

EFFECTS OF TWO MODES OF TECHNOLOGICAL TREATMENTS ON THE PROXIMAL COMPOSITION AND SENSORY ACCEPTABILITY OF MILLET(*Pennisetum glaucum* L. R. Br.) AND TIGER NUTS (*Cyperus esculentus* L.), BASED COOKIES- TYPE FOODS ENRICHED WITH PROBIOTICS.

Manuscript Info

Manuscript History

Received: xxxxxxxxxxxxxxxx

Final Accepted: xxxxxxxxxxxxx

Published: xxxxxxxxxxxxxxxx

Key words:Cookies- type foods -
Millet-Tigernuts-Probiotics-
Technological effects.

Abstract

Background. The application of appropriate biotechnology to the combination of millet and tiger nuts could contribute to the nutritional and sensory improvement of the products of their transformation into cookies type foods. **Methods.** Foods made from roasted composite flour and steamed composite lumps were fermented by a probiotic leaven. The proximal composition of the products was determined using standardized analytical methods. **Results.** The roasted composite flour feed had the highest protein, water and ash content compared to the steamed composite lumps. It also achieved a higher acceptability rate. **Conclusion.** This study highlights the interest of biotechnologies for the development of local resources and opens prospects for the development of innovative and more competitive food products.

1
2 **Introduction**
3 The main purpose of technological treatments is to improve the nutritional, sensory and health
4 quality of food, but also its conservation and its food or commercial use, outside the places and
5 periods of production (Jeantet, 2016). Roasting and steaming are physical treatments that
6 proceed by cooking the food, respectively, by direct or indirect transfer of dry heat and by
7 indirect transfer of moist heat to the food (Karanth *et al.*, 2023; Choe *et al.*, 2022). Fermentation,
8 which is a biological treatment, is said to be one of the oldest methods of food preservation best
9 shared by humanity (Augustin *et al.*, 2024; Marco *et al.*, 2021). It consists of the action of
10 autochthonous fermentation microorganisms (spontaneous fermentation) or non-fermentation
11 microorganisms (fermentation induced by a starter), in an appropriate environment. The resulting
12 physicochemical changes result in the lowering of the pH to limits hostile to undesirable
13 pathogenic and non-pathogenic microorganisms (Yang *et al.*, 2025; Zhang *et al.*, 2025). Some
14 strains of fermentative microorganisms called "probiotics" are thought to influence the
15 technological properties, which are precursors of beneficial effects for the nutrition, well-being
16 and health of the host (Tonacci and Gorini, 2025; Hill *et al.*, 2014). The economic importance of
17 probiotics, whose global market has been estimated at more than USD 100 billion in 2024, is

18 believed to be the source of thousands of scientific publications and patents each year (IAP,
19 2025).

20 Millet (*Pennisetum glaucum* L. R. Br.) is a resource that contributes strongly to the food and
21 financial resilience of the poorest populations (Ecofin Agency, 2023). It is a cereal with high
22 nutritional value, gluten-free, which adapts to harsh edapho-climatic conditions and
23 technological innovations (FAO, 2024). According to Songré-Ouattara *et al.* (2016) ; Békoye
24 (2014), the levels that would depend on geographical, agro-pedological and varietal factors,
25 would vary between 9.7 - 12.5% for proteins; 3.5 - 5.2% for fat; 60.9 - 67.0% for carbohydrates;
26 89.6 – 97.0% for dry matter and 2.2 – 5.4% for ash. Slug is grown by about 40% of farming
27 households and is one of the main cereal crops in Burkina Faso (INSD, 2023). Average annual
28 national production was estimated at 926,900 tons over the period 2015-2024 (USDA, 2025).
29 Tigernuts(*Cyperus esculentus* L.) is a tuber with many nutritional and ethno-medical virtues. The
30 production of the country's three main producing regions (Cascades, Hauts-Bassins and Sud-
31 Ouest) was 2080.82 tons in 2017 (Somé *et al.*, 2021). This production, which is comparable to
32 domestic production, is partly exported. Annual exports of Tiger nuts increased from 451,475
33 tons in 2022 to 898,268 tons in 2024. According to Traoré *et al.*, 2024; Semdé *et al.*, 2019, the
34 concentrations would vary from 3.28 to 9.70%; from 20.30 to 35.21% and from 33.70 to 69.21%
35 respectively for proteins, fats and carbohydrates. These levels are influenced by genetic and
36 agro-pedological factors.

37 In addition to these agronomic performances, Burkina Faso is characterized by agro-industrial
38 underperformance, which limits the value of production, and thus leads to the country's
39 dependence on imports of manufactured agricultural products, such as pasta and biscuits. From
40 2020 to 2023, the country disbursed about 10.458 million US dollars, or nearly 6 billion CFA to
41 import biscuits and similar products (Trade_Map,
42 https://www.trademap.org/Product_SelCountry_TS.aspx. Page consulted on 14-03-2025).
43 Bougma *et al.* (2023) reported that the consumption of biscuits and cakes would represent
44 62.94% of the food matrix of children in Ouagadougou. This rate would place these foods in 3rd
45 place, after porridges and common dishes (*Tô* and rice). According to Chavan *et al.* (2016), the
46 term "biscuit" would mean baked twice (*bis coctus*) in Latin. Cookies are forms of eating cereals
47 whose first ingredient is flour. Their presence in the human diet dates to the sedentarization and
48 domestication of cereals in antiquity (Denis, 2011). Authors such as Chavan *et al.* (2016) ; Huber
49 and Schoenlechner, (2016) indicate that the term "biscuit" includes several types of products
50 with different names, flavors and formulations from one country or culture to another (Biscuit,
51 Cookie, Crackers, Scone, etc.). The application of adequate biotechnology to the combination of
52 millet and tiger nuts could contribute to the development of innovative, competitive food
53 products with functional potential, with a view to satisfying nutritional challenges. The purpose
54 of this study was to evaluate the effects of two technological treatment methods on the proximal
55 composition and sensory acceptability of millet and tiger nuts-based cookies-type foods and
56 enriched with probiotics.

57 **Materials and methods**

58 **Material**

59 **Plant material**

60 The millet and tiger nuts were purchased on the local market in the town of Bobo-Dioulasso in
61 Burkina Faso. The flours were obtained by adapting (roasting) the production processes for
62 millet and tiger nuts flour described by Oyedele *et al.* (2022).

63 **Methods**

64 **Pretreatments**

65 The millet grains and the raw tiger nuts tubers were subjected to several cleaning operations.
66 Thus, after winnow, which made it possible to eliminate the least heavy physical impurities
67 (grains of sand, plant particles, etc.), the grains and tubers were washed and rid of the heaviest
68 physical impurities such as pebbles (de-stoning), defective grains and tubers (sorting). The
69 batches were then dried in a RoHS brand dehydrator, model FDS-018), at 37°C for 24 hours, to
70 prevent any risk of alteration and soiling.

71 **Preparation of the sourdough**

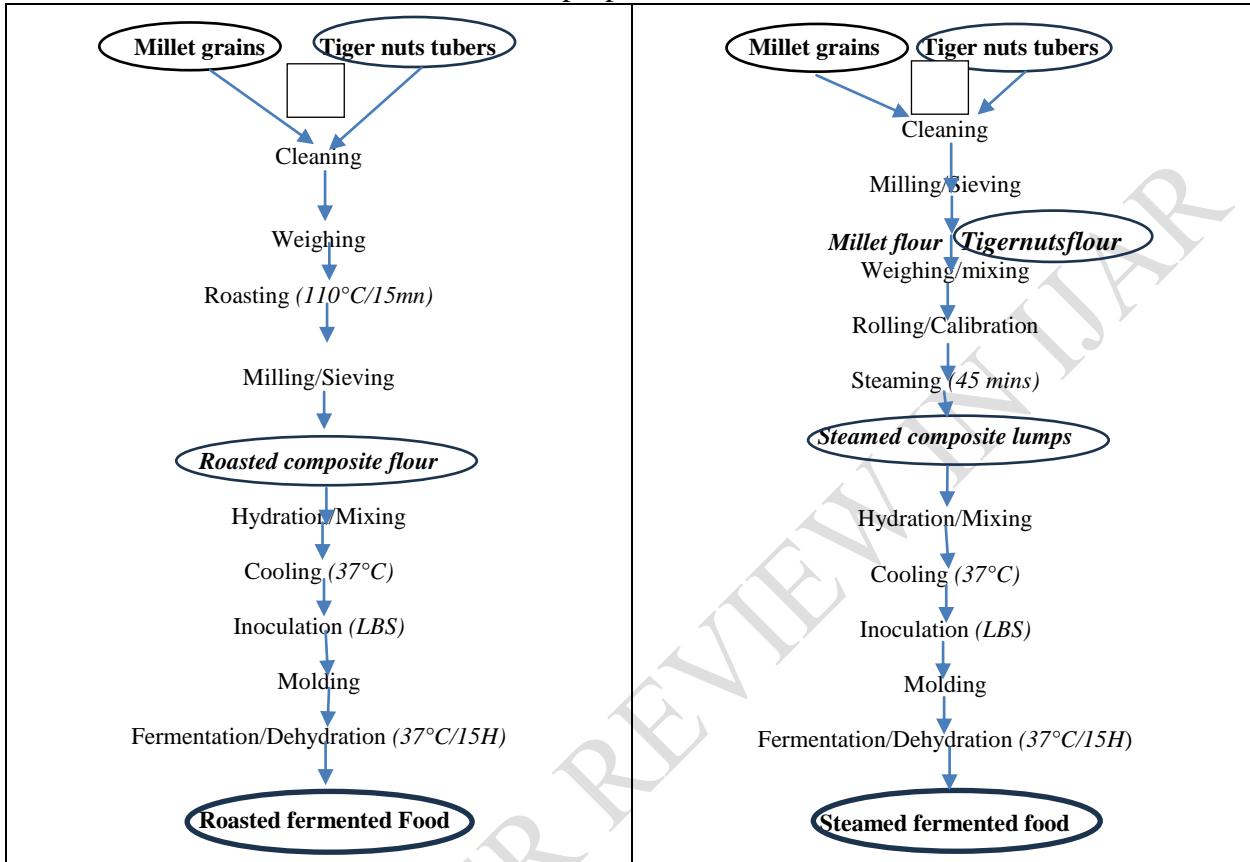
72 The sourdough was prepared by transplanting strains of lactic acid bacteria from the Trunature
73 and Spring Valley brands and a strain of pharmaceutical yeast (Ultra yeast), on tiger nuts "milk".
74 Two capsules of lactic acid bacteria (*Bifidobacterium* and *lactobacillus* at 14 x 109 U) and a
75 sachet of yeast powder (*Saccharomyces cerevisiae Boulardii* at 5 x 109 U) were inoculated with
76 100 mL of tiger nuts "milk" maintained at 37°C. The mixture was then incubated at room
77 temperature for 24 hours, before use. The tiger nuts "milk" had been obtained according to the
78 processes described by Jade *et al.* (2024); Oyedele *et al.* (2022).

79 **Technological treatments**

80 **Production of roasted flour**

81 The raw millet kernels and nutsedge tubers were placed in the oven preheated to 110°C of a
82 Silver Crest fryer, model AF-15, equipped with an oven with timer, and with adjustable
83 temperature from 0 to 300°C. The roasting lasted 15 minutes. The beans and tubers were then
84 cooled (37°C) in ambient air, before being ground using a Silver Crest brand shredder-mixer,
85 model SC-1589 with a variable speed between 0 and 45,000 rpm. The sieving was carried out
86 with a sieve of 0.5 mm mesh.

87 **Production of steamed lumps**


88 Raw millet grains and raw tiger nuts tubers were ground to obtain raw flour. A composite flour
89 (50:50) was successively rolled manually, graded by sieving to 1mm and steamed for 45 minutes
90 using a Stainless-steel couscous maker.

91 **Production of fermented cookies-type foods**

92 The common food production operations included:

- 93 - **Hydration:** Boiling water gradually poured over the roasted flour and steamed lumps,
94 kneading until the desired gel consistency was achieved. The quantities vary between 20
95 and 35 mL of water per 100g of dough.
- 96 - **cooling:** the scalded dough was placed in a refrigerator until they cooled to 37°C.
- 97 - **sowing:** it was carried out at a rate of 1 mL of sourdough for 100 g of dough.
- 98 - **moulding:** the seeded gels were moulded using a manual piston moulder with multi-
99 shaped lids to obtain fresh cookies.

100
101 - **fermentation/dehydration:** the fresh seeded cookies were placed for 15 hours at 37°C,
102 in a RoHS brand dehydrator, model FDS-018, with a heating element adjustable between
0 and 100°C, and a laminar airflow propellant fan.

103 **Figure 1: Fermented cookies foods production diagram**

104 *a=Roasting-fermentation, b=Steaming-fermentation,*

105 *LBS = lactic acid bacteria + S. boulardii*

106 **Determination of total carbohydrate content**

107 Total carbohydrates were measured according to the method of Dubois *et al.* (1956) adapted by
108 Tajini *et al.* (2020), using phenol and sulphuric acid. The formation of a yellow-orange
109 chromophore made it possible to measure the optical density at 485 nm.

110 **Determination of total protein content**

111 Total protein content was assessed according to the Kjeldahl reference method described in
112 AOAC 979.09 (1999). This method is based on the mineralization of the organic nitrogen of the
113 proteins into ammonium followed by its quantification by acidimetry.

114 **Determination of lipid content**

115 Lipids were quantified by the adapted Soxhlet method, described in AOAC (1990). Hot
116 extraction was done in boiling hexane, which was subsequently removed by evaporation and the
117 residue weighed.

118 **Determination of water and ash content**

119 Water and ash levels were determined using the thermogravimetric method (AOAC, 1990). The
120 determination of the water content consisted of the removal of the water from the sample by
121 heating 105°C for 24 hours. The determination of the ash content was based on the removal of
122 organic matter by drying the sample in a furnace heated to 600°C for 180 minutes; then the mass
123 of the ash was determined from the weighing of fresh and residual samples.

124 **Evaluation of the effects of thermization methods on proximal compositions**

125 The effects of roasting and steaming on the proximal compositions of flour, lumps and
126 fermentation on the proximal composition of cookies-type foods were determined through the
127 rates of variation of the proximal compositions of the different products according to the
128 following formula:

$$RC = \frac{PC \text{ after treatment} - PC \text{ before treatment}}{PC \text{ before treatment}} \times 100$$

129 With:

130 RC: Rate of change

131 PC: Proximal composition

132 **Sensory analysis of cookies-type foods**

133 The sensory analysis was carried out by adapting the ISO 11136 standard on hedonic tests
134 described by Majou *et al.* (2014). *The number of respondents was defined according to*
135 *Schwartz's formula¹* (**Equation 1**). The respondents were randomly met in pre-identified public
136 squares (markets, large sales stores, school and university exits) in the cities of Ouagadougou,
137 Bobo-Dioulasso and Banfora. Respondents were able to sample both types of fermented foods
138 (roasted flour and steamed lumps). Each sample underwent 3 tastings (preceded by water
139 intakes), before filling in the questionnaire. The questionnaire, generated using the Kobotoolbox
140 software, identified 5 specific organoleptic attributes (shape, color, smell, taste and texture),
141 evaluated on a 5-point scale. The overall assessment, which expresses the respondents' overall
142 level of satisfaction with the sensory profile of each type of cookies -type foods, was rated on a
143 10-point scale. The acceptability of "cookie" type foods was determined by three response
144 methods: "YES", "NO", "don't know", to the question "would you agree to eat this cookie"? A
145 suggestion section also made it possible to collect the proposals for improvement desired by the
146 respondents.

$$n = z^2 \times p \times (1 - p) / m^2$$

147 **Equation 1:** Schwartz's formula

148 *n= minimum sample size; z= value of the normal distribution corresponding to the confidence*
149 *level; z= 1.96 for 95%; p= estimated proportion of the population that has the characteristic*
150 *(representative), p=50% if unknown. ; m= tolerated margin of error, m=*

151
152 **Statistical analysis**

153 Three outlets were used for each measurement. Proximal compositions were expressed on
154 average. The Excel Office 365 and R studio 3.14, Jamovi 2.6 software were used for data
155 processing and analysis. The comparison of the sensory perception of fermented cookies- type
156 foods was carried out using the radar histogram (Majou *et al.*, 2014; Tapsoba *et al.*, 2022).
157 Statistical significance was set at 5%.

158 **Results**

159 **Proximal composition of flour, lumps and cookies-type foods**

160 Table I presents the proximal compositions of raw and roasted composite flours, steamed lumps
161 and fermented cookies-type foods. Roasted composite flour was richer in protein ($21.59 \pm 0.00\%$)
162 and fat ($15.19 \pm 0.01\%$) than raw composite flour. In contrast, raw composite flour had better
163 carbohydrate contents ($60.49 \pm 0.84\%$), and steamed lumps were richer in water ($14.27 \pm 1.30\%$)
164 and ash ($1.45 \pm 0.02\%$). The highest levels of protein ($21.73 \pm 0.63\%$), ash ($1.75 \pm 0.11\%$) and
165 water ($12.18 \pm 4.01\%$) were obtained with the cookies-type foods processed by roasting-
166 fermentation, compared to the cookies- type foods prepared by steaming-fermentation which
167 were richer in fat ($15.07 \pm 0.02\%$) and carbohydrates ($37.13 \pm 0.05\%$).

168
169
170
171
172
173 **Table I:** Proximal composition of flours, lumps and cookies-type foods (%DM)

Technology Matrices	Protein	Fat	Carbohydrates	Water content	Ashes
<i>Cleaning and grinding</i> Raw composite flour	17.66 ± 0.00^a	13.34 ± 0.24^a	60.49 ± 0.84^a	9.70 ± 0.32^a	1.20 ± 0.53^a
<i>Roasting</i> Composite flour	21.59 ± 0.00^b	15.19 ± 0.01^b	48.00 ± 0.01^b	8.82 ± 0.18^b	1.02 ± 0.07^b
<i>Steaming</i>					

Composite lumps 17.39±0.10^c 14.69±0.11^c 48.60±0.11^c 14.27±1.30^c 1.45±0.02^c

Fermentation

Roasted flour food 21.70 ±0.63^d 14.75±1.69^c 36.74±1.42^d 12.18±4.01^d 1.75±0.11^d

Steamed lumps food 19.63±0.06^e 15.07±0.02^d 37.13±0.05^e 8.12±0.03^b 1.48±0.03^e

174 **DM = DryMatter**

175 The values in the same column with different superscript letters are significantly different.

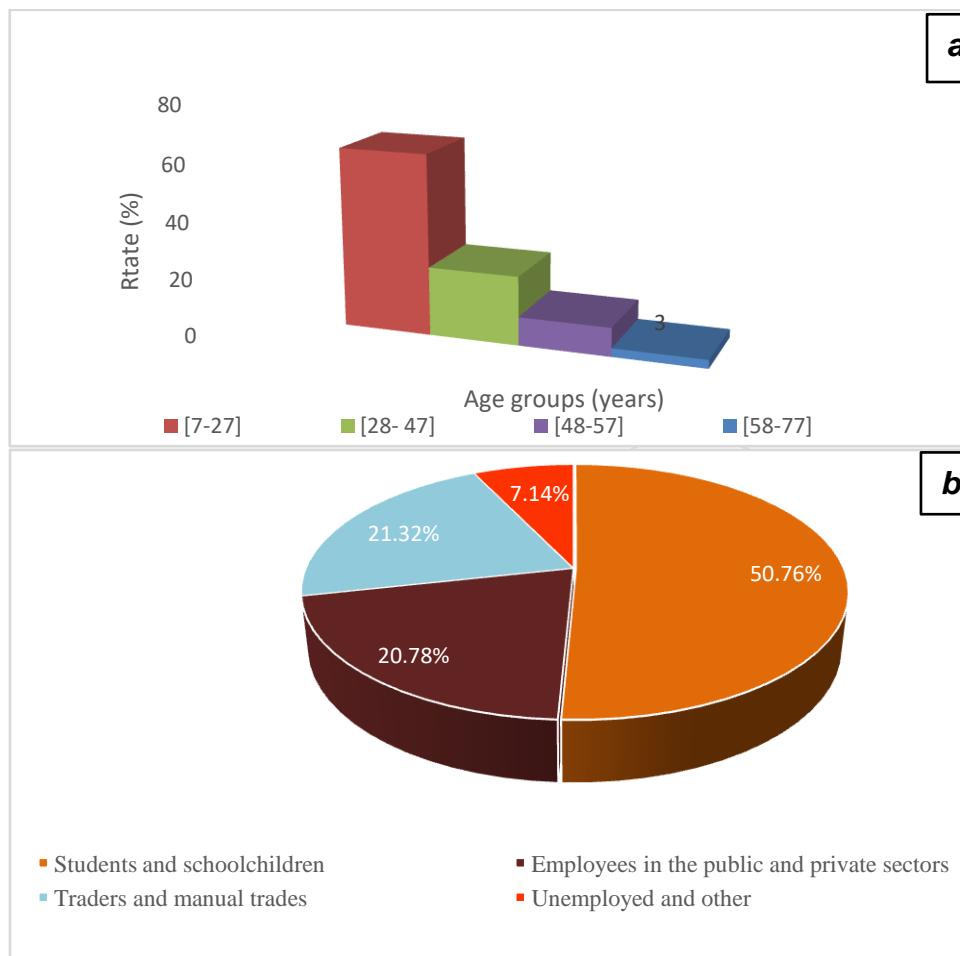
176 **Effects of roasting-fermentation and steaming-fermentation on the proximal composition**
177 **of cookies-type foods**

178 Table II shows the rates of change in proximal compositions during the production of cookies
179 foods. Negative values indicate a reducing effect of the proximal composition, while positive
180 values indicate an improvement in concentrations. Roasting induced a reducing effect on the
181 carbohydrate (-20.64%), water (-9.13%) and ash (-15.20%) compositions compared to raw
182 composite flour. However, this treatment led to an improvement in the protein (+22.30%) and
183 lipid (+13.88%) content of this flour. Steamed lumps also showed a reduction in protein and
184 carbohydrate content compared to an improvement in other parameters, compared to raw
185 composite flour. For food based on roasting-fermentation, an increase in proximal compositions
186 of protein (+0.64%), water content (+38.13%) and ash content (+71.73%) was observed
187 compared to roasted composite flour. Concerning steaming-fermentation process food, and
188 according to the composition of the steamed lumps, improvements were also noted in the protein
189 (12.85%), lipid (2.56%) and ash content (2.49%).

190

191

192


193 **Table II:** Rates of change in proximal compositions during cookies-type foods production

Technology Matrices	Protein	Fat	Carbohyd rates	Water content	Ashes
Roasting					
Roasted flour/Raw flour	22.30%	13.88%	-20.64%	-9.13%	-15.20%
Steaming					
Steamed lumps/Raw flour	-1.50%	10.17%	-19.65%	47.07%	20.85%
Fermentation					
Roasted food/Roasted flour	0.64%	-2.89%	-23.46%	38.13%	71.73%
Steamed food/ Steamed lumps	12.85%	2.56%	-23.60%	-43.10%	2.49%

194

195 **Socio-demographic profiles of respondents**

196 The sensory analysis of cookies- type foods was carried out on 380 respondents, of whom
 197 52.63% were female and 47.37% male. The respondents were aged between 7 and 77 years
 198 (Figure 2a) and were mainly in the [7 to 27] age group (63%) followed by the [28-47] age group
 199 (24%). Their socio-professional profile was pupils and students (50.76%), and they worked in
 200 commerce or manual trades (21.32%). Employees in the public and private sectors (20.78%), the
 201 unemployed and other undeclared jobs (7.14%) were also represented (Figure 2b).

202

203

204 **Figure 2: Socio-demographic profiles of respondents.**

205 *a= Distribution of respondents by age; b= Socio-professional profile of*
 206 *respondents*

207 **Sensory profile and overall appreciation of "cookie" type foods**

208 Figure 3, which presents the sensory profile of cookies- type foods, shows that the overall
 209 assessment was in favor of cookies- type foods produced by roasting and fermentation ($p =$
 210 0.007), mainly in relation to shape ($p = 0.289$), color ($p = 0.001$) and taste ($p = 0.001$).

Figure 3: Sensory profile and overall appreciation of cookie-type foods

Acceptability of cookies- type foods by respondents

Table III presents the acceptability rates of cookies- type foods given by the respondents who answered this question. Foods obtained through roasting and fermentation recorded the best acceptance rate by respondents (81.32%).

Table III: Acceptability of cookies-type foods by respondents

	Roasted fermented food		Steamed fermented food	
	Acceptability (%)	Effectifs	Acceptability (%)	Effectifs
Yes	81.32	309	77.37	294
No	13.16	50	20.00	76
Don't know	5.47	19	2.39	9

Discussion

The purpose of this study was to evaluate the effects of two technological treatment methods on the proximal composition and sensory acceptability of probiotic-enriched millet and tiger nuts-based cookies-type foods. The results of the physicochemical analyses show that the roasting resulted in a roasted composite flour that was richer in protein and fat than the raw composite flour, which had better carbohydrate and ash contents. These results also indicate that steaming the lumps resulted in lower protein and carbohydrate contents, compared to higher fat and ash levels compared to raw composite flour. Similar results were obtained by Gwekbe *et al.* (2024); Lien *et al.* (2024); Li *et al.* (2023). Increases in levels may result from inhibition of catalytic enzymes and concentration of the material, following the reduction of water content by heat. The

229 weakening of cell membranes and intermolecular bonds by heat, which facilitates the extraction
230 of molecules, would also lead to higher concentrations of certain components. (Link *et al.*, 2024;
231 Zhang *et al.*, 2024; Li *et al.*, 2023; Sefrienda *et al.*, 2023). The reductions could be consequences
232 of the thermal denaturation of certain molecular structures or the formation of stable macro-
233 complexes (Scott and Awika, 2023; Zhuang *et al.*, 2022; Toda *et al.*, 2019). Heat treatments that
234 generate volatile fat compounds are reported to be accompanied by reductions in lipid levels
235 (Kong *et al.*, 2024; Li *et al.*, 2020; Zhang *et al.*, 2020). Hydrolysis, oxidation and the Maillard
236 reaction are also thought to reduce the content of certain nutrients (Hong *et al.*, 2022; Zhuang *et*
237 *al.*, 2022; Guo *et al.*, 2020).

238 Regarding the effects of fermentation, a comparison of the proximal composition indicates that
239 the cookies- type food obtained from roasting-fermentation showed an increase in protein and
240 ash contents, compared to roasted composite flour. Improvements were also noted in the protein,
241 lipid and ash content of the cookies-type food prepared by steaming and fermentation, compared
242 to cooked lumps. Our results agree with the results reported by Fawole *et al.*, 2025; Lawrence
243 *et al.*, 2023; Chupeerach *et al.*, 2021. Direct interactions between fermentative microorganisms
244 and certain molecules for synthesis (Wu *et al.*, 2024; Kiely and Hickey, 2022; Zhang *et al.*,
245 2021; Zhao *et al.*, 2020), and the indirect inhibitory action of microorganisms on degradation
246 factors, could lead to improvements in the contents of certain components (Rashwan *et al.*,
247 2025); Alemayehu *et al.*, 2023; Li *et al.*, 2020). Both types of fermented foods had shown
248 reductions in carbohydrates respectively compared to roasted flour and steamed lumps. Cases of
249 reductions would occur when the balance between the requirements of microbial nutrient
250 metabolism and the availability factors (initial levels, technological increases) is deficient in
251 certain nutrients (Emkani *et al.*, 2022; Chupeerach *et al.*, 2021; Ge *et al.*, 2019).

252 The comparison between the roasted fermented food and steamed fermented food indicates that
253 the highest protein and ash content was obtained with the roasted-fermented food compared to
254 the steamed-fermented food, which was richer in fat and carbohydrates. Thermodynamic
255 modifications on the different components would be accompanied by physicochemical
256 phenomena that would vary according to the nature of the substrate, the treatment scales
257 (time/temperature couple) and the environment (Ji *et al.*, 2023).

258 Millet and tiger nuts are foods with high nutritional value that can help fight undernourishment
259 (FAO, 2024; Gwekbe *et al.*, 2024; Pudake *et al.*, 2024; Ban-Koffi *et al.*, 2005 ;). The richness of
260 the cookies-type food obtained by roasting-fermentation in proteins and ash could support its
261 recommendation for vulnerable groups such as pregnant women (embryo development), young
262 children (muscle and bone growth) and immunocompromised people (Järvinen *et al.*, 2024;
263 Ganapathy and Nieves, 2020; Matonti *et al.*, 2020). In addition, the richness in proteins and
264 lipids makes the two cookies-type foods alternatives for people suffering from protein-energy
265 malnutrition (Bompart and Gueugneau, 2024). Their low carbohydrate content makes them
266 compatible with hypoglycemic diets. Combining heat pretreatments with fermentation could help
267 optimize feed characteristics according to target populations. Indeed, moderate thermization
268 improves the nutritional value of foods by increasing the content and digestibility of certain
269 nutrients (Ghosal *et al.*, 2024; Lu *et al.*, 2023) but does not necessarily guarantee sensory
270 quality.

271 The sensory perception of the respondents showed an overall appreciation essentially in favor of
272 the color and taste of the cookies- type food obtained by roasting and fermentation (Figure 3). A

273 better acceptance rate was also recorded with this feed (Table 3). The major suggestions for
274 improvement were related to the sweet taste. The tastes of the two foods are statistically different
275 ($p<0.001$). This corroborates the results of the physicochemical analyses (**Table 1**). There was no
276 correlation between the suggestions to "sweeten" and the age or sex of the respondents, despite
277 most young people and women. Bobowski and Mennella (2017) had noticed that children had a
278 higher preference for sweetness than adults. Mennella, Petty *et al.* (2020) reported a relationship
279 between sucrose detection limit and age. Children showed lower sensitivity than adolescents,
280 who themselves were less sensitive than adults. Environmental factors and dietary habits that
281 may influence this sensitivity (Appleton, 2024; Mannella *et al.*, 2005).

282 Conclusion

283 This study shows that roasting and steaming have a different impact on the flour components of
284 raw millet and Tiger nuts. The effects of fermentation on the proximal composition of fermented
285 foods such as "cookies-" were influenced by the nature of the substrate and the mode of
286 thermization. The results of the sensory evaluation indicate that the effects of technological
287 processing methods determined the sensory profile of fermented foods such as cookies-type
288 foods. This study suggests that the production of protein-rich and sensorially acceptable foods,
289 without the use of processing aids and additives, often suspected of harmfulness, remains a
290 biotechnological challenge accessible. However, further investigations, such as resistance tests of
291 inoculated probiotics to gastrointestinal stress, the impact of the consumption of "cookies-" type
292 foods on well-being and health, the characterization of the probiotic strains counted, etc., remain
293 necessary to support the probiotic qualification of the "cookie-" type foods proposed.

294 295 Acknowledgements

296 The authors thank the authorities of the Nazi Boni University of Bobo-Dioulasso

297 References

- 298 1. Agence Ecofin., 2023. 2023 sera l'année internationale du mil. Accessed March 26, 2025.
299 <https://www.agenceecofin.com/analyse/1201-104366-2023-sera-l-annee-du-mil>.
- 300 2. Alemayehu GF, Forsido SF, Tola YB, Amare E., 2023. Effects of Natural Fermentation
301 and Toasting on Nutritional Composition and Antinutrient Contents of Ethiopian Oat
302 Grains. *J Food Chem Nanotechnol.*;9(2):54-62. doi:10.17756/jfcn.2023-151.
- 303 3. Aljahdali N. et Carbonero F., 2019. Impact of Maillard reaction products on nutrition and
304 health: Current knowledge and need to understand their fate in the human digestive
305 system. *Crit Rev Food Sci Nutr.* 59(3):474-487. doi:10.1080/10408398.2017.1378865.
- 306 4. AOAC (Association Of Official Analytical Chemists)., 1990. Official Methods of
307 Analysis (Volume 1), 15th Edition.
- 308 5. Augustin M A., Hartley CJ., Maloney G., *et al.*, 2024. Innovation in precision
309 fermentation for food ingredients. *Critical reviews in food science and nutrition*, vol. 64,
310 no 18, p. 6218-6238. DOI: 10.1080/10408398.2023.2166014.
- 311 6. Békoye B.M., 2014. Caractérisation physico chimique et technologique des variétés de
312 mil *pennisetum glaucum* (l.) r. br.) uest africaines. *Eur Sci J.* 10(30):1
- 313 7. Bompart C et Gueugneau M., 2024. Benefits and risks of a plant-based diet for the older
314 adults. *Med des Mal Metab.* 18(8):656-663. doi:10.1016/j.mmm.2024.10.003.

315 8. Chavan,K RS., Sandeep S., Basu SB., 2016. Cookies, and Crackers: Chemistry and
316 Manufacture. Published online 2:437-444,.doi:<https://doi.org/10.1016/B978-0-12-384947-0.00076-3>.

318 9. Choe U, Osorno JM, Ohm J BOM, Chen B, Rao J., 2022. Modification of
319 physicochemical , functional properties , and digestibility of macronutrients in common
320 bean (*Phaseolus vulgaris* L .) flours by different thermally treated whole seeds.
321 382(February):132570.

322 10. Denis A., 2011. Les biscuit et gâteaux : toute une diversité Biscuit and cakes : A large diversity. Published
323 online:9960. doi:[10.1016/j.cnd.2010.11.002](https://doi.org/10.1016/j.cnd.2010.11.002).

324 11. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F., 1956. Colorimetric Method for
325 Determination of Sugars and Related Substances. *Anal Chem.*:28(3):350-356.
326 doi:[10.1021/AC60111A017](https://doi.org/10.1021/AC60111A017).

327 12. Emkani M, Oliete B, Saurel R., 2022. fermentation Effect of Lactic Acid Fermentation on
328 Legume Protein Properties, a Review. Published online.
329 doi:[10.3390/fermentation8060244](https://doi.org/10.3390/fermentation8060244).

330 13. FAO. Réaliser le plein potentiel du mil Année internationale du mil 2023 Note
331 d'information. Published online 2024. doi:[10.4060/cc7484fr](https://doi.org/10.4060/cc7484fr).

332 14. Ganapathy A et Nieves JW., 2020. Nutrition and sarcopenia—what do we know?
333 *Nutrients.* ;12(6):1-25. doi:[10.3390/nu12061755](https://doi.org/10.3390/nu12061755).

334 15. Ge Q, Chen S, Liu R, *et al.*, 2019. Effects of *Lactobacillus plantarum* NJAU-01 on the
335 protein oxidation of fermented sausage. *Food Chem.* 2019;295:361-367.
336 doi:[10.1016/J.FOODCHEM.05.154](https://doi.org/10.1016/J.FOODCHEM.05.154).

337 16. Ghosal M, Rakshit T, Bhattacharya S, Bhattacharyya S, Satpati P, Senapati D., 2024. E-
338 Protein Protonation Titration-Induced Single-Particle Chemical Force Spectroscopy
339 for Microscopic Understanding and pI Estimation of Infectious DENV. *J Phys Chem B*.128(13):3133-3144.
340 doi:[10.1021/ACS.JPCB.4C00057/SUPPL_FILE/JP4C00057_SI_001.PDF](https://doi.org/10.1021/ACS.JPCB.4C00057/SUPPL_FILE/JP4C00057_SI_001.PDF).

342 17. Gwekwe BN, Chopera P, Matsungo TM, *et al.*, 2024. Effect of dehulling, fermentation,
343 and roasting on the nutrient and anti-nutrient content of sorghum and pearl millet flour.
344 *Int J Food, Agric Nat Resour.*;5(1):1-7. doi:[10.46676/ij-fanres.v5i1.221](https://doi.org/10.46676/ij-fanres.v5i1.221).

345 18. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB,
346 Flint HJ, Salminen S, *et al.*, 2014. Expert consensus document. The international
347 scientific association for probiotics and prebiotics consensus statement on the scope and
348 appropriate use of the term probiotic. *Nat Rev GastroenterolHepatol.* 11(8):506–22. doi:
349 [10.1038/nrgastro.2014.66](https://doi.org/10.1038/nrgastro.2014.66)

350 19. INSD., 2023. Analyse approfondie caractéristiques des ménages agricoles du
351 Burkina Faso . Institut national de la statistique et de la démographie. Published
352 online 2023.

353 20. Jade L, Celine A, Yvette B, Christine A, Solange B., 2024. Levains thermophiles naturels
354 et sélectionnés : quel impact sur les composés d'arôme des fromages Comté ?
355 33(0):39800. <https://hal.science/hal-04900694v1>.

356 21. Jeantet R., 2016. Handbook of food science and technology. 3, Food biochemistry and
357 technology. Published online. Accessed June 12, 2025.
358 https://books.google.com/books/about/Handbook_of_Food_Science_and_Technology.html?hl=fr&id=62dFDAQAAQBAJ.

360 22. Karanth S, Feng S, Patra D, Pradhan AK., 2023. Linking microbial contamination to food
361 spoilage and food waste: the role of smart packaging, spoilage risk assessments, and date
362 labeling. *Front Microbiol.* 14:1198124. doi:10.3389/FMICB.2023.1198124/XML/NLM.

363 23. Kiely LJ et Hickey RM., 2022. Characterization and Analysis of Food-Sourced
364 Carbohydrates. *Methods Mol Biol.* 2370:67-95. doi:10.1007/978-1-0716-1685-7_4.

365 24. LI L, Wang Q, Liu C, Hong J, Zheng X., 2023. Effect of oven roasting on major chemical
366 components in cereals and its modulation on flour-based products quality. *J Food Sci.*
367 88(7):2740-2757. doi:10.1111/1750-3841.16625.

368 25. Lien DTP, Loan BT, Thanh DK, Que PTT, Tri NM., 2024. Effects Of Roasting OnThe
369 Quality Of Roasted Jackfruit Seed Powder. *Acta Sci Pol Technol Aliment.* 23(3):357-369.
370 doi:10.17306/J.AFS.001238.

371 26. Lu X, Zhan J, Ma R, Tian Y., 2023. Structure, thermal stability, and in vitro digestibility
372 of rice starch–protein hydrolysate complexes prepared using different hydrothermal
373 treatments. *Int J Biol Macromol.* 230:123130. doi:10.1016/J.IJBIOMAC.2022.123130.

374 27. Majou D, Herbreteau V, Issanchou S, Schlich P., 2014. Evaluation sensorielle, guide de
375 bonnes pratiques. <https://www.researchgate.net/publication/328875307>.

376 28. Marco G, Maria D A, Raffaella D C, Maria C, Gabriele A, Carlo G R., 2019. Novel
377 insights on the functional/nutritional features of the sourdough fermentation,International
378 Journal of Food Microbiology,Volume 302, Pages 103-113, ISSN 0168-1605,
379 <https://doi.org/10.1016/j.ijfoodmicro.2018.05.018>.

380 29. Oyedele D.S, Otutu, O.L, Adisa, A.M and Oluwarinde O.M.,2022. Evaluation of the
381 quality characteristics of cookies made from flour blends of pearl millet, soybeans and
382 tigernut pomace. in:*regional 8 th 8 th processing and preservation: a panacea to food
383 security and wealth creation IN 21ST (71)CENTURY CONFERENCE PROCEEDING.*
384 536-545.

385 30. Ramesh Namdeo Pudake, Amolkumar U. Solanke, and Chittaranjan kole.,2024.
386 Nutriomics of Millet Crops. CRC Press, , Taylor & Francis Group, LLC. Boca
387 Raton, USA, 311 p.

388 31. Rashwan AK, Osman AI, Abdelshafy AM, Mo J, Chen W., 2023. Plant-based proteins:
389 advanced extraction technologies, interactions, physicochemical and functional
390 properties, food and related applications, and health benefits. *Crit Rev Food Sci Nutr.*
391 Published online 2025. doi:10.1080/10408398.2279696.

392 32. Rautakallio-Järvinen P, Kunvik S, Laaksonen M, Fogelholm L, Nykänen I, Schwab U.,
393 2024. Cost-effectiveness of protein-rich meals and snacks for increasing protein
394 intake in older adults. *J Nutr Heal Aging.* 28(11). doi:
395 10.1016/j.jnha.2024.100381.

396 33. Scott G, Awika JM., 2023. Effect of protein–starch interactions on starch retrogradation
397 and implications for food product quality. *Compr Rev Food Sci Food Saf.* 22(3):2081-
398 2111. doi:10.1111/1541-4337.13141.

399 34. Sefrienda AR, Jasmadi, Novianty H, Suryaningtyas IT, Wikandari R., 2023. Effect of
400 Cooking Methods on Nutritional Quality of Sea Lettuce (*Ulva lactuca*) Flakes. *J Ilm
401 Perikan dan Kelaut.* 15(1):142-151. doi:10.20473/jipk.v15i1.36078.

402 35. Silventoinen-Veijalainen P, Jokinen I, Holopainen-Mantila U, Rosa-Sibakov N., 2025.
403 Factors improving dry fractionation of Bambara groundnut aiming at production of
404 protein-rich ingredients with elevated nutritional and technological quality. *Food
405 Chem.*;478. doi:10.1016/j.foodchem.2025.143645.

406 36. Siri, D, Kam S E, KoamA B K, Kagambega W, Hien A, Ouedraogo C, Somda FT, Siri B
407 A A, Meda R N-T., 2025. Effects of Techno logical Treatments and Storage on Probiotics
408 Inoculated into Biscuits (Cookies) Made from Millet (*Pennisetum glaucum* L. R. Br.) and
409 Tiger Nuts (*Cyperus esculentus* L.). *Food and Nutrition Sciences*, 16, 1083-1096.
410 <https://doi.org/10.4236/fns.2025.169062>.

411 37. Some.K T *et al.*, 2021. Rapport de l'étude de recherche et développement des huiles à
412 base de souchet comestible au BURKINA FASO Rapport final.

413 38. Songre-Ouattara LT, Bationo F, Parkouda C, DAO A, Bassolé IHN, DIAWARA B.,
414 2016. Qualité des grains et aptitude à la transformation : cas des variétés de *Sorghum*
415 *bicolor*, *Pennisetum glaucum* et *Zea mays* en usage en Afrique de l'Ouest. *Int J Biol Chem*
416 *Sci.* 9(6):2819. doi:10.4314/ijbcs.v9i6.23.

417 39. Tajini F, Bouali Y, Ouerghui A., 2020. Etude de la qualité nutritionnelle de fruit de
418 Phœnix dactylifera L. : mesure des paramètres biochimiques. *Rev Nat Technol.* 12(2):39-
419 49. Accessed May 5, 2025. <https://asjp.cerist.dz/en/article/118518>.

420 40. Tapsoba FWB, Compaore-Sereme D, Compaore CS, *et al.*, 2022. Effects of Cereal Malts
421 Used as Improver on Physico-Chemical, Nutritional and Sensory Characteristics of
422 Wheat and Millet Composites Breads. *Food Nutr Sci.* 13(07):669-689.
423 doi:10.4236/fns.2022.137049.

424 41. Tonacci, A. and Gorini, F., 2026. Sensory Characteristics of Probiotic-Containing Foods:
425 A Multidisciplinary Perspective on Enhancing Acceptability and Consumer
426 Adherence. *Nutrients*, 18, 32. <https://doi.org/10.3390/nu18010032>.

427 42. TRADE-MAP-iste_des_marchés_fournisseurs_pour_un_produit_importé_par_Burkina
428 Faso . https://www.trademap.org/Product_SelCountry_TS.aspx. Page consultée le 14-03-
429 2025).

430 43. USDA.,2025. Foreign Agricultural Service. Accessed March 26, 2025.
431 <https://www.fas.usda.gov/data/production/country/uv>.

432 44. Wu Q, Kan J, Cui Z, *et al.*, 2024. Understanding the nutritional benefits through plant
433 proteins-probiotics interactions: mechanisms, challenges, and perspectives. *Crit Rev*
434 *Food Sci Nutr.* Published online 2024. doi:10.1080/10408398.2369694.

435 45. Zhang Y, Zhu W, Jin Y, *et al.*, 2024. Effect of Boiling and Roasting Treatments on the
436 Nutrients, Lipid Quality, and Flavor of Peanuts. *Food Sci Nutr.* Published online
437 November 1, doi:10.1002/fsn3.4509.