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Abstract

Traffic congestion is a growing concern in rapidly expanding cities,
particularly in contexts where conventional traffic monitoring systems
provide limited spatial and temporal coverage. This challenge is especially
visible in many cities of the Global South, where the scarcity of fine-grained
data restricts detailed analysis of urban mobility at the road-segment level.

This study examines the prediction of link-level traffic density in Abidjan
using trajectory data collected from an e-hailing platform and supervised

based mobility data, Abidjan (African

o) machine learning methods. Road segments are described through a
clues).

combination of geometric, regulatory, and trajectory-based features, and
several regression models are evaluated within a common experimental
framework.The results indicate that reliable traffic density estimates can be
obtained even in the absence of dense sensing infrastructure. Random Forest
provide consistently accurate and stable predictions across heterogeneous
traffic conditions. The analysis also suggests that regulatory characteristics,
such as speed limits and road hierarchy, exert a stronger influence on traffic
density than detailed geometric descriptors.These findings highlight the
practical relevance of trajectory-based supervised learning as a flexible and
affordable solution for traffic analysis and mobility planning in data-
constrained urban environments.

Copy Right, 1JAR, 2019,. All rights reserved.

Introduction: -

Traffic congestion has become a structural challenge in large metropolitan areas, particularly in cities undergoing
rapid urban growth and increasing motorization [1]. Beyond longer travel times and higher fuel consumption,
congestion has been widely shown to undermine economic productivity and degrade environmental sustainability in
urban systems [2]. These effects are especially acute in cities of the Global South, where transport infrastructure
development and traffic monitoring capacities frequently fail to keep pace with rising mobility demand [3].

In sub-Saharan African cities, traffic dynamics reflect a combination of strong demographic pressure, spatial
expansion, and a highly heterogeneous transport supply [4]. In Abidjan, formal public transport services operate
alongside informal modes, private vehicles, and app-based mobility platforms, resulting in pronounced spatial and
temporal variations in congestion across the road network [1]. Although recent investments in major road
infrastructure have improved connectivity on selected corridors, congestion remains a persistent daily constraint,
largely due to the lack of continuous and fine-grained information on traffic conditions at the level of individual
road segments [2,3].

Conventional traffic monitoring systems are primarily based on fixed sensing infrastructure, such as loop detectors,
cameras, and dedicated counting stations [5]. While these technologies provide accurate measurements where they
are deployed, their high installation and maintenance costs often limit spatial coverage, particularly in rapidly
expanding urban environments [6]. As a consequence, large portions of road networks in cities like Abidjan remain
insufficiently observed, restricting comprehensive congestion assessment and evidence-based traffic management

[3].
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In recent years, the rapid diffusion of digital mobility platforms has created new opportunities for traffic
observation. Ride-hailing services continuously generate high-resolution trajectory data that capture vehicle
movements across extensive parts of the urban network [7]. When properly anonymized and aggregated, these
trajectory data have been shown to provide a reliable proxy for traffic conditions, enabling link-level analysis of
congestion dynamics in complex and heterogeneous urban settings [8].

The growing availability of trajectory-based data has coincided with significant advances in supervised machine
learning for traffic analysis. Previous studies have demonstrated that nonlinear and ensemble-based models
outperform classical linear approaches when modeling complex relationships between traffic density, road
characteristics, and temporal demand variations [9]. In particular, machine learning techniques such as tree-based
ensembles, kernel-based models, and neural networks are well suited to capturing the nonstationary and
heterogeneous nature of urban traffic dynamics [10].

Building on these developments, this study investigates link-level traffic density prediction in Abidjan using
trajectory data derived from an e-hailing platform. The objective is to evaluate the ability of supervised learning
models to estimate traffic density at the scale of individual road segments in a data-constrained urban environment.
Five regression approaches are examined: a Dummy Regressor used as a baseline, Linear Regression enhanced with
Polynomial Ridge regularization, Random Forest, Support Vector Regression, and Artificial Neural Networks. All
models are assessed within a unified experimental framework to ensure a consistent comparison of predictive
performance and robustness.

The remainder of this paper is organized as follows. Section 2 presents the urban mobility context of Abidjan and
motivates the use of trajectory-based data. Section 3 reviews related work on traffic density estimation, trajectory-
based traffic analysis, and supervised machine learning approaches. Section 4 describes the methodological
framework, and the experimental protocol, including descriptive statistics, correlation analysis, and hyperparameter
tuning. Section 5 reports the experimental results, with particular emphasis on error analysis and predicted-actual
relationships. Section 6 discusses the implications and limitations of the findings. Finally, Section 7 concludes the
paper and outlines perspectives for future research.

Urban Mobility Context in Abidjan: -

Abidjan is the economic capital of Coéte d’Ivoire and one of the major metropolitan areas in West Africa. Over
recent decades, sustained population growth and rapid spatial expansion have led to a steady increase in daily travel
demand, exerting growing pressure on the urban road network. These dynamics have been documented in recent
empirical studies focusing on traffic data collection and network characterization in Abidjan, which highlight the
challenges associated with monitoring and managing mobility in a rapidly expanding urban environment [3,11].

Urban mobility in Abidjan is characterized by a high degree of modal diversity. Formal public transport systems
coexist with a wide range of informal services, including shared minibuses and taxis, alongside private vehicles and,
more recently, app-based ride-hailing platforms. This heterogeneous transport supply contributes to complex traffic
dynamics, with congestion levels varying significantly across space and time depending on land-use patterns, peak-
hour demand, and network structure. Previous analyses of urban mobility transformations in Abidjan emphasize that
such diversity complicates both traffic observation and modeling, particularly at the level of individual road
segments [11].

Traffic monitoring in Abidjan remains constrained by the limited deployment of fixed sensing infrastructure. As in
many cities of the Global South, conventional monitoring technologies such as loop detectors, cameras, and
permanent counting stations are installed only on selected parts of the network, resulting in fragmented spatial
coverage and discontinuous temporal information. Studies on traffic state estimation and monitoring underline that
these limitations hinder comprehensive congestion assessment and restrict the operational use of data-driven traffic
management strategies in large urban networks [12]. In this context, the growing adoption of digital mobility
platforms has created new opportunities for traffic observation. Ride-hailing services generate large volumes of
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high-resolution trajectory data that capture vehicle movements across extensive portions of the urban network.
Several recent studies demonstrate that trajectory-based data can serve as a reliable proxy for traffic conditions,
enabling the analysis of speed variations and congestion patterns at the link level, particularly in environments
where fixed sensors are sparse or unevenly distributed [13,14].

Taken together, the combination of rapid urban growth, heterogeneous mobility patterns, limited fixed sensing
infrastructure, and increasing availability of trajectory data makes Abidjan a particularly relevant case study for
exploring alternative approaches to traffic density estimation. In such data-constrained urban contexts, trajectory-
based methods supported by supervised machine learning offer a promising pathway toward more comprehensive,
scalable, and cost-effective link-level traffic analysis.

Related Work: -

Traffic density and congestion estimation constitute a long-standing research topic within intelligent transportation
systems. Early studies primarily relied on data collected from fixed sensing infrastructure, including loop detectors,
cameras, and permanent counting stations, to estimate traffic states and congestion levels. Such infrastructure has
supported numerous operational traffic models and control strategies, particularly in cities equipped with dense
monitoring networks [12]. However, multiple studies emphasize that the deployment and maintenance of fixed
sensors remain costly and often result in uneven spatial coverage, especially in rapidly expanding urban
environments, thereby limiting their ability to capture fine-grained congestion patterns at the level of individual road
segments [15-17]. These limitations are further exacerbated in complex urban networks characterized by
heterogeneous demand and highly variable traffic conditions [18].

To address the shortcomings of fixed sensing approaches, a growing body of literature has explored the use of
vehicle trajectory data as an alternative or complementary source of traffic information. With the widespread
availability of GPS-enabled devices, probe vehicles, and digital mobility platforms, trajectory data have become
increasingly accessible for large-scale traffic analysis. Several studies demonstrate that trajectory-derived indicators,
such as speed profiles and travel time distributions, can effectively reflect congestion dynamics and support link-
level traffic state inference in urban road networks [19,20]. More recent contributions explicitly show that
congestion and traffic density can be inferred from GPS-based trajectories, even in contexts where direct
measurements are unavailable or unreliable [13,18]. In particular, ride-hailing trajectory data have attracted growing
attention due to their high temporal resolution and extensive spatial coverage, making them well suited for traffic
analysis in cities with sparse sensing infrastructure [14]. Empirical studies based on probe vehicle and GPS data
further confirm the ability of trajectory-based approaches to capture spatial heterogeneity and localized congestion
patterns across large urban networks [21,22].

In parallel, a growing stream of research has focused on graph-based spatiotemporal models that explicitly exploit
the structure of road networks, with attention-driven temporal graph convolutional architectures increasingly
adopted in traffic forecasting studies [23].

More recent developments emphasize the importance of jointly modeling local and global spatial interactions, as
illustrated by local-global spatiotemporal graph convolutional formulations proposed to better capture traffic flow
dynamics across urban networks [24].

More recent studies have moved beyond the use of single-source trajectory data by incorporating data fusion
strategies, in which heterogeneous information streams are combined with machine learning models to enhance the
robustness and generalization of traffic prediction, particularly in environments affected by sparse or noisy sensing
conditions [25].

Alongside the diversification of traffic data sources, supervised machine learning techniques have become central to
traffic prediction and congestion analysis. Linear regression models remain widely used as baseline approaches due
to their simplicity and interpretability, often serving as reference points for more advanced models [26].

3
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Nevertheless, numerous empirical studies report that linear models struggle to capture the nonlinear relationships
inherent in traffic dynamics, particularly under variable demand and complex network interactions [6,7]. Kernel-
based methods, such as Support Vector Regression, have been shown to improve predictive performance by
modeling nonlinear patterns in traffic data, while ensemble approaches, including Random Forest, offer robustness
to noise and heterogeneous feature distributions [27-29]. Artificial Neural Networks have also been extensively
applied to traffic forecasting tasks, with several studies demonstrating their capacity to model complex temporal and
spatial dependencies when sufficient training data and appropriate regularization strategies are employed [30].

Recent survey studies point to a rapid growth of deep learning and hybrid learning approaches in traffic prediction,
while also underlining the decisive role played by data characteristics and evaluation protocols in shaping
comparative performance outcomes [31,32]. Survey and comparative analyses consistently stress that no single
learning paradigm systematically outperforms others across all traffic prediction scenarios. Instead, model
performance is highly dependent on data characteristics, feature design, and experimental settings, highlighting the
importance of systematic and controlled model comparison within a unified evaluation framework [8,33]. Despite
these advances, existing studies rarely provide comprehensive comparisons of multiple supervised learning models
for link-level traffic density estimation using real-world trajectory data in sub-Saharan African cities. Prior work
addressing African urban contexts often focuses on broader mobility challenges and data scarcity, with limited
quantitative evaluation of fine-grained traffic density models [3,11].

This study contributes to the literature by addressing these gaps through a systematic evaluation of multiple
supervised regression models for link-level traffic density prediction in Abidjan using trajectory data derived
exclusively from an e-hailing platform. By comparing a baseline model with linear, ensemble-based, kernel-based,
and neural network approaches within a consistent experimental framework, the paper provides empirical insights
into the suitability and robustness of different modeling strategies in a data-constrained urban environment. The
proposed approach emphasizes practicality and scalability, offering a data-driven framework that can support traffic
analysis and decision-making in cities where conventional monitoring infrastructure remains limited.

Methodology: -
This study relies on a supervised machine learning framework to estimate traffic density at the level of individual

road segments in Abidjan.

The methodological pipeline integrates trajectory-based data processing, feature construction, model training, and
performance evaluation, with a focus on robustness and reproducibility under realistic urban mobility conditions. An
overview of the workflow is provided in Figure 1.
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Figure 1: - Overview of the machine learning pipeline used

Dataset and Study Area:
The empirical analysis is based on trajectory data collected from an e-hailing platform operating in Abidjan, Céte

d’Ivoire. The dataset consists of anonymized vehicle trajectories describing completed trips within the metropolitan
area. Each record contains spatiotemporal information that allows trajectories to be associated with individual road
segments and aggregated at the link level.

During preprocessing, only trips with consistent timestamps, valid GPS traces, and origins and destinations located
within the study area were retained. Cancelled trips, incomplete trajectories, and corrupted records were
systematically removed. All data were handled in aggregated and anonymized form to ensure compliance with
privacy and ethical requirements. Although the present analysis focuses on Abidjan, the overall methodological
framework is designed to remain applicable to other urban environments facing similar data constraints.

Feature Construction and Descriptive Statistics:
A set of explanatory variables was constructed to characterize traffic conditions at the road-segment level. These

variables reflect complementary aspects of the urban network, including geometric properties of links, regulatory
attributes such as posted speed limits, and trajectory-derived indicators capturing vehicle movement patterns. The
target variable corresponds to traffic density estimated for each segment over predefined time intervals.

Table 1: - Summary of descriptive statistics for key variables

Variable Mean |Variance |Standard Deviation | Median | Mode | Range | Min | Max

BBox Area (m?) 6085 | 330856000 |18189,40 303,28 |0 141191 |0 141191
BBox Height (m) 71,26 |8202,66 90,57 35,9 10,56 |487,2 |0,33 |487,54
BBox Width (m) 43,6 |4869,94 69,78 16,96 |0 466,39 |0 466,39
Mean Bearing (°) 164,04 | 13478,6 116,1 179,72 |0 357,61 |0 357,61
Chord (m) 93,05 |11388,2 106,72 50,79 |10,57 |564,79 |2,35 567,13
End Bearing (°) 164,07 | 13437,5 115,92 179,72 |0 359,82 |0 359,82




160

161
162
163
164
165

166
167
168

169
170

171
172

173
174
175
176

Length (m) 93,64 |11734,2 108,32 51,06 |10,57 |587,54 |2,35 |589,89
Vertices 3,27 5,94 2,44 2 2 14 2 16
Seg. Max (m) 53,3 |1884,03 43,41 36,51 |10,57 |179,32 |2,35 | 181,66
Seg. Mean (m) 44,62 |1360,6 36,89 29,82 |10,57 |174,01 | 2,35 |176,36
Seg. SD (m) 5,58 119,16 10,92 0 0 45,22 |0 45,22
Sinuosity 1 0 0,01 1 1 0,05 1 1,05
Start Bearing (°) 164,34 | 13609,4 116,66 180 0 359,37 |0 359,37
Straightness 1 0 0,01 1 1 0,04 0,96 |1

Max Turn (°) 4,08 5,78 2,4 4,08 4,08 |1496 |0 14,96
Mean Turn (°) 2,83 3,24 1,8 2,83 2,83 1312 |0 13,12
Turn p90 (°) 3,7 4,53 2,13 3,7 3,7 1422 |0 14,22
Vertex Density (m™) | 0,04 0 0,05 0,03 0,03 |0,42 0,01 0,43
Length 93,33 |11653,9 107,95 50,7 21,2 |5852 |24 |587,6
Segments 2,27 5,94 2,44 1 1 14 1 15
Speed Limit 66,11 |624,79 25 60 50 70 50 |120

Descriptive statistics were computed to summarize the distributions of the explanatory variables and the target
variable. Table 1 reports key summary measures, including indicators of central tendency, dispersion, and range.
The results reveal pronounced heterogeneity across road segments. Several geometry-related variables exhibit
strongly skewed distributions, with median values substantially lower than means, indicating the presence of a
limited number of large or structurally complex segments alongside a majority of shorter and simpler links.

Regulatory attributes also display considerable variability across the network, reflecting differences in road function
and hierarchy. Taken together, these descriptive patterns underline the structural diversity of Abidjan’s road network
and motivate the use of flexible regression models capable of capturing nonlinear relationships.

Correlation Analysis:
To explore relationships among explanatory variables and assess potential redundancy, a correlation matrix was

computed using Pearson correlation coefficients. The resulting heatmap is presented in Figure 2. The analysis
highlights distinct correlation structures associated with different feature groups.

Regulatory attributes form a coherent cluster, while geometric descriptors related to segment size and extent are
strongly correlated with one another. In contrast, indicators of local structural complexity and orientation display
weaker associations with size-related variables. Importantly, correlations between regulatory and geometric feature
groups remain moderate, suggesting limited redundancy across these dimensions.
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Overall, the correlation patterns indicate that the selected features provide complementary information rather than
duplicating the same signal. On this basis, all constructed variables were retained for the supervised learning
experiments.
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Figure 2: - Heatmap of the Correlation Between the Top 15 Predictive Features

Supervised Learning Models:
Rather than relying on a single predictive approach, this study compares several regression models with distinct

assumptions and levels of flexibility, selected to cover the main families of supervised learning approaches
commonly applied in traffic prediction. These range from simple baseline and linear models to ensemble-based,
kernel-based, and neural methods, thereby ensuring a balanced and methodologically sound comparison [34, 35].

To capture nonlinear relationships while maintaining model stability, Linear Regression with Polynomial Ridge
regularization was retained. Polynomial feature expansion allows interaction effects to be modeled, while L2
regularization helps control estimation variance in the presence of correlated predictors [26].

An ensemble-based approach is represented by the Random Forest Regressor, which aggregates multiple decision
trees trained on randomized subsets of the data. This method is well suited to heterogeneous feature spaces and
complex nonlinear dependencies [29].
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Support Vector Regression (SVR) was also considered, as it uses kernel-based transformations to approximate
nonlinear relationships through margin-based optimization, often yielding strong generalization performance on
structured datasets [36, 37].

Finally, an Artificial Neural Network (ANN) was employed to learn nonlinear interactions across multiple
explanatory variables. The network relies on layered representations optimized through gradient-based learning and
is capable of capturing complex feature interactions [30].

A Dummy Regressor serves as a baseline, providing a reference level of performance against which more advanced
models can be evaluated [38].

Hyperparameter Tuning and Experimental Protocol:
To ensure a fair comparison across models, hyperparameter tuning was conducted using a randomized search

strategy. This approach enables efficient exploration of the hyperparameter space while limiting computational cost.
The Dummy Regressor was excluded from this tuning procedure and evaluated using baseline strategies.

Model performance was assessed through a K-fold cross-validation scheme in order to obtain stable estimates of
predictive accuracy and generalization. Evaluation relied on standard regression metrics, including the coefficient of
determination (R?) and error-based measures such as Mean Absolute Error (MAE) and Root Mean Squared Error
(RMSE). The optimized hyperparameter configurations retained for each model are summarized in Table 2.

Table 2: - Summary of Machine Learning Models and their Optimized Hyperparameter Settings

Model Best Hyperparameters

Dummy Regressor {'strategy": 'mean}

) ) {'poly__degree" 2, 'poly__include bias": False, 'poly _interaction_only": False,
Polynomial+Ridge . . o
'ridge__alpha": 0.1, 'ridge__fit_intercept": True}

Random Forest {'learning_rate": 0.1, 'max_depth": 6, 'n_estimators": 200, 'subsample": 0.8}

SVM Regressor {'C" 10, 'gamma": 'scale’, 'kernel": 'rbf'}

Avrtificial Neural Network | {'activation': 'relu’, 'alpha’: 0.01, ‘hidden_layer_sizes": (50, 30)}

Experimental Results and Analysis: -
This section reports the experimental results obtained from the supervised learning models used to estimate link-

level traffic density in Abidjan. The analysis builds exclusively on results already produced in the complete study
and focuses on global performance, error behavior, and calibration quality. No explainable Al techniques are
considered at this stage, and the discussion is deliberately limited to empirical observations.

Global Model Performance:
The first level of analysis compares the overall predictive performance of the models using standard regression

metrics. Cross-validated values of R?, RMSE, MAE, MSE, and MAPE are summarized in Table 3, providing a
consistent basis for comparison across models.

As expected, the Dummy Regressor performs poorly across all metrics, yielding a coefficient of determination close
to zero and very large errors, with an RMSE exceeding 13. It therefore serves only as a baseline reference. In
contrast, Polynomial Ridge Regression represents a clear improvement, reaching an R2 of about 0.96 and reducing

8
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the RMSE to roughly 2.7. This gain suggests that the inclusion of nonlinear terms captures a significant part of the
structure underlying traffic density variation across road segments.

Table 3: - Cross-validation performance of the regression models for traffic density prediction

Models R2 RMSE MAE MSE MAPE
Dummy Regressor -0.000045 13.116091 10.470514 172.031836 9.184379
Polynomial + Ridge 0.961704 2.700657 2.023422 7.293547 1.842884
Random Forest 0.990780 1.472332 1.058527 2.167762 0.969000
SVM Regressor 0.907712 4.273489 3.179472 18.262707 2.965131
Artificial Neural Network 0.953348 3.396052 2.569213 11.533171 2.312873

Among the remaining models, Random Forest stands out as the best-performing approach. It achieves the highest
explanatory power, with an R? close to 0.99, while maintaining low prediction errors (RMSE = 1.47 and MAE =
1.06). Support Vector Regression and the Artificial Neural Network also outperform the linear baseline, with
coefficients of determination above 0.90, but they are associated with larger residual errors and greater variability
across cross-validation folds. These differences in predictive behavior are further illustrated in Figure 3, which
highlights the progressive improvement obtained when moving from simpler to more flexible learning models.

Metric
175 -

== MAE
m MSE
1 MAPE {%)

150 -

125 -

100 -

754

Average Score {CV)

50+

Model

Figure 3: - Comparative Barplot of Model Performance by Metric Using Cross-Validation

Taken together, the global metrics reveal a clear hierarchy among the evaluated approaches, with ensemble-based
methods providing the most accurate and reliable estimates of traffic density at the link level.

Error Analysis and Diagnostic Plots:
While aggregate metrics provide a first indication of model performance, residual analysis offers deeper insight into

stability and robustness. The distributions of prediction errors obtained under cross-validation are shown in Figure 4.

The Dummy Regressor produces wide and unstructured residual distributions, confirming its inability to capture
meaningful variation in traffic density. Polynomial Ridge Regression yields residuals that remain centered around
zero but exhibit heavier tails, suggesting reduced accuracy for extreme density values.

Random Forest displays the most balanced residual behavior. Its error distribution is narrow, approximately
symmetric, and closely centered on zero, indicating both low variance and limited systematic bias across different

9
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traffic regimes. Support Vector Regression and the Artificial Neural Network also generate centered residuals,
although with broader dispersion, reflecting higher sensitivity to local fluctuations and model configuration.

Overall, the diagnostic plots confirm that ensemble-based models not only achieve higher accuracy but also provide
more stable and consistent error behavior, a desirable property for link-level traffic density estimation in
heterogeneous urban networks.
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Figure 4: - Residual distributions (Predictions — Actual) for all regression models under cross-validation

Predicted—Actual Relationship Analysis:
Model calibration was further examined by comparing predicted and observed traffic density values. Scatter plots of

predicted versus actual densities are presented in Figure 5, with the identity line included as a reference.

Polynomial Ridge Regression shows a reasonable alignment with the diagonal but tends to smooth high-density
observations, resulting in mild underestimation at the upper end of the range. Random Forest exhibits the strongest
agreement with observed values, with predictions tightly clustered around the identity line across both low- and
high-density conditions.

10
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Support Vector Regression and the Artificial Neural Network capture the overall trend but display greater dispersion
around the diagonal, indicating increased variability in predictions. As expected, the Dummy Regressor shows no

meaningful alignment with observed densities.

These visual patterns are consistent with the numerical results and residual diagnostics. Together, they indicate that
Random Forest provides the most accurate and well-calibrated representation of link-level traffic density among the

models considered.
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Figure 5: -Predicted vs. Actual traffic density plots for the regression models under cross-validation

Global Feature Importance:

To complement the performance analysis with a global view of variable influence, feature importance was examined

using the Random Forest model. The relative importance of the most influential predictors is shown in Figure 6.
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Regulatory and contextual variables dominate the ranking. Speed Limit emerges as the most influential feature,
followed by indicators related to road category and spatial context. Geometric descriptors contribute more
moderately, while fine-grained orientation and segmentation variables appear at the lower end of the ranking.

This global importance analysis confirms that traffic density patterns in Abidjan are driven primarily by regulatory
context and network hierarchy, with geometric characteristics providing secondary refinement. The analysis remains
strictly global and does not rely on local explainability techniques.

Speed Limit
Toponym

Road Category
Bounding Box Width
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Bounding Box Area
Day

Vertex Density

Variables

Geometry Length
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Max Segment Length
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Start Bearing -
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0.0 0.1 0.2 0.3 0.4 0.5
Importance

Figure 6: -Top 15 most important features according to the Random Forest model

Discussion: -
This study shows that supervised machine learning can provide a reliable and effective framework for estimating

link-level traffic density in Abidjan in situations where conventional traffic sensing infrastructure remains sparse or
unevenly deployed. By combining trajectory data from an e-hailing platform with geometric and regulatory
descriptors, the proposed approach captures structural congestion patterns that are difficult to observe through
traditional monitoring systems alone.

Why Some Models Perform Better Than Others:
The results indicate that Random Forest tends to outperform linear, kernel-based, and neural network approaches in

the considered setting. This advantage can largely be attributed to the ability of tree-based ensemble methods to
model complex and nonlinear interactions between heterogeneous predictors, including road geometry, regulatory
constraints, and spatial context. Such interactions are particularly relevant at the link level, where traffic density is
strongly shaped by structural characteristics of the road network rather than by purely temporal dynamics. Similar
observations have been reported in recent comparative studies on traffic flow and congestion prediction, in which
ensemble-based methods consistently demonstrate strong robustness in heterogeneous urban environments [4,5,28].
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Polynomial regression achieves reasonable performance but remains limited in its capacity to capture higher-order
interactions across diverse road segments. Kernel-based methods and artificial neural networks also provide
acceptable levels of accuracy; however, their performance appears more sensitive to feature scaling, hyperparameter
configuration, and data distribution. This sensitivity may reduce their stability in operational contexts where
calibration data are limited or unevenly distributed [39,40].

Consistency with the Existing Literature:
The observed dominance of ensemble-based models is well aligned with recent findings in the traffic prediction

literature. Several reviews of machine learning applications in intelligent transportation systems emphasize that tree-
based ensembles offer a favorable balance between predictive accuracy, robustness to noise, and computational
efficiency, particularly in contexts characterized by uneven data quality and coverage [6,30,41]. Empirical studies
conducted in African and North African cities report similar trends, highlighting the suitability of these models for
congestion estimation using trajectory-based data [4,5].

In addition, the strong influence of regulatory variables, such as speed limits and road hierarchy, is consistent with
prior work showing that contextual and functional attributes often play a more decisive role than fine-grained
geometric descriptors when explaining congestion patterns at the scale of urban road networks [9,42]. This finding
reinforces the importance of integrating regulatory information when modeling traffic density in rapidly urbanizing
cities.

Relevance for Data-Constrained Cities:
From an applied perspective, these results underline the practical value of trajectory-driven learning frameworks for

cities with limited fixed sensing infrastructure. In Abidjan, as in many cities of the Global South, the uneven
deployment of traffic sensors restricts the ability to monitor congestion comprehensively across the network.
Trajectory data generated by e-hailing services therefore represent a valuable alternative source of high-resolution
information that can support network-wide traffic analysis at relatively low cost [13,14].

By focusing on supervised learning models rather than complex spatiotemporal architectures, the proposed approach
remains computationally tractable and adaptable to other urban contexts facing similar data constraints. This makes
it particularly relevant for transport authorities seeking scalable tools to support congestion diagnosis and mobility
planning in environments where data availability remains heterogeneous [15,43].

Limitations:
Some limitations nevertheless deserve to be acknowledged. First, the analysis relies on trajectory data from a single

mobility platform, which may introduce spatial sampling bias toward high-demand corridors and central areas. As a
result, peripheral neighborhoods with lower e-hailing activity may be underrepresented, potentially affecting
prediction accuracy in these zones [44,12]. Second, the temporal scope of the dataset is limited, which restricts the
ability to capture long-term seasonal effects or atypical congestion patterns associated with special events or
disruptions. Finally, although the selected features capture key structural and regulatory drivers of traffic density,
other potentially relevant factors, such as land-use intensity or weather conditions, were not explicitly modeled and
may explain part of the residual variability observed in the predictions [16,45].

Despite these limitations, the consistency of the results with prior studies and the stability of the best-performing
models suggest that the proposed framework constitutes a robust and relevant foundation for link-level traffic
density estimation in data-constrained urban environments.

Conclusion: -

This paper investigated the problem of link-level traffic density prediction in Abidjan using trajectory data derived
from an e-hailing platform and supervised machine learning models. The study was motivated by the persistent lack
of fine-grained traffic monitoring infrastructure in many rapidly growing cities of the Global South, where
conventional sensing systems provide only partial and uneven coverage of urban road networks.
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By comparing a baseline model with linear, ensemble-based, kernel-based, and neural network regressors within a
unified experimental framework, the results demonstrate that supervised learning can effectively capture traffic
density patterns at the scale of individual road segments. Among the evaluated approaches, ensemble-based
methods, and in particular Random Forest, consistently provide the most accurate and stable predictions across
global performance metrics, residual diagnostics, and calibration analyses. These findings highlight the importance
of modeling nonlinear interactions between regulatory context, road hierarchy, and trajectory-derived indicators
when addressing heterogeneous urban traffic conditions.

Beyond predictive accuracy, the analysis shows that regulatory and contextual variables play a dominant role in
shaping traffic density patterns in Abidjan, while detailed geometric descriptors contribute more moderately once
higher-level structural information is taken into account. This observation reinforces the relevance of incorporating
regulatory and functional attributes in data-driven traffic models, especially in urban environments characterized by
mixed transport systems and uneven infrastructure development.

From an applied perspective, the proposed framework illustrates the practical value of trajectory-based data for
traffic analysis in data-constrained contexts. By relying on widely available mobility data and supervised learning
models that remain computationally tractable, the approach offers a scalable alternative to sensor-dependent
monitoring systems. It can support network-wide congestion assessment and provide quantitative insights that are
difficult to obtain through traditional data sources alone.

Several limitations nonetheless remain. The reliance on a single mobility data provider may introduce spatial and
behavioral biases, and the indirect estimation of traffic density from trajectories cannot fully replace ground-truth
measurements. In addition, the analysis focuses on global predictive behavior and does not explicitly address
temporal dynamics or localized congestion phenomena.

Despite these constraints, the study provides a solid empirical foundation for the use of supervised learning and
trajectory data in link-level traffic density estimation in rapidly urbanizing cities. Future work may extend this
framework by integrating additional data sources, exploring temporal modeling strategies, or applying the approach
to other urban contexts facing similar monitoring challenges. Taken together, the results contribute to ongoing
efforts to develop data-driven, scalable, and context-aware tools for urban traffic analysis and mobility planning.
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