cell line – SIRC (statens seruminstitut rabbit cornea)
147 • Culture conditions – 37 degree celsius with 5% Co₂

148 Reagents

- 149 ○ Dulbecco's phosphate buffered saline (Himedia)
- 150 ○ 0.25% trypsin
- 151 ○ 0.02% EDTA
- 152 ○ Dimethyl sulfoxide (DMSO)
- 153 ○ 1 mg ml⁻¹ poly-L-lysine
- 154 ○ Phosphate buffered saline (PBS)
- 155 ○ Eagle's minimum essential medium
- 156 ○ 10% foetal bovine serum

157

158 Figure 4:Dulbecco's modified eagle medium (DMEM) and Foetal bovine serum (FBS)

159

160

161

162

163 Equipment:

- 164 ■ 60 mm sized 12 well plates (Abdos tissue culture dishes)
- 165 ■ T25 flasks (Abdos)
- 166 ■ Sharpie's marker
- 167 ■ P200 pipet tip
- 168 ■ Hemo cytometer
- 169 ■ Co₂ supply (5%)
- 170 ■ Phase contrast microscope
- 171 ■ Stage incubator
- 172 ■ Camera with image analysis software

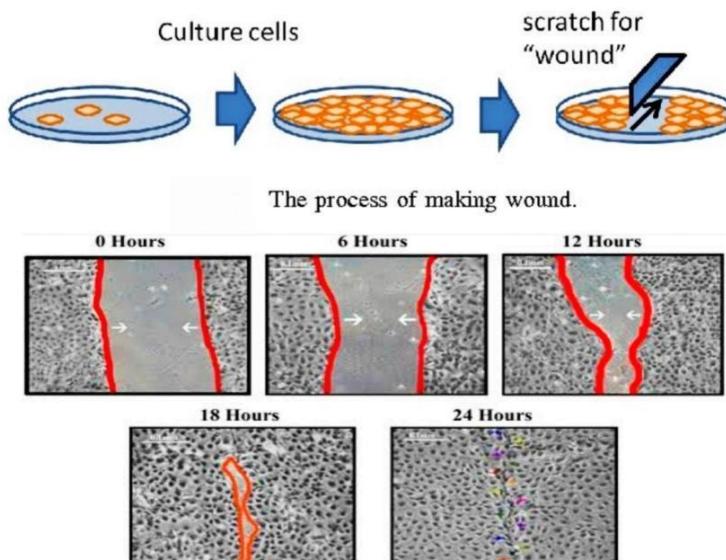
173 **Preparation of cells**

174 SIRC (statens seruminstitut rabbit cornea) epithelial cells were cultured in Eagle's minimum
175 essential medium supplemented with 10% foetal bovine serum. Cells were maintained in a
176 humidified atmosphere of 5% Co₂ at 37 degree celsius. Cells were seeded in 12 well plates at a
177 concentration of 1,00,000 cells per well. The plates were incubated at 37 degree celsius and 5%
178 Co₂ atmosphere till confluent monolayer was obtained.

179 **Coating of cell culture**

180 60 mm dishes with proper ECM substrates were incubated overnight at 4 degree celsius for 2
181 hours at 37 degree celsius without shaking the tissue culture plate. Unbound ECM substrate was
182 removed and dish coated with bovine serum albumin for one hour at 37 degree celsius. Culture
183 well dishes then washed with PBS. 3 to 5 ml media used before plating the cells. Amount of
184 serum in medium appropriate for *in vitro* scratch assay is identified. Low percentage of serum
185 used to minimize the proliferation of cells.

186 **Passaging of cell culture**


187 Confluent cells grow in tissue culture are washed with PBS twice and mixed with medium
188 containing serum. Pipetting of solution done and cells dispersed evenly. Aliquot taken from cell
189 suspension. Determination of cell count with the help of hemo cytometer performed. Cells
190 prepared are plated on 60 mm dishes to create confluent cell monolayer. Dishes incubated for 6
191 hours at 37 degree celsius. Adherent cells are spread on substrate.

192 **Protocol of scratch wound assay**

193 a. Cell culture preparation
194 b. Scratch wound assay
195 c. Data acquisition
196 d. Data analysis

197
198

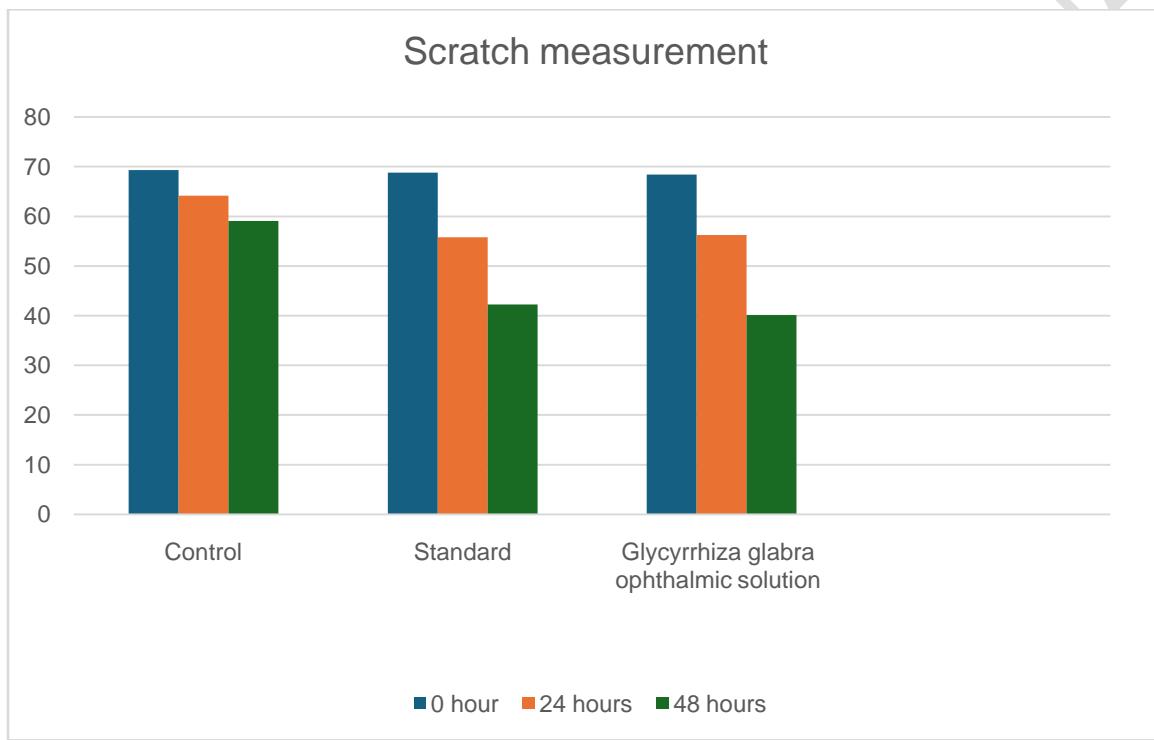
199 Figure 5: Scratch assay

200
201
202

203 3. OBSERVATIONS AND RESULT

204 3.1 Assessment criteria

- 205 1. Images observed at regular time intervals with phase contrast microscope
- 206 2. Scratch measurement in um
- 207 3. Wound closure in um
- 208 4. Percent wound closure at beginning and end of study
- 209 5. Rate of cell migration
- 210 6. Concentration of interleukin-6 in pg/ml


211 3.2 Observations

212 Table 3: Scratch measurement (um)

Group	0hour	24hours	48hours
Control	69.33	64.15	59.09
Standard	68.78	55.79	42.28
<i>Glycyrrhizaglabra</i> ophthalmic formulation	68.42	56.23	40.15

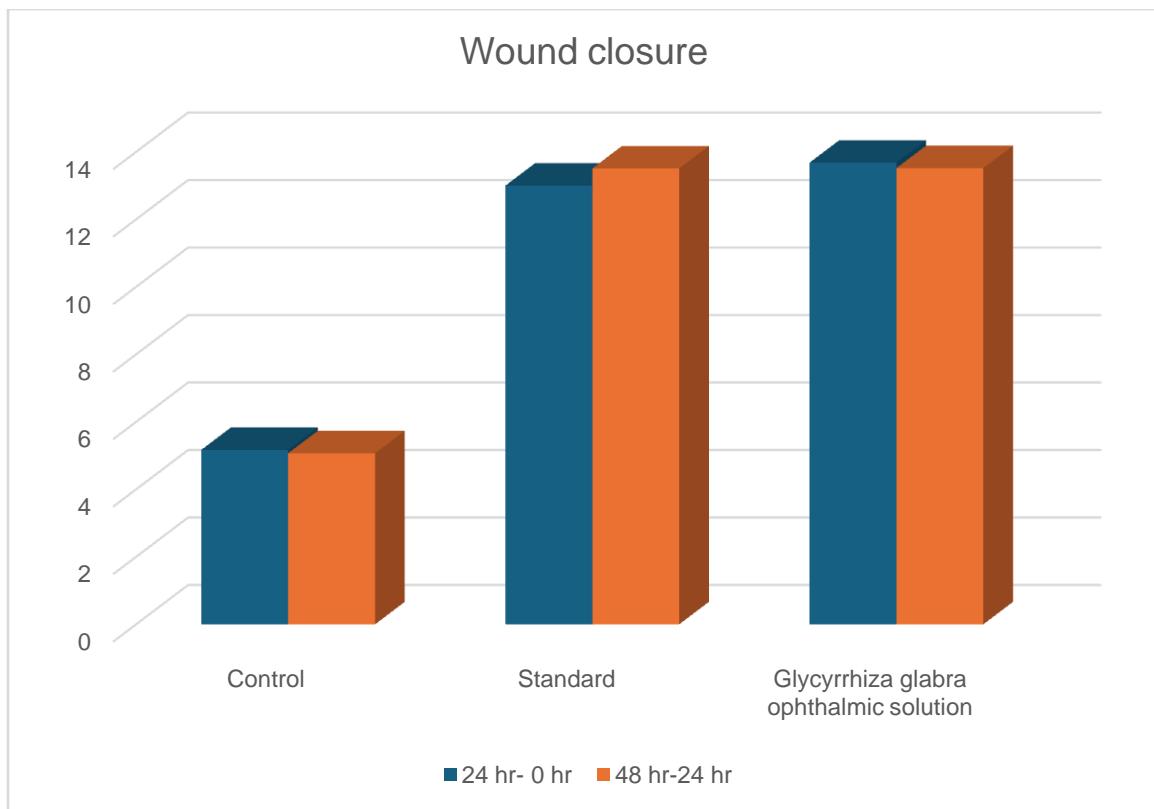
213

214 Graph 1: Scratch measurement

215

216

217 Table 4: Wound closure (um)


Group	24 hr – 0 hr	48 hr – 24hr
Control	5.17	5.07
Standard	13.00	13.51
<i>Glycyrrhizaglabra</i> ophthalmic formulation	13.68	13.52

218

219

220

221 Graph 2: Wound closure

222

223

224 Table 5: Percent wound closure (%)

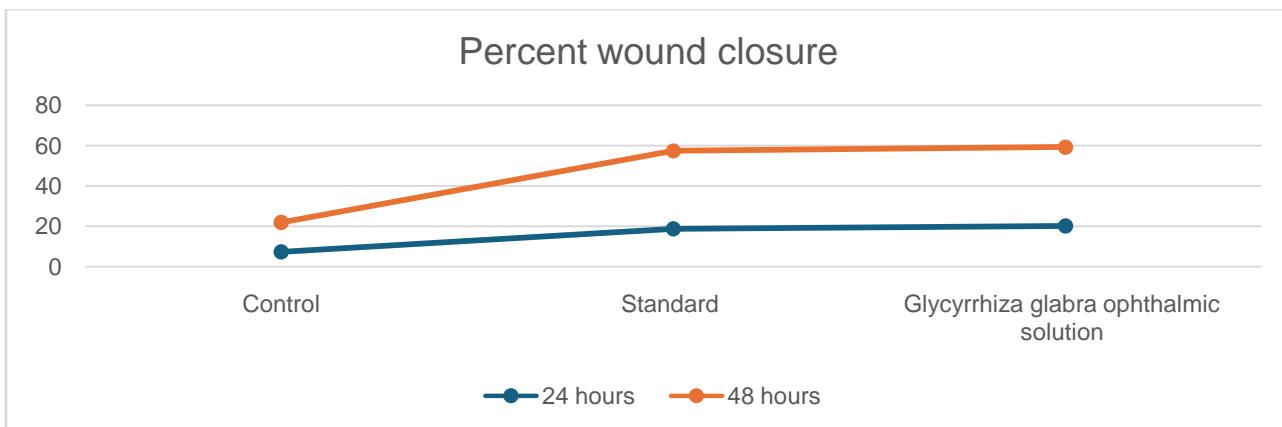
Group	24 hr	48 hr
Control	7.39	14.58
Standard	18.76	38.69
<i>Glycyrrhiza glabra</i> ophthalmic formulation	20.25	39.05

225

226

227

228

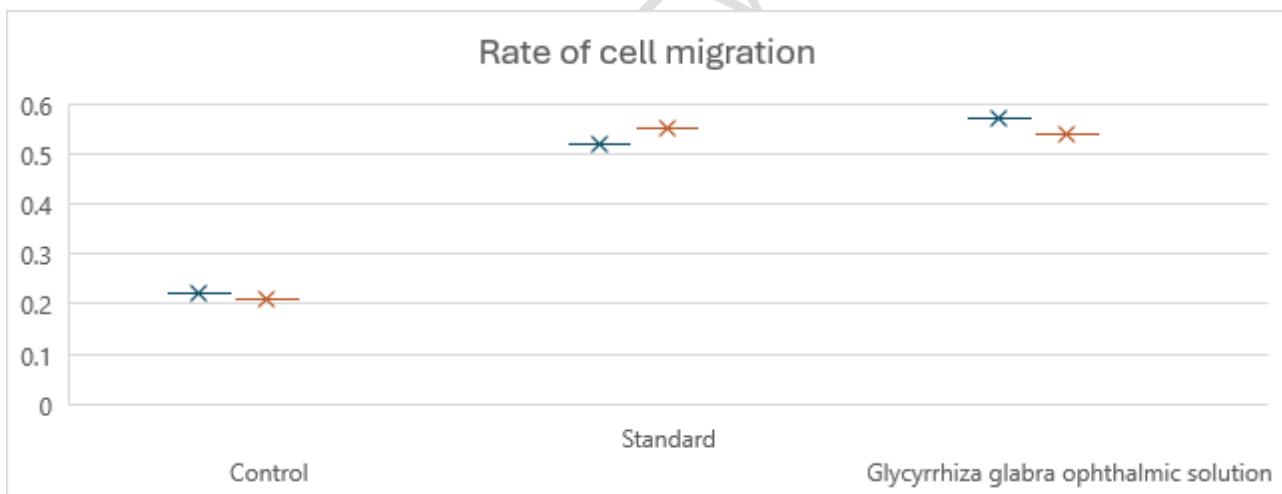

229

230

231

232

233 Graph 3: Percent wound closure

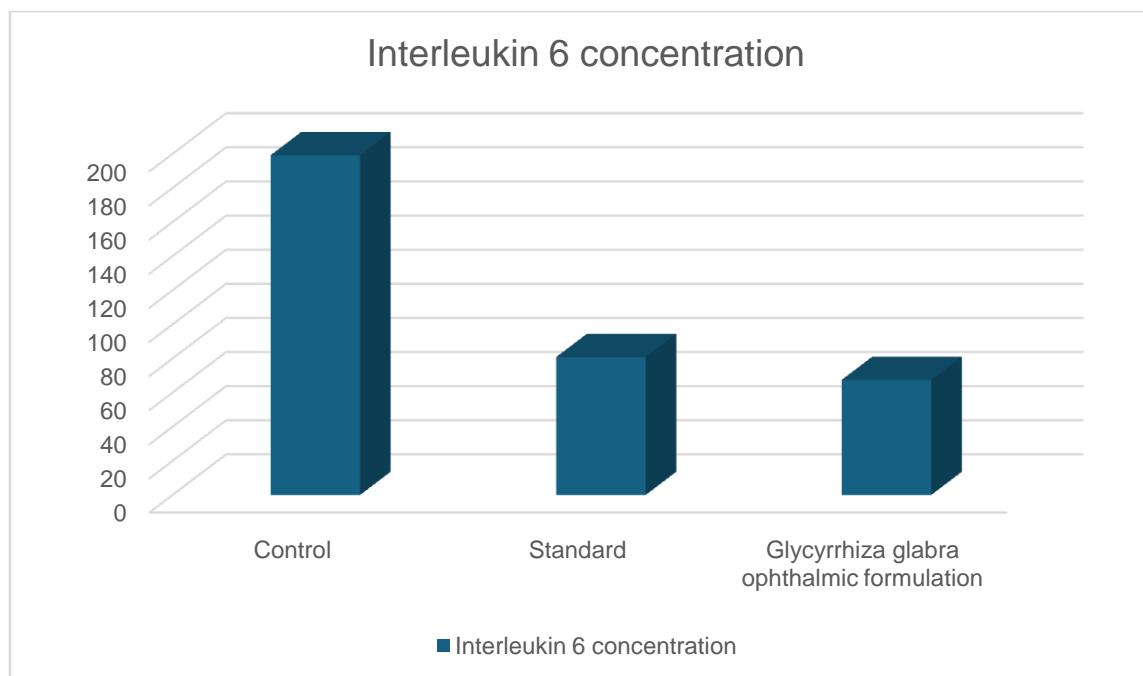


234

235 Table 6: Rate of cell migration

Group	24 hr	48 hr
Control	0.22	0.21
Standard	0.52	0.55
<i>Glycyrrhiza glabra</i> ophthalmic formulation	0.57	0.54

236


237

238

239 Table 7: Interleukin 6 levels

Group	Interleukin6concentration (pg/ml)
Control	199.17
Standard	80.83
<i>Glycyrrhiza glabra</i> ophthalmic formulation	67.50

240

241

242

243 **3.3 Statistical analysis**

244 Graph pad prism version 8.00 was used for statistical analysis. Statistical significance was
 245 considered at $p<0.05$, $p<0.01$ and $p<0.001$ as compared to control in all cases. The extracted
 246 sheets of statistical analysis are provided along with the report in txt format.

247 **3.4 Result**

248 The result of this experiment obtained with statistical analysis of trial group and control group.
 249 Results were expressed as mean \pm SD and data analysed by one-way, two-way analysis of
 250 variance (ANOVA) followed by turkey's multiple comparison test. From the results it can be
 251 observed that *Glycyrrhiza glabra* ophthalmic formulation has shown statistically significant
 252 increase in percent wound closure ($p<0.05$) after completion of treatment as compared to
 253 control wells. Which indicated its wound healing potential in SIRC cell line by scratch assay
 254 method.

255 **4. Potential Pitfalls and Trouble Shooting**

- 256 ■ Duration of study was shorter; study should be carried out on larger sample group for
 257 longer duration.
- 258 ■ Study performed was *in vitro*, further *in vivo* and clinical trials required.
- 259 ■ Advanced technological support for imaging and quantitative analysis can be taken for
 260 obtaining better results.

261 ▪ Cell culture models having similar cellular composition as human cornea like clonetics,
262 can be used for studying transepithelial permeability.
263

264 **5. Conclusion**

265 Analysis of result concludes that *Glycyrrhiza glabra* ophthalmic formulation is proven as an
266 ayurvedic alternative treatment modality for treatment of corneal wounds. *Glycyrrhiza glabra*
267 ophthalmic formulation has shown statistically significant results, which is cost effective and
268 preservative free. This formulation can be used for treating corneal wounds.

269 **6. Ethics statement**

270 The present study was reviewed and approved by Institutional Ethics Committee of Dr. D. Y. Patil
271 College of Ayurved and Research Centre, Maharashtra, India. (Number)

272 **7. Author contributions**

273 SV and PJ made substantial contributions to conception, design and interpretation of data. SV
274 wrote initial draft of the manuscript. PJ and MV reviewed the manuscript critically for important
275 intellectual content and gave final approval of the version to be submitted.

276 **8. Funding**

277 Self funded

278 **9. Conflict of interest**

279 All authors declare that the research was conducted in the absence of any commercial or
280 financial relationships that could be construed as a potential conflict of interest.

281

282

283 **10. References**

- 284 1. Araki-Sasaki K, Ohashi Y, Sasabe T, Hayashi K, Watanabe H, Tano Y, &Handa H. (1995).
285 An SV40-immortalized human corneal epithelial cell line and its characterization. Invest
286 Ophthalmol Vis Sci, 36(3), 614–621.
- 287 2. Crosson CE, 1989. Cellular changes following epithelial abrasion in: Beuerman RW,
288 Crosson CE, Kaufman HE, (eds), Healing Processes in the Cornea. Gulf Publishing,
289 Houston, TX, pp. 3–14.
- 290 3. Corneal blindness: a global perspective. Whitcher JP, Srinivasan M, Upadhyay MP.
291 <https://pubmed.ncbi.nlm.nih.gov/11285665/> Bull World Health Organ. 2001; 79:214–
292 221.

294 4. Ljubimov AV, Saghizadeh M. Progress in corneal wound healing. *Prog Retin Eye Res*. 2015 Nov; 295 49:17-45. doi: 10.1016/j.preteyeres.2015.07.002. E pub 2015 Jul 18. PMID: 26197361; 296 PMCID: PMC4651844.

297 5. Fini ME (1999). Keratocyte and fibroblast phenotypes in the repairing cornea. *Prog Retin 298 Eye Res*, 18(4), 529–551. doi: 10.1016/s1350-9462(98)00033-0

299 6. Sharma V, Katiyar A, Agrawal RC. Glycyrrhizaglabra: Chemistry and Pharmacological 300 Activity. *Sweeteners*. 2017 Jul 31:87–100. doi: 10.1007/978-3-319-27027-2_21. PMCID: 301 PMC7124151.

302

303 7. Raja, Sivamani K, Garcia MS, Isseroff RR. Wound re-epithelialization: modulating 304 keratinocyte migration in wound healing. *Front Biosci*. 2007 May 1; 12:2849-68. doi: 305 10.2741/2277. PMID: 17485264

306

307 8. Martinotti S, Ranzato E. Scratch Wound Healing Assay. *Methods Mol Biol*. 2020; 2109:225- 308 229. doi: 10.1007/978-1-4939-9210-9_11. PMID: 31414347.

309 9. Chaurasia SS, Perera PR, Poh R, Lim RR, Wong TT, Mehta JS. Heparin plays a pivotal role in 310 corneal wound healing. *PLoS One*. 2013;8:e81544. doi: 10.1371/journal.pone.0081544.

311 10. Crosson CE, Klyce SD, Beuerman RW. Epithelial wound closure in the rabbit cornea. A 312 biphasic process. *Invest. Ophthalmol. Vis. Sci.* 1986;27:464–473.

313 11. Ashby WJ, Zijlstra A. Established and novel methods of interrogating two-dimensional 314 cell migration. *Integr Biol (Camb)* 2012; 4:1338-50.

315

316

317

318

319

320

321

322

323

324