

Constitutional Prothrombin Deficiency Revealed by a Family Investigation

Abstract

4 Congenital prothrombin (factor II) deficiency is an extremely rare inherited coagulation disorder
5 transmitted in an autosomal recessive manner and characterized by wide clinical variability, ranging
6 from mild bleeding manifestations to life-threatening hemorrhage. We report a familial case of
7 severe congenital factor II deficiency diagnosed in the hematology laboratory of the Mohammed V
8 Military Teaching Hospital in Rabat. The index case was a 6-year-old girl born to a second-degree
9 consanguineous marriage, referred for cutaneous bleeding manifestations associated with recurrent
10 knee pain, in a context of prolonged activated partial thromboplastin time and reduced prothrombin
11 time. Coagulation studies revealed an isolated and severe reduction in factor II activity to 3%, with
12 normal levels of the other coagulation factors.

13 Family investigation identified a similar severe deficiency in both brothers, with variable hemorrhagic
14 manifestations, whereas the parents were asymptomatic and exhibited moderately reduced factor II
15 activity, consistent with a heterozygous carrier state. The combination of clinical and biological
16 findings supported the diagnosis of severe constitutional factor II deficiency, most likely type I. This
17 case highlights the importance of family investigation and consideration of consanguinity in the
18 diagnosis of rare bleeding disorders, and underscores the central role of the laboratory in early
19 identification, patient management, and genetic counseling.

Keywords: Congenital prothrombin deficiency; Factor II; Hereditary coagulopathy; Rare bleeding disorders; Consanguinity; Family investigation.

22 **Introduction**

23 Prothrombin, or factor II, is a plasma glycoprotein synthesized in the liver in the presence of vitamin
24 K and plays a key role in the common pathway of coagulation [1,2]. Congenital prothrombin
25 deficiency is an exceptionally rare coagulation disorder, with an estimated prevalence of
26 approximately one case per two million individuals [3]. It is inherited in an autosomal recessive
27 pattern and is more frequently encountered in regions with a high rate of consanguinity. Clinical
28 manifestations are highly variable, ranging from mild bleeding episodes to severe, potentially
29 life-threatening hemorrhage [4].

30 Diagnosis relies on a multifactorial approach integrating clinical presentation, personal and family
31 history, laboratory investigations, and molecular analysis [5]. We report a familial case of congenital
32 factor II deficiency diagnosed at the hematology laboratory of the Mohammed V Military Teaching
33 Hospital in Rabat.

34 Case Report

35 The index case was a 6-year-old girl, the youngest of three siblings, born to a second-degree
36 consanguineous marriage and originating from Khemisset (western Morocco). She was referred by
37 her pediatrician because of prolonged activated partial thromboplastin time (aPTT) and reduced
38 prothrombin time (PT), associated with cutaneous bleeding manifestations and recurrent knee pain.

39 Medical history revealed persistent ecchymoses following minor trauma and recurrent hematomas
40 (Figure 1). There was no history of epistaxis, bleeding at umbilical cord separation or vaccination
41 sites, other hemorrhagic manifestations, or medication use.

42

43 **Figure 1.**Ecchymotic lesion on the left thigh of the index patient.

44 Family history indicated no bleeding manifestations in the parents. However, hemorrhagic events
45 were reported in the siblings: the 4-year-old brother experienced severe bleeding during surgery for
46 hypospadias, and the 12-year-old brother had recurrent epistaxis and ecchymoses.

47 Clinical examination showed ecchymotic lesions on the lower limbs without other bleeding signs. A
48 painful swelling of the right knee without patellar shock and bilateral infracentimetric inguinal
49 lymphadenopathy were also noted. The remainder of the examination was unremarkable.

50 Laboratory evaluation confirmed prolonged aPTT at 55 seconds (control 36 seconds; ratio 1.5;
51 normal <1.2) and reduced PT at 30% (normal 70–100%). Complete blood count, biochemical tests,
52 and viral serology were normal, and no circulating inhibitors were detected. Specific coagulation
53 factor assays revealed an isolated and severe reduction in factor II activity to 3%, with normal activity
54 of all other coagulation factors, including von Willebrand factor. These findings supported the
55 diagnosis of severe congenital factor II deficiency.

56 **Family Investigation**

57 Given the diagnosis in the index patient, the hemorrhagic history within the sibship, and parental
58 consanguinity, a family investigation was conducted in both brothers and parents. The 4-year-old
59 brother showed prolonged aPTT, reduced PT, and markedly decreased factor II activity at 3% (Table
60 1), with a history of significant surgical bleeding. The 12-year-old brother presented similar
61 abnormalities, with factor II activity at 4% (Table 1), and reported recurrent epistaxis and
62 spontaneous or post-traumatic ecchymoses (Figure 2).

63

64 **Figure 2.** Large ecchymotic lesion on the right thigh of the 12-year-old brother.

65 In contrast, both parents had normal aPTT and PT values but moderately reduced factor II activity,
66 around 50% (Table 1), and were clinically asymptomatic, consistent with a heterozygous carrier state.
67 No specific treatment was initiated for the children; fresh frozen plasma was reserved for the
68 management of bleeding episodes.

69 **Table 1.** Biological results of the family investigation.

Parameter	Father	Mother	Brother 1	Brother 2
PT (%)	85.0 %	85.0 %	26.0 %	34.0 %
aPTT ratio	0.9	0.9	1.6	1.4
Factor II (%)	51.0 %	58.0 %	3.0 %	4.0 %
Factor V (%)	82.0 %	98.0 %	63.0 %	99.0 %
Factor VIII (%)	212.0 %	170.0 %	217.0 %	237.0 %
Factor IX (%)	148.0 %	126.0 %	81.0 %	91.0 %
VWF Ag(%)	-	-	127.0 %	189.0 %

70

71 **Discussion**

72 Prothrombin is a vitamin K-dependent glycoprotein synthesized in the liver and encoded by the *F2*
73 gene located on the short arm of chromosome 11. The gene encodes a 622-amino-acid
74 pre-propeptide that undergoes several post-translational modifications to yield mature prothrombin,
75 which is secreted into the plasma.

76 Mature factor II circulates at a concentration of approximately 0.1 mg/mL and has a half-life of about
77 60 hours. It is composed of four domains connected by three flexible segments: an N-terminal

78 γ -carboxyglutamic acid (Gla) domain, two kringle domains (kringle 1 and kringle 2), and a serine
79 protease catalytic domain consisting of A and B chains linked by a disulfide bond. The catalytic site is
80 located within the B chain and is situated in a deep pocket surrounded by flexible loops that regulate
81 substrate access.

82 In plasma, prothrombin exists in equilibrium between two conformations: a predominant closed
83 form (~80%), in which the kringle-1 domain shields the catalytic pocket, and a minor open form
84 (~20%), in which the catalytic site is exposed, allowing potential receptor interactions or altered
85 proteolytic susceptibility [2]. The Gla domain contains ten γ -glutamyl residues that are carboxylated
86 by γ -glutamyl carboxylase in the presence of vitamin K, a modification essential for calcium binding
87 and anchoring of prothrombin to anionic phospholipid surfaces of activated platelets [6].

88 Within the coagulation cascade, prothrombin plays a pivotal role as the precursor of thrombin (factor
89 IIa), a key enzyme with both procoagulant and anticoagulant activities [7]. Activation by factor Xa in
90 the presence of phospholipids, calcium, and factor Va generates thrombin, which converts soluble
91 fibrinogen into insoluble fibrin and amplifies coagulation by activating factors V, VIII, and XIII and
92 stimulating platelet aggregation, while also exerting anticoagulant effects through the
93 thrombomodulin–protein C pathway. In addition, thrombin has several non-hemostatic biological
94 functions, including roles in cell proliferation, chemotaxis, tissue repair, and angiogenesis [7,8].

95 Factor II deficiency may be congenital or acquired. Acquired forms can result from vitamin K
96 deficiency, liver disease, or, more rarely, lupus anticoagulant–hypoprothrombinemia syndrome
97 associated with the presence of a lupus anticoagulant [9]. Congenital factor II deficiency is an
98 autosomal recessive disorder caused by various mutations in the *F2* gene; more than 60 mutations
99 have been described, affecting all domains of the prothrombin molecule [5,7].

100 Congenital prothrombin deficiencies are currently classified into three types: type I (true
101 hypoprothrombinemia), characterized by reduced prothrombin activity and antigen levels and
102 typically associated with significant bleeding; type II (dysprothrombinemia), a qualitative defect with
103 markedly reduced activity despite normal or near-normal antigen levels and variable bleeding
104 tendency; and type III (dysprothrombinemia associated with thrombosis), characterized by
105 antithrombin resistance and an increased thrombotic risk without bleeding manifestations [10].

106 Clinically, factor II deficiency usually presents with mucocutaneous bleeding, menorrhagia,
107 hematomas, hemarthroses, and prolonged bleeding after dental extraction or trauma, while
108 life-threatening hemorrhages such as intracranial or gastrointestinal bleeding are rare [5,9,11]. In
109 most cases, there is a strong correlation between clinical severity and residual factor II activity, with
110 levels below 10% generally associated with severe bleeding [12]. Complete absence of prothrombin
111 is incompatible with life, and even severely affected homozygous patients retain minimal residual
112 activity [11].

113 Diagnosis of congenital coagulation factor deficiencies relies on a comprehensive approach
114 combining clinical evaluation, family history, laboratory screening tests, and molecular analysis.
115 Prolongation of aPTT associated with reduced PT suggests a defect in the common pathway and
116 warrants specific assays of factors I, II, V, and X [5,13]. Confirmation of factor II deficiency requires
117 demonstration of isolated reduction in factor II activity, after exclusion of acquired causes and
118 inhibitors using mixing studies [4,9,13]. Measurement of prothrombin antigen levels is essential for
119 proper phenotypic classification, and molecular analysis by direct sequencing provides definitive
120 diagnosis and facilitates genetic counseling [5].

121 In the present case, the combination of severe factor II deficiency in all siblings and moderate
122 deficiency in asymptomatic parents supports an autosomal recessive inheritance pattern, with
123 heterozygous parents and homozygous affected children. Second-degree parental consanguinity
124 represents a major risk factor explaining the occurrence of severe disease within the sibship.
125 Although antigenic assays were not performed, the very low factor II activity levels (3–4%) are
126 consistent with type I deficiency. From a clinical standpoint, phenotypic distinction has limited
127 therapeutic relevance, as management in both types aims to restore functional circulating
128 prothrombin using prothrombin complex concentrates or fresh frozen plasma, given the absence of
129 purified factor II concentrates [14,15,17].

130 **Conclusion**

131 Congenital prothrombin deficiency is an extremely rare autosomal recessive bleeding disorder whose
132 severe forms may be life-threatening. Diagnosis requires a rigorous approach combining clinical
133 findings, targeted coagulation studies, and careful assessment of family history, with consanguinity
134 being a key indicator of a constitutional etiology. Family investigation is essential to confirm the
135 diagnosis, identify asymptomatic carriers, and optimize patient management and genetic counseling,
136 particularly in populations with a high prevalence of consanguinity.

137 **Ethical Approval and Consent**

138 Written informed consent was obtained from the parents.

139 **Conflict of Interest**

140 The authors declare no conflict of interest.

141 **References :**

- 142 1. Al-Amer OM. The role of thrombin in haemostasis. *Blood Coagulation & Fibrinolysis*. avr
143 2022;33(3):145.
- 144 2. Chinnaraj M, Planer W, Pozzi N. Structure of coagulation factor II: molecular mechanism of
145 thrombin generation and development of next-generation anticoagulants. *Frontiers in medicine*.
146 2018;5:281.
- 147 3. Su K, Jin Y, Miao Z, Cheng X, Yang L, Wang M. Phenotypic and genetic analysis of
148 dysprothrombinemia due to a novel homozygous mutation. *Hematology*. 3 juill 2017;22(6):380-5.
- 149 4. Bollineni P, Suman FR, Jayaraman D, Subramani N, Gaddam S, Suman Sr FR. Isolated Prothrombin
150 Deficiency: A Case Report of a Rare Coagulation Disorder and Review of Literature. *Cureus* [Internet].
151 2024 [cité 13 oct 2025];16(3). Disponible sur: <https://www.cureus.com/articles/157872-isolated-prothrombin-deficiency-a-case-report-of-a-rare-coagulation-disorder-and-review-of-literature.pdf>
- 153 5. Dorgalaleh A, Daneshi M, Dabbagh A, Crookston KP. Congenital Bleeding Disorders: Diagnosis and
154 Management. In: Dorgalaleh A, éditeur. *Congenital Bleeding Disorders : Diagnosis and Management*
155 [Internet]. Cham: Springer International Publishing; 2023 [cité 13 oct 2025]. p. 29-74. Disponible sur:
156 https://doi.org/10.1007/978-3-031-43156-2_2
- 157 6. Wong AYK, Hewitt J, Clarke BJ, Hudson DM, Krisinger MJ, Dower NA, et al. Severe prothrombin
158 deficiency caused by prothrombin-Edmonton (R-4Q) combined with a previously undetected
159 deletion. *Journal of Thrombosis and Haemostasis*. 2006;4(12):2623-8.

160 7. Jayandharan G, Viswabandya A, Baidya S, Nair SC, Shaji RV, Chandy M, et al. Molecular genetics of
161 hereditary prothrombin deficiency in Indian patients: identification of a novel Ala362→Thr
162 (Prothrombin Vellore 1) mutation. *Journal of Thrombosis and Haemostasis*. 1 juill 2005;3(7):1446-53.

163 8. Lancellotti S, Basso M, Cristofaro RD. Congenital Prothrombin Deficiency: An Update. *Seminars in*
164 *Thrombosis and Hemostasis*. 12 juill 2013;39:596-606.

165 9. Qama E, Krishnamurthy K, Mulvey JJ, Liu KG, Fernandes DL, Fang Y. Prothrombin deficiency with
166 recurrent subretinal hemorrhage. *Laboratory Medicine*. 2025;56(1):89-92.

167 10. Girolami A, Ferrari S, Cosi E, Girolami B, Lombardi AM. Congenital prothrombin defects: they are
168 not only associated with bleeding but also with thrombosis: a new classification is needed.
169 *Hematology*. 7 févr 2018;23(2):105-10.

170 11. Mansory EM, Bhai P, Stuart A, Laudenbach L, Sadikovic B, Lazo-Langner A. A case of congenital
171 prothrombin deficiency with two concurrent mutations in the prothrombin gene. *Research and*
172 *Practice in Thrombosis and Haemostasis*. 2021;5(4):e12510.

173 12. Peyvandi F, Di Michele D, Bolton-Maggs PHB, Lee CA, Tripodi A, Srivastava A. Classification of rare
174 bleeding disorders (RBDs) based on the association between coagulant factor activity and clinical
175 bleeding severity. *Journal of Thrombosis and Haemostasis*. 2012;10(9):1938-43.

176 13. Al Dawood R, Hayward C. Laboratory diagnosis of congenital and acquired coagulopathies,
177 including challenging to diagnose rare bleeding disorders. *Pathology* [Internet]. 2025 [cité 13 oct
178 2025]; Disponible sur: <https://www.sciencedirect.com/science/article/pii/S0031302525002223>

179 14. Meeks SL, Abshire TC. Abnormalities of prothrombin: a review of the pathophysiology, diagnosis,
180 and treatment. *Haemophilia*. nov 2008;14(6):1159-63.

181 15. Watson H, Perez A, Ayesu K, Musa F, Sarriera J, Madruga M, et al. Inherited factor II deficiency
182 with paradoxical hypercoagulability: a case report. *Blood Coagulation & Fibrinolysis*.
183 2018;29(2):223-6.

184 16. Imane S, Laalej Z, Faez S, Oukkache B. Congenital factor II deficiency: M oroccan cases. *Int J Lab*
185 *Hematology*. août 2013;35(4):416-20.

186 17. Albalawi MA. Prothrombin (factor II) deficiency as a rare bleeding disorder. *J Adv Pharm Edu Res*.
187 2019;9:109-13.

188

189