

1 **Charaterization of Producing-Bioactives Compounds Bacterial**
2 **Isolates collected from soil at Brazzaville**

3 **Abstract**

4 In the objective of understanding the microbial diversity of soil and the production of related
5 bioactives compounds, an exploration of samples soil have been hold in Brazzaville, Republic
6 of Congo. Four soil samples were collected in fours sites of Brazzaville has listed : at Faculty
7 of Science of Marien NGOUABI University two sites 300m away (plantation soil and
8 ordinary sol), at Massamba Debat stadium (landfill, soil) and at Baongo district (garage soil).
9 Temperature were ranged from 33° to 41° and the pH of soils from 4,7 to 7.Enumeration of
10 microrganisms vary from a group to another and from a category of soil for each site as
11 followed the most important were groups Staphylococci, Bacillus, enterobacteria,
12 pseudomonas, streptomyces, yeast, The quantity of microorganisms varies according to group
13 or genus. The total aerobic mesophilic flora is estimated at 3.4×10^6 CFU/g, actinomycetes at
14 1.8×10^5 CFU/g, and Bacillus at 1.3×10^5 CFU/g. Fungi are present at 1.4×10^4 CFU/g, while
15 enterobacteria account for 9×10^3 CFU/g. Staphylococcus and Pseudomonas show values of
16 1.18×10^4 CFU/g and 2×10^2 CFU/g, respectively. According to the hydrolytic enzymes
17 production, 34% of isolates are lipase-producing, 34% are cellulase isolate producers and
18 32% of the isolate produce amylolytic enzymes. All the Bacillus isolate are biosurfactants
19 producers.

20 **Keywords :** Hydrolytic enzymes, biosurfactants,bacterial genus, soils,
21 Brazzaville.

22 Corresponding author : Etienne NGUIMBI, etienne.ng1612@gmail.com

23 **Introduction**

24 Soil results from the weathering of parent rocks due to chemical and biological forces¹. It is
25 also a medium for the transit, storage, and transport of many substances, regardless of their
26 nature, organic or inorganic². Soil is a living environment, serving as an interface between
27 biomass, the atmosphere, and the hydrosphere.

28 The structure of the soil can change significantly in a short time, especially under the
29 influence of human activities. This characteristic is continually evolving, depending on soil

30 texture, the quantity and quality of humus, acidity, soil lifespan, climate, and the abundance of
31 certain minerals³.

32 Soils are an essential element of continental biotopes; they are ecosystems containing
33 microorganisms that represent the majority of living organisms and constitute an important
34 part of the planet's genetic diversity⁴. Soil is a major reservoir of microbial diversity⁵. Among
35 soil microorganisms are bacteria, fungi, and actinomycetes, which interact with each other.
36 However, the most representative are bacteria^{6,7, 8}). Microorganisms perform essential
37 functions such as the biodegradation of organic matter, nutrient production for plants,
38 nitrogen fixation, and pollutant degradation. Microorganisms play an important role both in
39 soil formation and its functioning⁹. Bacteria play important roles in the nutrient cycle; many
40 live in symbiotic association with plants, promoting their growth and increasing soil
41 fertility¹⁰. Some bacteria, notably those of the genus *Bacillus*, are ubiquitous. They are found
42 in diverse environments such as plants and soils, hydrothermal vents, extreme environments,
43 and seawater¹¹. Soil bacteria produce several bioactive substances of interest, including
44 hydrolases, biosurfactants, antibiotics, and many others. In Brazzaville, Republic of Congo,
45 several studies have been conducted on the microbial diversity of Brazzaville soils. Examples
46 include^{12,13,14}. All of these studies explored the microbial biodiversity of Brazzaville soils,
47 revealing a diversity of genera and species of microorganisms. This diversity varies from one
48 area to another in Brazzaville in terms of abundance and also of UFC, with a consistency that
49 the different species produce bioactive substances of interest. In this study, soil samples were
50 collected from different locations than in previous studies, with the difference that the soil
51 type is specified. These locations included the landfill soil from the Massamba-Debat
52 stadium, ordinary soil from the Faculty of Science and Technology, planting soil from the
53 Faculty of Science and Technology, and garage soil in Baongo. Microbiological and
54 biochemical analyses were performed, and the production of bioactive compounds was tested

55 **Materials and Methods**

56 Collection Sites, Sampling, and Measurement of Physical Parameters

57 Soil samples were collected from four (4) sites, the GPS coordinates of which are recorded in
58 Table I. At each sampling point, a small amount of soil was collected from a depth of 0.5 to 1
59 cm using a sterile spatula. Soil samples were collected from three points at each site. The soil
60 samples from the three points at each site were mixed to create a composite. Physical

61 parameters were measured using a multiparameter analyzer. The different samples were then
62 transported to the laboratory for microbiological analysis.

63 Table I: Sites, Sample Collection Points, and GPS Coordinates

64 SITES	65 TYPE DE 66 SOL	67 POINTS ET COORONNEES		
		68 Point 1	69 Point 2	70 Point 3
71 FST1	72 Sol de 73 plantation	S :04,28672° E :015,25464° A :304m	S :04,28677° E :015,25479° A :316m	S :04,28659° E :015,25491° A :320m
		S :04,28672° E :015,25461° A :329m	S :04,28782° E :015,25419° A :314m	S :04,28787° E :015,25404° A :312m
74 Stade	75 Sol de 76 décharges	S :04,27206° E :015,24929° A :317m	S :04,27190° E :015,24958° A :318m	S :04,27178° E :015,24951° A :317m
77 Baongo	78 Sol des 79 garages	S :04,28821° E :015,25475° A :307m	S :04,28824° E :015,25477° A :312m	S :04,28808° E :015,25472° A :312m

79 Identification of genera and enumeration

80 The NF EN ISO 6887-1, 2017 standard, which defines the general rules for the preparation of
81 the stock suspension and decimal dilutions for microbiological testing, was used.

82 The stock solution was prepared according to¹². Briefly, 10 grams of each soil sample were
83 weighed under sterile conditions using a balance and then placed in an Erlenmeyer flask
84 containing 90 ml of physiological saline. The mixture was homogenized for two minutes to
85 obtain a stock solution. The stock dilutions were prepared according to¹².. Five test tubes,
86 each containing 9 ml of previously sterilized physiological saline, were prepared. One ml of
87 the stock suspension was taken and introduced into the first test tube. After mixing, one ml
88 was withdrawn from this tube and placed in the next tube, and so on, up to the fifth tube.
89 Decimal dilutions from 1/10 to 1/100,000 were successively performed. Surface inoculation

90 was carried out, and 100 microliters of suspension from each of the five tubes were taken and
91 spread into Petri dishes previously filled with different culture media specific to each genus to
92 be identified and enumerated. Three Petri dishes were inoculated for each suspension. The
93 Petri dishes were incubated at 37°C for 24 h according to^{15,16,17}. The plates were finally
94 removed, the colonies counted, and the following relationship allowed us to evaluate, in
95 CFU/g, the microorganisms belonging to the genera to be identified¹⁵.

96 **CFU/ml = N/Vd**

97 N = number of colonies, V = inoculated volume (ml), d = dilution considered.

98 **Isolation and phenotypic characterization of isolates**

99 Isolated colonies observed in each of the plates for different culture media were collected and
100 then subcultured in these media. Each colony was subcultured three times using the striations
101 until homogeneous colonies were obtained. Colony selection was done randomly. After three
102 successive subcultures, the pure isolates were placed in Eppendorf tubes containing a mixture
103 of liquid TSB and glycerol and then kept at 4°C for pure culture^{13, 14}. Microscopic observation
104 of live bacteria and determination of their morphology, grouping patterns, and motility were
105 performed after preparing a microscopic slide from each purified colony^{18,19}, Gram staining
106 was used to distinguish Gram-positive from Gram-negative bacteria¹⁵. The catalase test was
107 performed according to^{20,21}.

108 **Capacity of Isolates to Produce Hydrolase and Biosurfactant Substances**

109 ***Use of the Cellulose Plate***

110 The base medium supplemented with 0.5% cellulose was used to select bacterial strains with
111 cellulolytic activity. Cellulolytic activity was assessed using cellulose-agar medium, the
112 composition of which per 100 ml was 0.5 g of cellulose and 1.5 g of agar. This mixture was
113 then autoclaved at 121°C for 15 min. After this, the medium was poured into sterile Petri
114 dishes. After solidification, 6 mm diameter wells were made in the agar. 100 µL of each
115 culture was then placed in each well. The plates were then incubated at 30°C for
116 approximately 48 h. After the addition of Lugol's iodine, the absence of staining around the
117 colonies indicated that the cellulose had been hydrolyzed. The size of the light yellow zone
118 was used to assess the degree of cellulose hydrolysis and thus cellulase production^{12,22}

119 ***Use of Starch Plate***

120 The same technique was used, replacing cellulose with starch. After incubation, the starch
121 agar medium was covered with Lugol's solution for a few minutes, followed by rinsing with
122 distilled water. The presence of amylolytic activity is indicated by the appearance of a clear
123 zone around the colonies ^{23,24}; .

124 ***Use of Tween80-Agar Plate***

125 Lipase production was performed on Tween 80-Agar medium. The composition per 100 ml
126 was: 1 ml of Tween 80 and 1.5 g of agar. The mixture was then placed in an autoclave at
127 121°C for 15 minutes. After incubation, the plates containing Tween 80-Agar were flooded
128 with Lugol's iodine for a few minutes and then decolorized with NaCl. However, the absence
129 of color change around the colonies indicated that the Tween 80 had been hydrolyzed. The
130 formation of a light yellow zone around the colonies in blue medium indicated the hydrolysis
131 of Tween 80 and confirmed lipase production²⁵.

132 **Calculation of the Emulsification Index and Biosurfactant Production**

133 In tubes containing 2 ml of a hydrocarbon solution, 2 ml of the supernatant from the culture
134 of the different isolates were added. The tubes were vortexed at high speed for 5 minutes and
135 then incubated at 25°C for 24 hours. The presence of an emulsified zone explained the
136 existence or production of biosurfactants by the tested isolate²⁶. The emulsification index
137 (E24) was calculated as the percentage of the height of the emulsified layer (mm) divided by
138 the total height of the liquid column (mm).

139 Emulsification indices were calculated using the formula below:

140 **$E24 = HE/HT \times 100$**

141 With: E24: Emulsification activity after 24 hours; He: Height of the emulsion formed; Ht:
142 Total height of the mixture²⁷

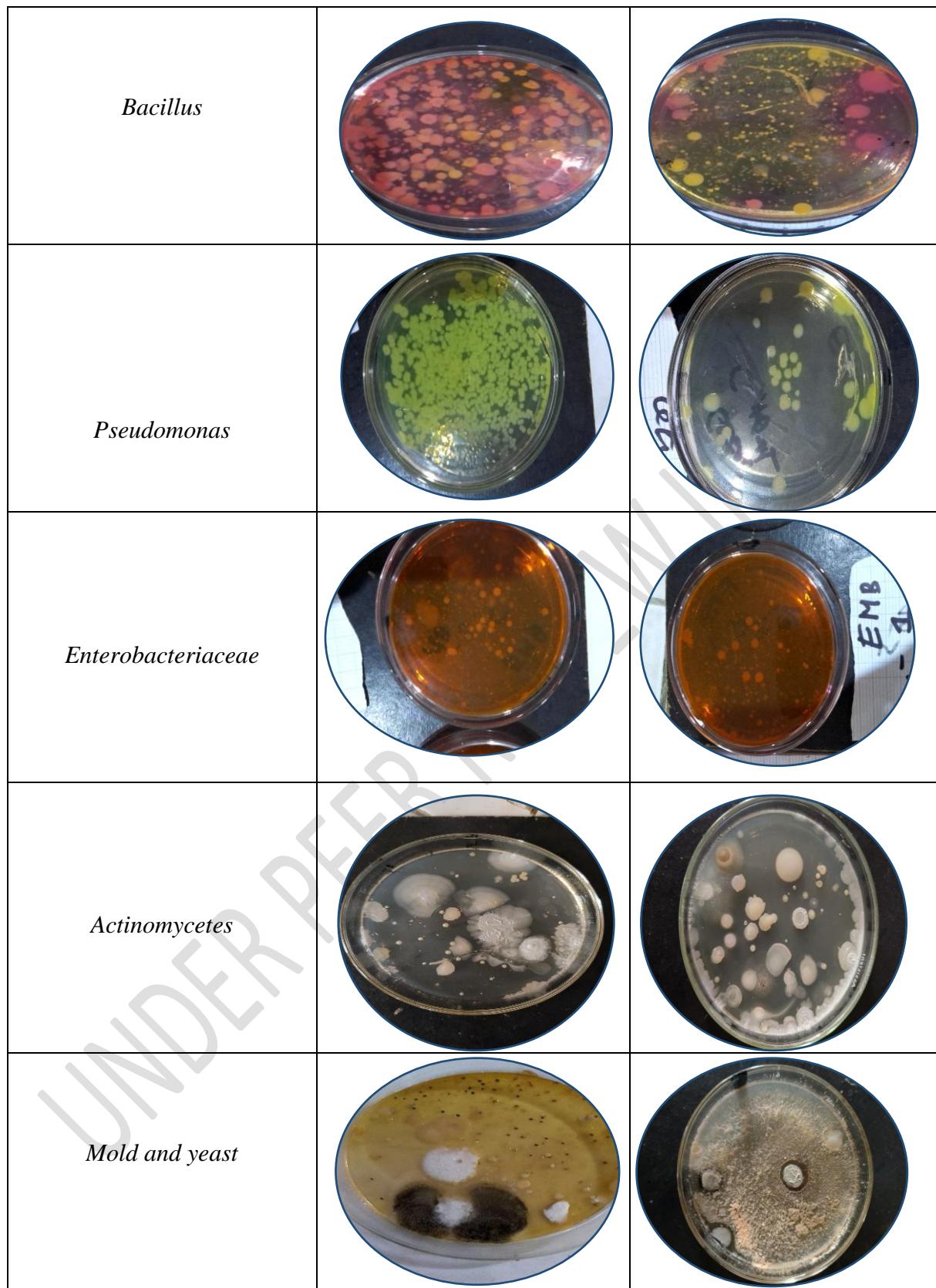
143 **Results and discussion**

144 **Results**

145 **analyzed Physical parameters**

146 The soil samples taken generally consist of sandy soil, rich in humus, dark brown in color
147 tending towards black, with a predominantly acidic pH (varying between 4.7 and 7) and
148 temperatures between 33°C and 41°C.

Tableau I:Physical paramerters of each site

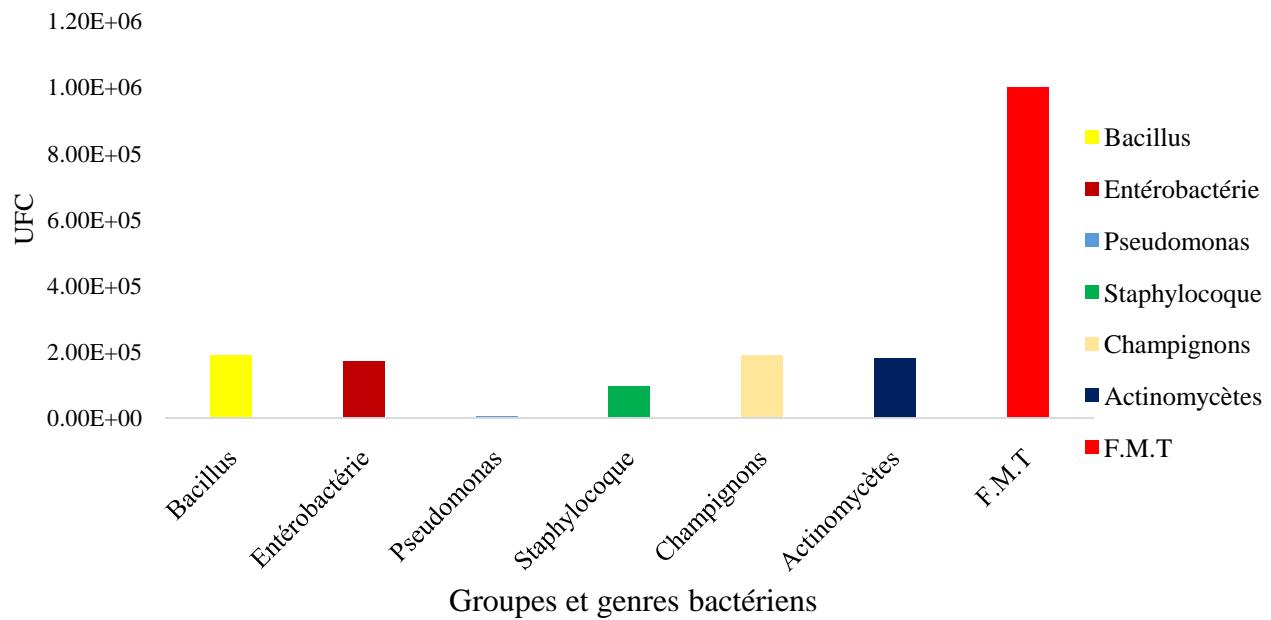

Sites	Type de sol	Température et PH				Composite
		Point 1	Point 2	Point 3	moyenne	
FST	Planting soil	pH :7 T° : 36°C	pH :7 T° : 35°C	pH :6,9 T° : 35°C	pH :6,96±à,01 T :35,33±0,02	C1
	Ordinary soil	PH :7 T° : 33°C	PH :7 T° : 33°C	PH :7 T° : 34°C	pH : 7,00±0,00 T :33,33±0,02	C2
Stade	Landfill soil	PH :5,8 T° : 38°C	PH :4,9 T° : 37°C	PH :4,7 T° : 38°C	pH :5,13±0,01 T :37,66±0,02	C3
Baongo	Garage soil	PH :7 T° : 38°C	PH :7 T° : 39°C	PH :7 T° : 41°C	pH : 7,00±0,00 T :39,33±0,02	C4

151 Identified and Quantified Microorganism Genera

152 Several groups, including FMATs, actinomycetes, yeasts, molds, and four bacterial genera,
 153 were identified in the soil samples. The results are presented in Table VI.

157 **Table III :** Different Groups of Microorganisms and Bacterial Genera present in the Soils

Genre mis en évidence	Représentation sur la boite	
<i>Total aerobic mesophilic flora</i>		
<i>Staphylococci</i>		



158

159 Figure 2 shows the distribution of colony-forming units (CFU) per gram in the landfill soil
 160 composite. This distribution varies according to the bacterial group or genus. The total aerobic

161 mesophilic flora is estimated at 1×10^6 CFU/g. This is the most abundant group.
162 Actinomycetes are present at 1×10^5 CFU/g, Bacillus and Fungi at $1 \times 9 \times 10^5$ CFU/g each,
163 while Enterobacteriaceae are present at $1 \times 7 \times 10^5$ CFU/g. *Staphylococcus* and *Pseudomonas*
164 show levels of $9 \times 4 \times 10^4$ CFU/g and $3 \times 4 \times 10^4$ CFU/g, respectively.

165

166

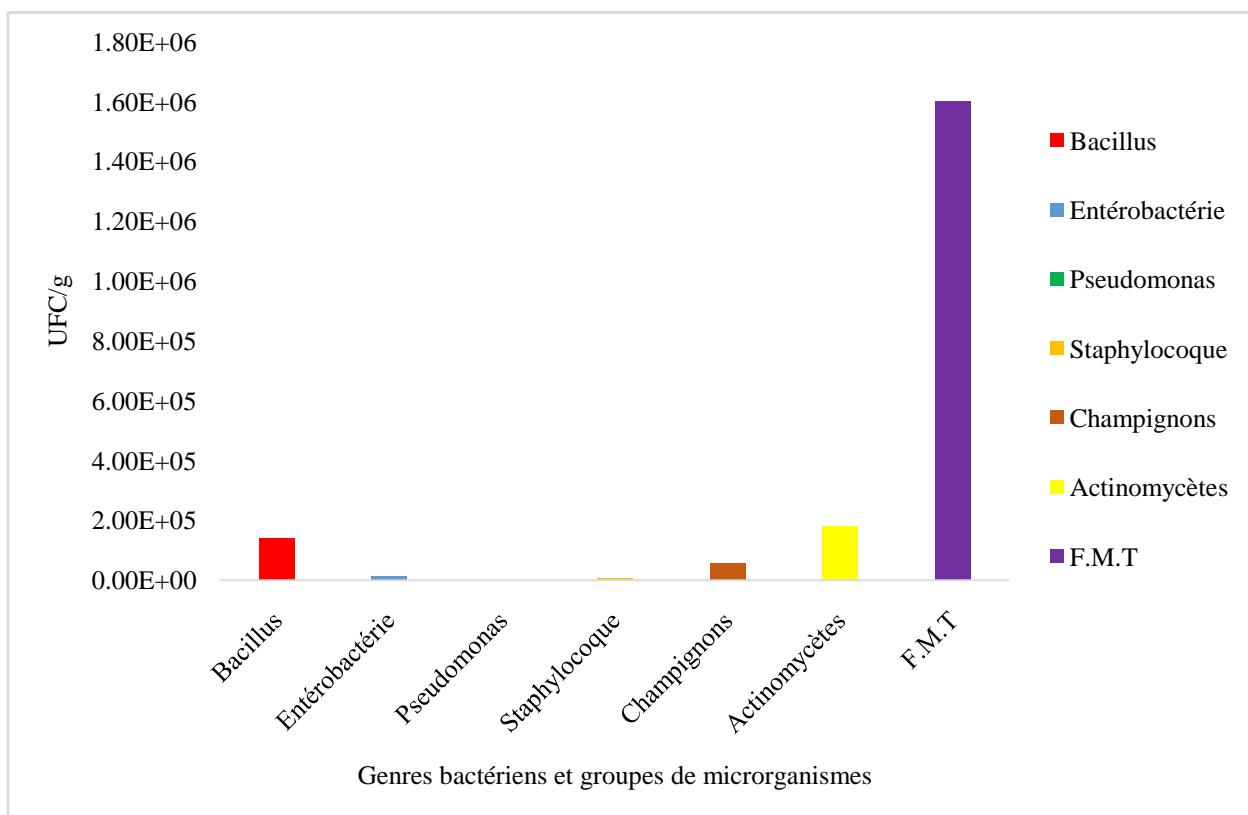
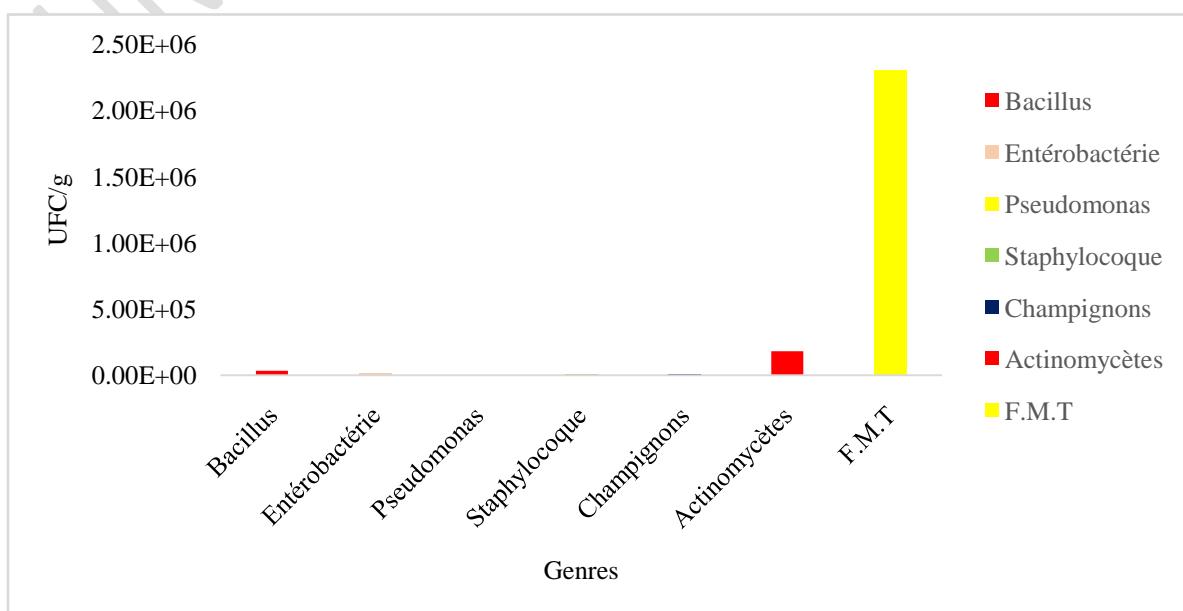

167

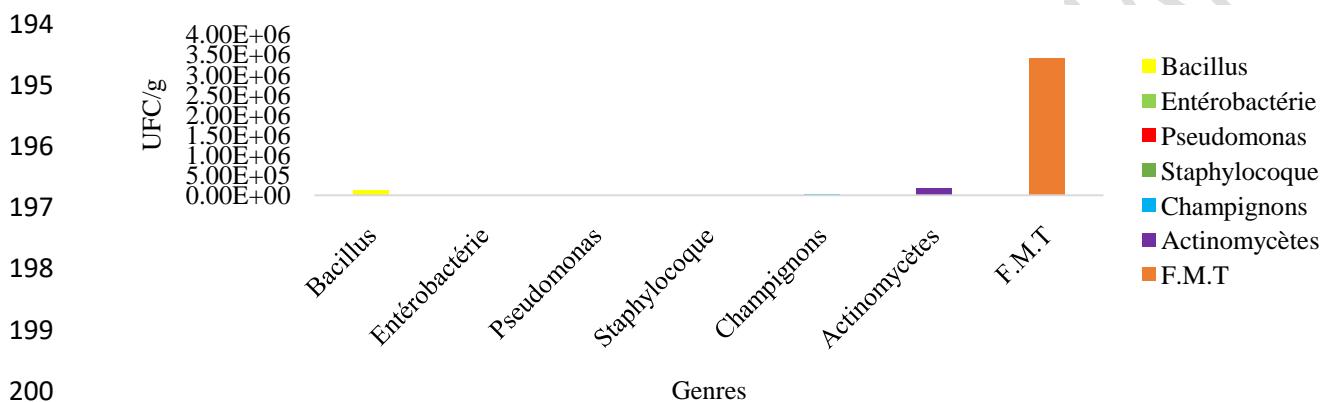
Figure 2: Enumeration of microorganisms in landfill soil

168


169

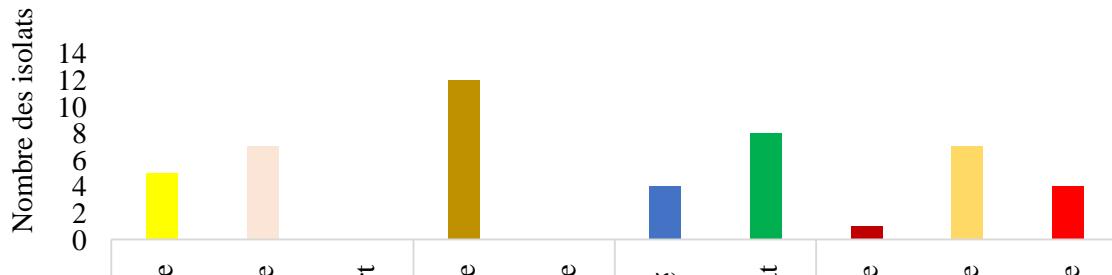
170 La figure 3 illustre le dénombrement en UFC/g des microorganismes de l'échantillon de sol
171 Ordinaire en fonction des genres et groupes . Il est constaté une flore mésophileaérobie totale
172 de $1,6 \cdot 10^6$ UFC/g ; des Actinomycètes avec en UFC/g de $1,8 \cdot 10^5$; les Bacillus présentent une
173 en UFC/g de $1,4 \cdot 10^5$; il est noté en UFC/g de $5,4 \cdot 10^4$ pour les Champignons et $1,1 \cdot 10^4$ des
174 Entérobactéries ; les *Staphylococcus* et les *Pseudomonas* ont des UFC/g respectives de $5,4 \cdot 10^3$
175 et $2 \cdot 10^2$.

Figure 3:dénombrement des microorganismes en UFC de sol Ordinaire

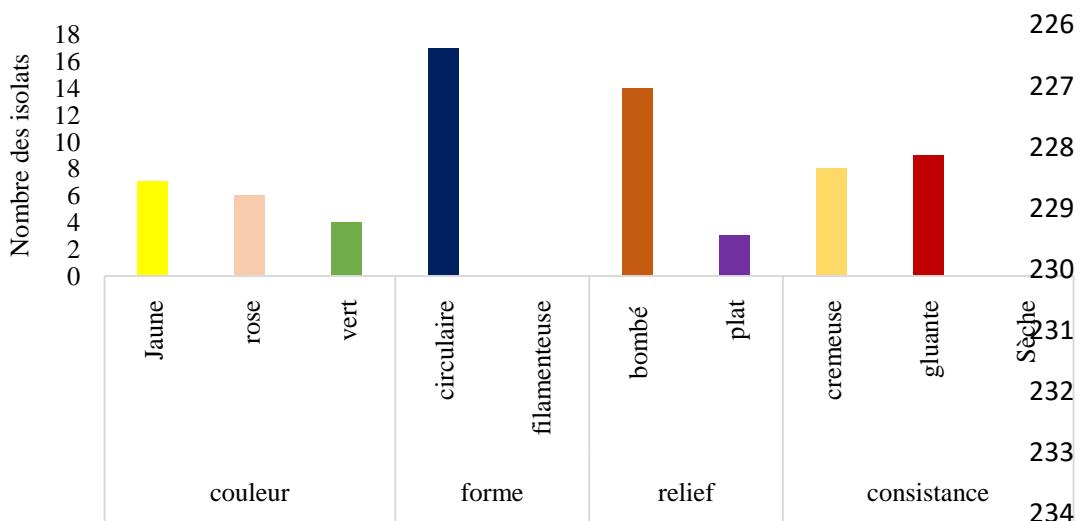

180 Figure 4 shows the quantification of microorganisms in the planting soil sample, expressed in
 181 colony-forming units (CFU) per gram. The total aerobic mesophilic flora is estimated at $2.3 \times$
 182 10^6 CFU/g, with actinomycetes dominating at 1.8×10^5 CFU/g, followed by Bacillus at $3.3 \times$
 183 10^4 CFU/g. Fungi account for 4×10^3 CFU/g, while enterobacteria represent 1.4×10^4 CFU/g.
 184 Staphylococcus represents 8.7×10^3 CFU/g.

186

Figure 4:dénombrement en UFC des microorganismes de sol de plantation


Figure 5 illustrates the quantity of microorganisms in the garage soil sample, expressed in CFU per gram. The quantity of microorganisms varies according to group or genus. The total aerobic mesophilic flora is estimated at 3.4×10^6 CFU/g, actinomycetes at 1.8×10^5 CFU/g, and *Bacillus* at 1.3×10^5 CFU/g. Fungi are present at 1.4×10^4 CFU/g, while enterobacteria account for 9×10^3 CFU/g. *Staphylococcus* and *Pseudomonas* show values of 1.18×10^4 CFU/g and 2×10^2 CFU/g, respectively.

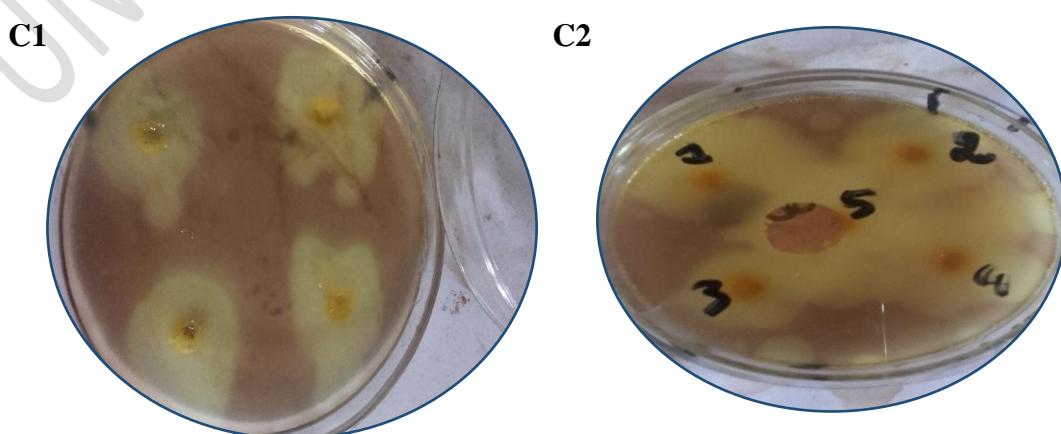
202 **Figure 5:** dénombrement en UFC des microorganismes de sol de garage en fonction des
203 genres et groupes


206 Morphotypes of bacterial isolates observed in soil samples

207 A total of 59 isolates were obtained, including 19 isolates of the genus *Bacillus*; 8 isolates of
208 the genus *Pseudomonas*; 14 isolates of the genus *Staphylococcus*; and 18 isolates of the genus
209 *Enterobacteriaceae*. The distribution according to each soil category was as follows: 12
210 isolates from plantation soils; 17 isolates from landfill soils; 17 isolates from garage soils; and
211 13 isolates from ordinary soils. All were catalase-positive and some were motile and others
212 non-motile. These cells were predominantly rod-shaped. The colors and appearances were
213 variable. Figures 6 and 7 represent the colors and appearances of the colonies in plantation
214 soil (Figure 6) and landfill soil (Figure 7).

217
218
219
220
221
222
223
224
225

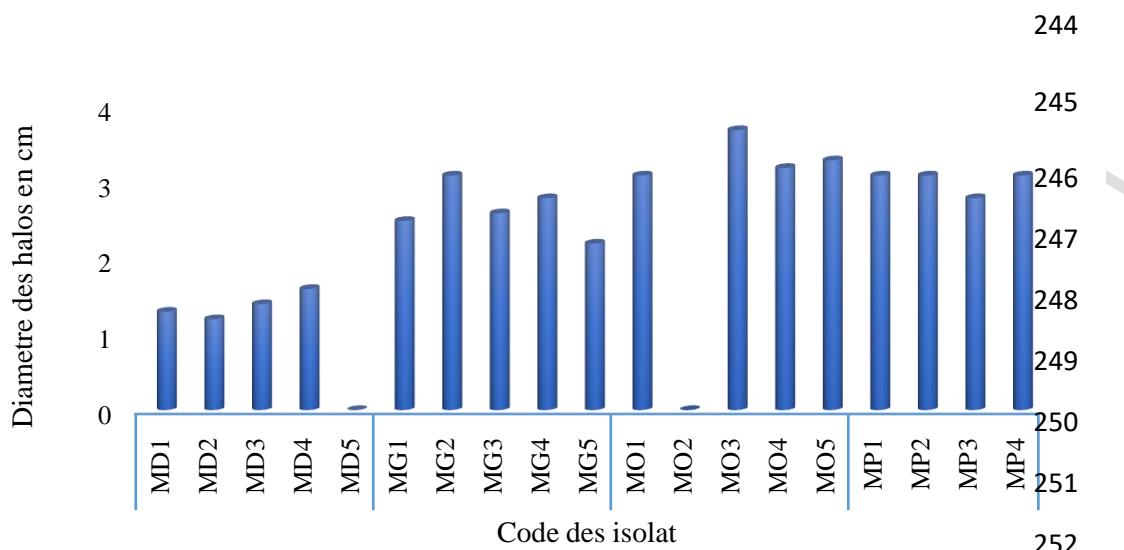
Figure 6: Caractéristiques phénotypiques des isolats bactériens des sols de plantation



235 **Figure 7:** Caractéristiques phénotypiques des isolats bactériens des sols de décharge

236 **Hydrolases produced by bacterial isolates**

237 ***Cellulase-producing isolates***

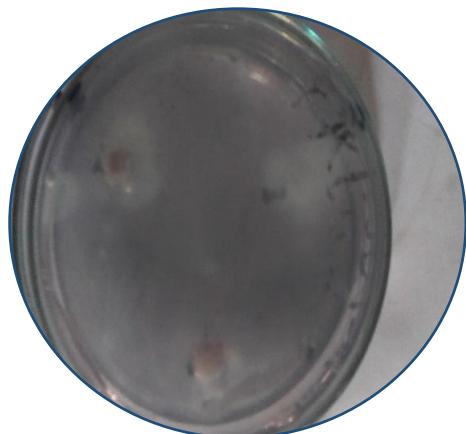

238 Figure 8 shows two cellulose plates, C1 and C2, where zones of cellulose degradation (halos) 239 can be observed around the wells by the supernatants of the different culture isolates.

240

Figure 8: Halos showing cellulose degradation

241 Figure 9 shows the cellulase production profiles of different isolates; cellulase production
 242 varies numerically depending on each isolate. The highest-producing isolates are: MO3,
 243 MO5, MG2, and MO4. The lowest-producing isolates are: MD1, MD2, and MD3.

Figure 9 : Profil de production de cellulase par les isolats de Bacillus

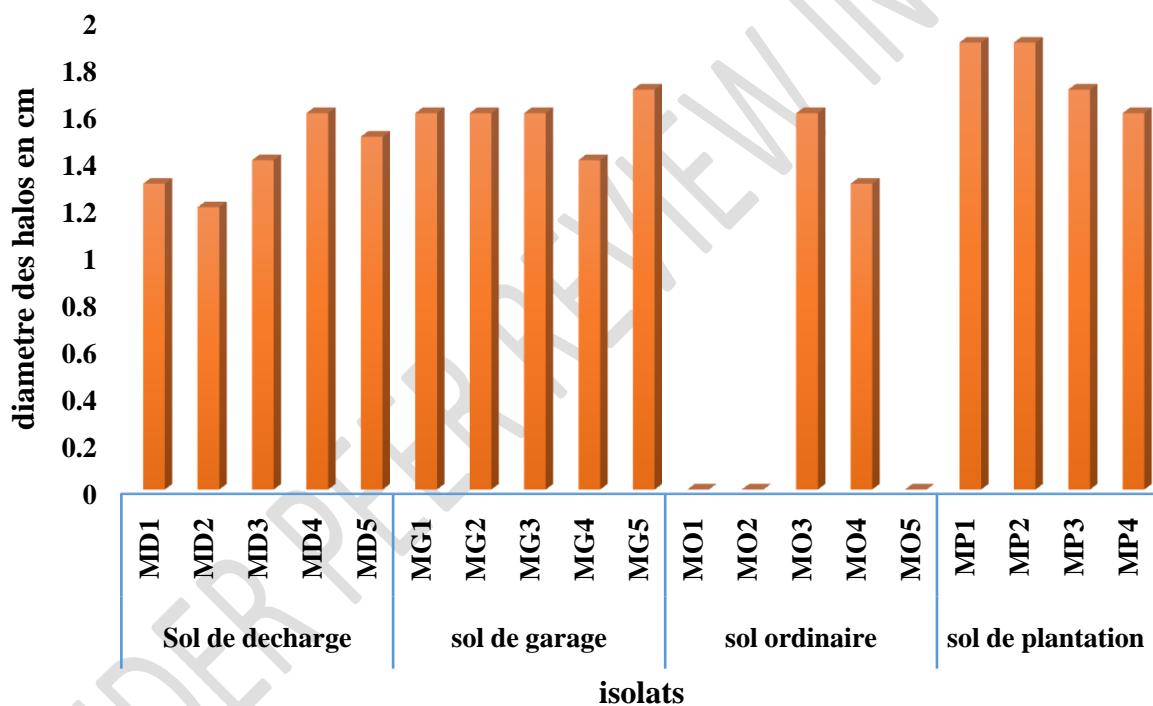


255

Amylase-producing isolates

256 Figure 10 shows, in two starch plates, halos indicating the digestion of starch by the isolates
 257 used. These halos are around the wells that received the supernatant of the different isolates.

258

259


A1**A2**

260

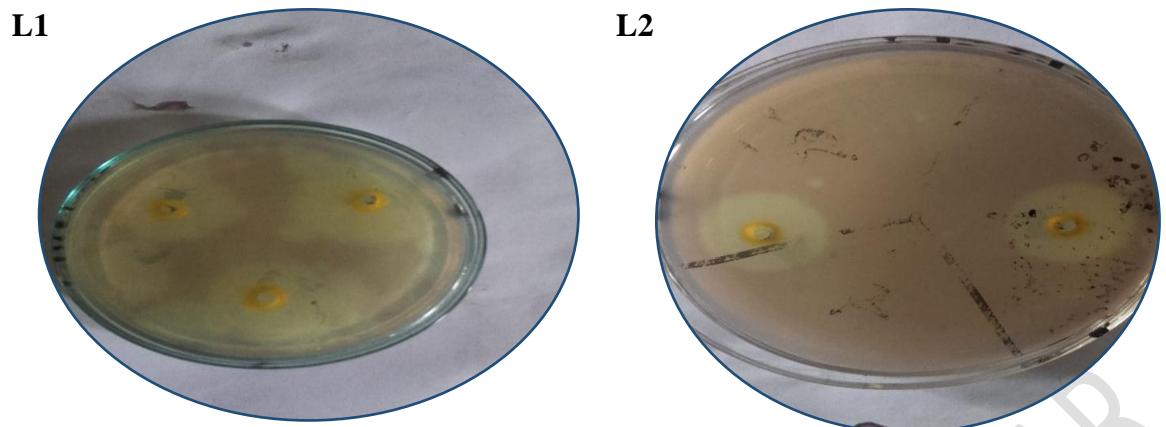
261

262 Figure 11 shows the profiles of amylolytic enzyme production by the studied isolates; the
263 profiles differ from one isolate to another. Isolates MP1, MP2, MG5, MP3, MO3, MD4, and
264 MP4 produce a significant amount of amylase, while isolates MD1, MD2, and MO4 produce
265 quantitatively less amylase.

Figure 10: Halos montrant la dégradation de l'amidon par les isolats des Bacillus

266

267


Figure 11: Profil de production de l'amylase par les isolats de Bacillus

268

Lipase-producing isolates

269

270 Figure 12 shows in two tween-80 plates the degradation of lipid through halos. The isolates in question produce lipases.

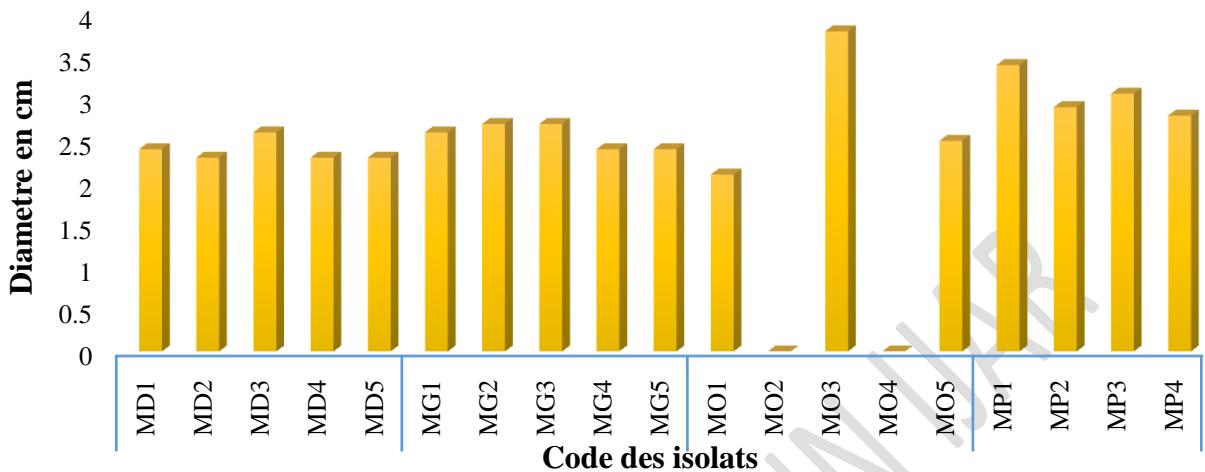


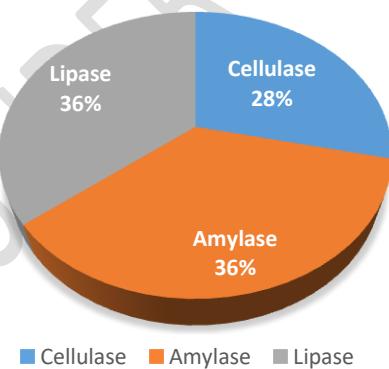
Figure 12: Halos montrant la production des lipases par les isolats des Bacillus

271

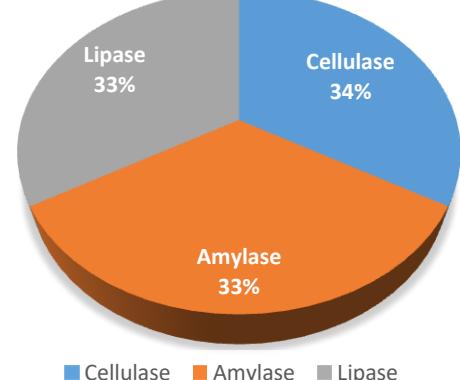
272

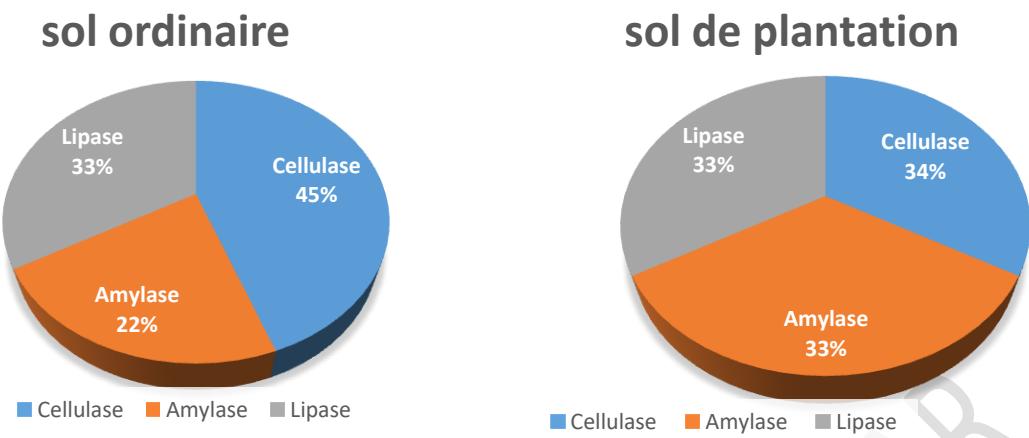
273 Figure 13 shows the production profile of lipases by *Bacillus* isolates; the lipase degradation
274 ability varies depending on each isolate. The highest producers are isolates M03, MP1, MP3,
275 MP4, MD3, and MG2. The lowest producers are MO1, MD2, and MD4.

276


277

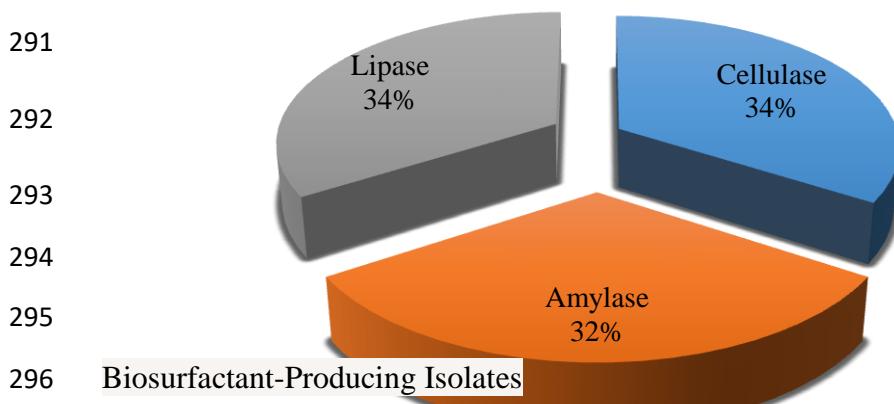
278


Figure13: Profil de production de lipase par les isolats de Bacillus


279 Figure 14 shows the distribution of the percentage of enzymatic productions according to the 4
280 categories of soil. It is observed that the percentage of amylase production is much higher in
281 landfill soils compared to garage, ordinary, and plantation soils. As for the percentage of cellulase
282 production, it is noted that ordinary soils contain more cellulase compared to the others. Finally, it
283 is observed that the percentage of lipases in landfill soils is higher than in garage, ordinary, and
284 plantation soils.

Sol de decharge

sol de garage



285

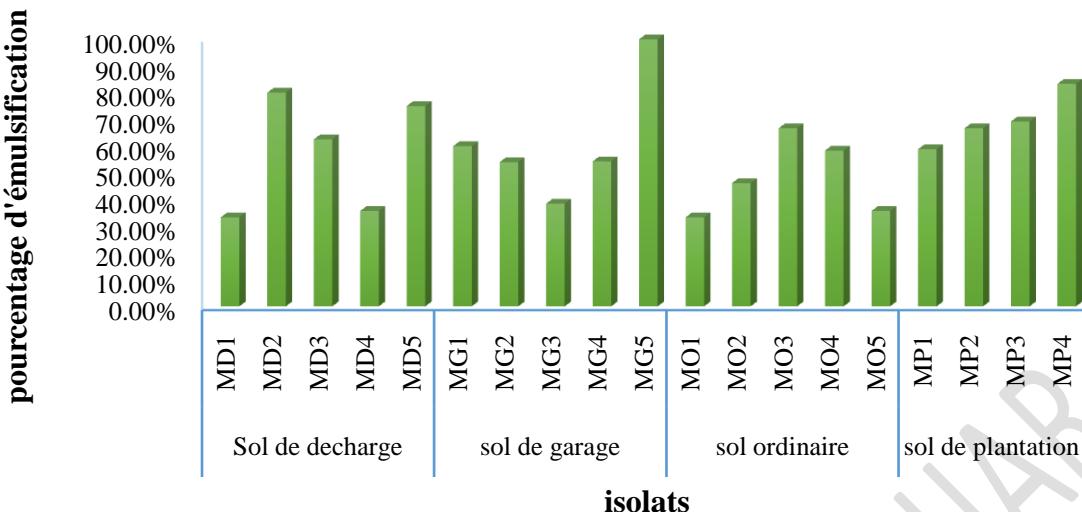
286 **Figure14:** Répartition de la production enzymatique en fonction des sols

287 Figure 15 shows the distribution of isolates based on enzymatic activities. An equal
 288 percentage of isolates was observed for cellulolytic and lipolytic production, while a
 289 considerable percentage was noted for amylases.

290 **pourcentage des isolas**

291

292


293

294

295

296 Biosurfactant-Producing Isolates

297 Figure 17 illustrates the biosurfactant production profile of the nineteen (19) *Bacillus* isolates,
 298 expressed as a percentage. All nineteen isolates showed significant emulsification indices,
 299 indicating biosurfactant production. Indeed, the highest emulsification percentages were
 300 observed in isolates MG5, MP4, MD2, and MD5, while low production was noted for isolates
 301 MD1, MD4, MG3, MO1, and MO5.

302

303 **Figure 1:** Profils de Production des biosurfactants par les isolats des Bacillus des différentes
304 catégories des sols

305 Discussion

306 The objective of this work was to characterize the microbial isolates obtained from the soils of
307 Brazzaville. To this end, four sites representing four categories of soils were selected and
308 targeted. Two physical parameters were analyzed: temperature and pH. For all soil samples
309 collected, these soils had a sandy texture, were rich in humus, had a dark brown color tending
310 towards black, with a mostly acidic pH approaching neutrality (ranging from 4.7 to 7) and
311 temperatures between 33°C and 41°C. Two previous studies were conducted in Brazzaville
312 by^{12,13,28} The sampling in these studies did not take place in the same locations in Brazzaville
313 as in this study. Both studies yielded similar results in terms of pH and temperature. This
314 suggests that soils in Brazzaville can be acidic, tending towards neutrality in terms of pH.

315 Four bacterial genera, namely *Pseudomonas*, *Enterobacteriaceae*, *Bacillus*, *Staphylococcus*,
316 and other different groups such as FMAT, actinomycetes, yeasts, and molds, were identified
317 in samples from the four categories of soils collected. In terms of counting, FMAT were the
318 most representative in the four soil categories; however, the FMAT rate showed significant
319 variations between the four samples studied. The presence of all these groups and genera of
320 microorganisms has already been reported by^{12,13,14}. The other groups also showed variations
321 in CFU/g across different sites, thus in different categories of collected soils.

322 The results also revealed the presence of bacteria of the genus *Bacillus* from Mossel medium,
323 with two main color trends: yellow and pink. In terms of shape, the colonies were mainly
324 circular, with predominantly dry, creamy, and sticky appearances. Most of the cells were

325 Gram-positive, catalase-positive rods. These results are very close to those found by^{13,14},
326 The experimentation to demonstrate enzymatic activity involved nineteen *Bacillus* isolates, all
327 of which were capable of producing three types of hydrolytic enzymes: cellulases, amylases,
328 and proteases. The production of these enzymes varied from one isolate to another, showing a
329 distinct specificity for each isolate, regardless of the origin of the isolate. These results are
330 similar to those reported by¹².

331 The results obtained demonstrated that the nineteen isolates are capable of producing
332 biosurfactants. Strong emulsification was observed in isolates MG5, MD2, MD5, and MP4,
333 indicating high biosurfactant production, while isolates MD3, MG1, M03, M04, MP2, and
334 MP3 showed weaker emulsification. The third category of isolates includes all the others
335 whose emulsification, based on their index, is low²⁹ Nguimbi-Tsati et al. (2023) found that the
336 presence of an emulsifier with neutral pH in the mixture of gasoline and bacterial culture
337 suggests that the isolates secrete surface-active substances capable of degrading hydrocarbons
338 used as nutrients, which could contribute to bioremediation. These results are very similar to
339 those of the aforementioned authors. Several *Bacillus* species producing biosurfactants are in
340 agreement with²⁹ which also showed that bacteria can be classified into three categories based
341 on their emulsification index, that is, according to their production of biosurfactants: the most
342 efficient, the medium, and the weak.

343 Conclusion

344 The soils of Brazzaville, with a pH ranging from 4 to 7, include acidic and neutral soils.
345 Several types of microorganisms belonging to various groups and multiple bacterial genera
346 are found there. These bacteria are capable of producing several types of hydrolytic enzymes
347 as well as other substances of interest, such as biosurfactants.

348 References

349 1. Atlas R. M. & Bartha R., (1992). Microbial ecology. Fundamentals and applications. 3rd edition. The
350 Benjamin/Cummings Publishing Company. San Francisco, California (USA), 563p

351 2. Jean Christophe Calvet (2000). Investigating soil and atmospheric plant water stress using
352 physiological and micrometeorological data, *Agricultural and Forest Meteorology*,
353 103, 3 Pages 229-247

354 3. Gobat J., Sarago M., Mthet W. (2010). Le sol vivant : base de pédologie-biologie des sols,
355 Lausanne, 2e édition, 568p

356 4.S. Mezaache-aichour, A. guechi,Jj. nicklin, D. drider, H. prevost and R.N. strange (2012)
357 .Isolation, identification and antimicrobial activity of pseudomonads isolated from the rhizosphere
358 of potatoes growing in algeria, *journal of plant pathology*, 94, 1, pp. 89-98

359 5.Aurélie Faugier (2010). Diversité bactérienne des sols : accès aux populations à effectifs
360 minoritaires "the rare biosphere". Autre. Ecole Centrale de Lyon,. Français.

361

362 6.Lavelle, P., Lattaud, C., Trigo, D. & Barois, I. (1995). Mutualism and biodiversity in soils.
363 In: The significance and regulation of soil biodiversity (eds H.P. Collins, G.P. Robertson &
364 M.J. Klug), pp. 23-33. Kluwer Academics, The Nederlands.

365 7.Swift, M.J. (1998). L'intégration de la société, des systèmes et des sols. In 16ème Congrès
366 mondial de science du sol, Montpellier, France.

367 8.Grundmann GL. (2004). Spatial scales of soil bacteria diversity - the size of a clone. *FEMS*
368 *Microbiol Ecol.* 48: 119-127P.

369 9.Kawamura-Sato K., Hirama Y., Agata N., Ito H., Torii K., Takeno A., Hasegawa T.,
370 Shinomura Y. & Ohta M. (2005). Quantitative analysis of cereulide, an emetic toxin of *Bacillus*
371 *cereus*. *Microbiology and Immunology*, 49 : 25-30P

372 10.Doumbia A.N. (2007). Diagnostic sur la fertilité des sols dans la zone cotonnière du mali
373 études sur les matières organiques du sol. Mémoire de fin d'études pôle de compétences en
374 partenariat gestion des écosystèmes de savanes, UFR Agronomie, Institut polytechnique rural
375 de formation et de recherche appliquée (ipr/ifra) de Katibougou, 64p.

376 11.Hamdache A ., Azaker R., Lamarti A., Aleu J. and Collado, LG. (2013) Comparative
377 genome analysis of *Bacillus* spp. and its relationship with bioactive nonribosomal peptide
378 production. *Phytochem Rev* 12: 685-716.

379 12. Ngo-Itsouhou, Nguimbi Etienne*, Kayath Aimé Christian, and Ampa Raou. 2019.
380 Molecular identification, Phylogenetic Classification and Proteolytic Capacity of Cultivable
381 Bacteria Isolated from Soils in Brazzaville, Republic of Congo, *Journal of*
382 *Biochemistry, microbiology and biotechnology*

383 13.Lingouangou, T.M., Ampa, R., Nguimbi, E., Bissombolo, P.M., Ngo-Itsouhou, Mabika,
384 F.A.S., Ngou lou, T.B. and Nzaou, S.A.E. (2022) Optimization of Cellulase Production
385 Conditions in Bacteria Isolated From Soils in Brazzaville. *Journal of Biosciences and*
386 *Medicines*,10,14-28. <https://doi.org/10.4236/jbm.2022.10800>

387 14.Kimbatsa, I.M.C.M., Ngô, I., Zamba, A.I., Mabika, F.A.S., Lingouangou, T.M., Goma
388 Tchimbakala, J. and Nguimbi, E. (2023) 16S rRNA Gene-Based Metagenomic Analysis of
389 Soil Bacterial Di versity in Brazzaville, Republic of the Con go. Advances in Microbiology,
390 13, 477-498 <https://doi.org/10.4236/aim>

391 15.Delarras C., 2007, “Pratique en microbiologie de laboratoire”, Edition Lavoisier, Paris,
392 190-209p.

393 16.Faly Armel Soloka Mabika, Etienne Nguimbi, Raoul Ampa1, Aime Christian Kayath,
394 Alain Voudibio, Gabriel Ahombo(2018).Production, Encoding Genes Variability and
395 NTerminal Sequences of Fibrinolytic Enzymes Produced by Bacillus Strains Isolated
396 from Fermented Cassava Leaves "Ntoba Mbodi" at Brazzaville, Republic of Congo.
397 *International Journal of Science and Research (IJSR)* Volume 7 Issue 11.p 241-248.

398

399 17.Nguimbi Etienne, Cyr Jonas Morabandza, Alain Brice Voudibio Mbozo, Mireille
400 Huguette Belle Mbou, Sayida Norgela Miakassissa, Faly Armel Soloka Mabika. Microbial
401 Biodiversity of a Traditional Food Made from Squash Seeds "NTETE" Consumed in
402 Brazzaville, Republic of Congo *International Journal of Microbiology and Biotechnology*
403 2020; 5(3): 83-92.

DOI :[10.11648/j.ijmb.20200503.12](https://doi.org/10.11648/j.ijmb.20200503.12)

404

405 18.Singleton P. (2005). Bactériologie pour la médecine, la biologie et les biotechnologies, (6th
406 edn) DUNOD. *Paris.New York*. Volume Three. 63-67

407 19.Charles Bikouma, Faly Armel Soloka Mabika, Elgie Viannechie Gatse, Thantique Moutali
408 Lingouangou, Ngô Itsouhou, Yannick Frédereick Okouakoua and Etienne Nguimbi. 2025.
409 Physicochemical Parameters and Bacterial Diversity of Soil Samples Collected in South of
410 Brazzaville (Republic of Congo). *Int.J.Curr.Microbiol.App.Sci.* 14(07): 1-15. doi:
411 <https://doi.org/10.20546/ijcmas.2025.1407.001>

412 20.JoffinJ.N., Leyral G., 2005. Microbiologie Technique. Tome 1 Dictionnaire des
413 techniques. Académie de bordeaux et crdp d'Aquitaine, 171-189.

414 22.Bragger J.M., DanieL R.M., Coolbear T., Morgan H.W. (1989). Very stable enzymes from
415 extremely thermophilic archae bacteria and eubacteria. *Appl. Microbiol. And Biotech.*,
416 31:556-561.

417 23.Gordon R E., Haynes W.C and H N Pang. (1973). The genus *Bacillus* Agricultural
418 Handbook n°427. Washington.

419 24.Vos, P., et al. (2009) *Bergey's manual of systematic bacteriology: Volume 3, the*
420 *firmates*. Springer, Berlin

25.1111ist P., Korpela T., (1998). Effect of detergents on activity of microbial lipases as measured by the
422 nitro phenyl alkanoate esters method. *Enzyme and microbial technology*. 23 : 113-117.

423 26.Jorge FB Pereira., João AP Coutinho., José A., TeixeiraEduardo J., Gudiñ Rui Vitorino.,
424 Lígia R. Rodrigues., 2013- Optimisation et caractérisation de la production de biosurfactants
425 par *Bacillus subtilis* isole vers une récupération microbienne améliorée du pétrole
426 applications, carburant 111 (2013) 259-268. <http://dx.doi.org/10.1016/j.fuel.2013.04.040>

427 27.Khopade A., Ren B., Lui X., Mahadik K., Nzhang L., Kokare C., 2012, « Production of
428 biosurfactant from marine *Streptomyces* species B3 », *Journal of colloid and interface*
429 *Science*, 367: 311-318p.

430 28.Irène Marie Cécile Mboukou Kimbatsa, Thantique Moutali Lingouangou, Léa Gwladys
431 Gangoue, Itsouhou Ngô, Faly Armel Soloka Mabika, Joseph Goma-Tchimbakala and Etienne
432 Nguimbi. 2024. Diversity of Cellulolytic Bacteria in Soils Revealed by 16S rRNA Gene
433 Sequencing Analysis in Brazzaville, Republic of Congo. *Int.J.Curr.Microbiol.App.Sci.* 13(3):
434 211-230. doi: <https://doi.org/10.20546/ijcmas.2024.1303.021>

435• 29.Priscillia Renée Nguimbi-Tsati, Christian Aimé Kayath, Nicaise Saturnin Mokemiabeka,
436 Tarcis Baloki Ngoulou, Thantique Moutali Lingouangou, Yannich Okouakoua, and Gabriel
437 Ahombo, “Production of Biosurfactants and Hydrolytic Enzymes by *Bacillus*-Genus Bacteria
438 Isolated from Mbala Pinda, Traditional Food, Republic of Congo.” *ajmr*, vol. 10, no. 3 (2022):
439 76-83.DOI: 10.12691/ajmr-10-3-1.

440

441

442

443