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Traffic congestion is a growing concern in rapidly expanding cities, 

particularly in contexts where conventional traffic monitoring systems 

provide limited spatial and temporal coverage. This challenge is especially 

visible in many cities of the Global South, where the scarcity of fine-grained 

data restricts detailed analysis of urban mobility at the road-segment level. 

This study examines the prediction of link-level traffic density in Abidjan 

using trajectory data collected from an e-hailing platform and supervised 

machine learning methods. Road segments are described through a 

combination of geometric, regulatory, and trajectory-based features, and 

several regression models are evaluated within a common experimental 

framework.The results indicate that reliable traffic density estimates can be 

obtained even in the absence of dense sensing infrastructure. Random Forest 

provide consistently accurate and stable predictions across heterogeneous 

traffic conditions. The analysis also suggests that regulatory characteristics, 

such as speed limits and road hierarchy, exert a stronger influence on traffic 

density than detailed geometric descriptors.These findings highlight the 

practical relevance of trajectory-based supervised learning as a flexible and 

affordable solution for traffic analysis and mobility planning in data-

constrained urban environments. 
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Introduction: - 2 

Traffic congestion has become a structural challenge in large metropolitan areas, particularly in cities undergoing 3 

rapid urban growth and increasing motorization [1]. Beyond longer travel times and higher fuel consumption, 4 

congestion has been widely shown to undermine economic productivity and degrade environmental sustainability in 5 

urban systems [2]. These effects are especially acute in cities of the Global South, where transport infrastructure 6 

development and traffic monitoring capacities frequently fail to keep pace with rising mobility demand [3]. 7 

In sub-Saharan African cities, traffic dynamics reflect a combination of strong demographic pressure, spatial 8 

expansion, and a highly heterogeneous transport supply [4]. In Abidjan, formal public transport services operate 9 

alongside informal modes, private vehicles, and app-based mobility platforms, resulting in pronounced spatial and 10 

temporal variations in congestion across the road network [1]. Although recent investments in major road 11 

infrastructure have improved connectivity on selected corridors, congestion remains a persistent daily constraint, 12 

largely due to the lack of continuous and fine-grained information on traffic conditions at the level of individual 13 

road segments [2,3]. 14 

Conventional traffic monitoring systems are primarily based on fixed sensing infrastructure, such as loop detectors, 15 

cameras, and dedicated counting stations [5]. While these technologies provide accurate measurements where they 16 

are deployed, their high installation and maintenance costs often limit spatial coverage, particularly in rapidly 17 

expanding urban environments [6]. As a consequence, large portions of road networks in cities like Abidjan remain 18 

insufficiently observed, restricting comprehensive congestion assessment and evidence-based traffic management 19 

[3]. 20 
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In recent years, the rapid diffusion of digital mobility platforms has created new opportunities for traffic 21 

observation. Ride-hailing services continuously generate high-resolution trajectory data that capture vehicle 22 

movements across extensive parts of the urban network [7]. When properly anonymized and aggregated, these 23 

trajectory data have been shown to provide a reliable proxy for traffic conditions, enabling link-level analysis of 24 

congestion dynamics in complex and heterogeneous urban settings [8]. 25 

The growing availability of trajectory-based data has coincided with significant advances in supervised machine 26 

learning for traffic analysis. Previous studies have demonstrated that nonlinear and ensemble-based models 27 

outperform classical linear approaches when modeling complex relationships between traffic density, road 28 

characteristics, and temporal demand variations [9]. In particular, machine learning techniques such as tree-based 29 

ensembles, kernel-based models, and neural networks are well suited to capturing the nonstationary and 30 

heterogeneous nature of urban traffic dynamics [10]. 31 

Building on these developments, this study investigates link-level traffic density prediction in Abidjan using 32 

trajectory data derived from an e-hailing platform. The objective is to evaluate the ability of supervised learning 33 

models to estimate traffic density at the scale of individual road segments in a data-constrained urban environment. 34 

Five regression approaches are examined: a Dummy Regressor used as a baseline, Linear Regression enhanced with 35 

Polynomial Ridge regularization, Random Forest, Support Vector Regression, and Artificial Neural Networks. All 36 

models are assessed within a unified experimental framework to ensure a consistent comparison of predictive 37 

performance and robustness. 38 

The remainder of this paper is organized as follows. Section 2 presents the urban mobility context of Abidjan and 39 

motivates the use of trajectory-based data. Section 3 reviews related work on traffic density estimation, trajectory-40 

based traffic analysis, and supervised machine learning approaches. Section 4 describes the methodological 41 

framework, and the experimental protocol, including descriptive statistics, correlation analysis, and hyperparameter 42 

tuning. Section 5 reports the experimental results, with particular emphasis on error analysis and predicted–actual 43 

relationships. Section 6 discusses the implications and limitations of the findings. Finally, Section 7 concludes the 44 

paper and outlines perspectives for future research. 45 

Urban Mobility Context in Abidjan: - 46 

Abidjan is the economic capital of Côte d’Ivoire and one of the major metropolitan areas in West Africa. Over 47 

recent decades, sustained population growth and rapid spatial expansion have led to a steady increase in daily travel 48 

demand, exerting growing pressure on the urban road network. These dynamics have been documented in recent 49 

empirical studies focusing on traffic data collection and network characterization in Abidjan, which highlight the 50 

challenges associated with monitoring and managing mobility in a rapidly expanding urban environment [3,11].  51 

Urban mobility in Abidjan is characterized by a high degree of modal diversity. Formal public transport systems 52 

coexist with a wide range of informal services, including shared minibuses and taxis, alongside private vehicles and, 53 

more recently, app-based ride-hailing platforms. This heterogeneous transport supply contributes to complex traffic 54 

dynamics, with congestion levels varying significantly across space and time depending on land-use patterns, peak-55 

hour demand, and network structure. Previous analyses of urban mobility transformations in Abidjan emphasize that 56 

such diversity complicates both traffic observation and modeling, particularly at the level of individual road 57 

segments [11].  58 

Traffic monitoring in Abidjan remains constrained by the limited deployment of fixed sensing infrastructure. As in 59 

many cities of the Global South, conventional monitoring technologies such as loop detectors, cameras, and 60 

permanent counting stations are installed only on selected parts of the network, resulting in fragmented spatial 61 

coverage and discontinuous temporal information. Studies on traffic state estimation and monitoring underline that 62 

these limitations hinder comprehensive congestion assessment and restrict the operational use of data-driven traffic 63 

management strategies in large urban networks [12]. In this context, the growing adoption of digital mobility 64 

platforms has created new opportunities for traffic observation. Ride-hailing services generate large volumes of 65 
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high-resolution trajectory data that capture vehicle movements across extensive portions of the urban network. 66 

Several recent studies demonstrate that trajectory-based data can serve as a reliable proxy for traffic conditions, 67 

enabling the analysis of speed variations and congestion patterns at the link level, particularly in environments 68 

where fixed sensors are sparse or unevenly distributed [13,14].  69 

Taken together, the combination of rapid urban growth, heterogeneous mobility patterns, limited fixed sensing 70 

infrastructure, and increasing availability of trajectory data makes Abidjan a particularly relevant case study for 71 

exploring alternative approaches to traffic density estimation. In such data-constrained urban contexts, trajectory-72 

based methods supported by supervised machine learning offer a promising pathway toward more comprehensive, 73 

scalable, and cost-effective link-level traffic analysis. 74 

Related Work: - 75 

Traffic density and congestion estimation constitute a long-standing research topic within intelligent transportation 76 

systems. Early studies primarily relied on data collected from fixed sensing infrastructure, including loop detectors, 77 

cameras, and permanent counting stations, to estimate traffic states and congestion levels. Such infrastructure has 78 

supported numerous operational traffic models and control strategies, particularly in cities equipped with dense 79 

monitoring networks [12]. However, multiple studies emphasize that the deployment and maintenance of fixed 80 

sensors remain costly and often result in uneven spatial coverage, especially in rapidly expanding urban 81 

environments, thereby limiting their ability to capture fine-grained congestion patterns at the level of individual road 82 

segments [15-17]. These limitations are further exacerbated in complex urban networks characterized by 83 

heterogeneous demand and highly variable traffic conditions [18]. 84 

To address the shortcomings of fixed sensing approaches, a growing body of literature has explored the use of 85 

vehicle trajectory data as an alternative or complementary source of traffic information. With the widespread 86 

availability of GPS-enabled devices, probe vehicles, and digital mobility platforms, trajectory data have become 87 

increasingly accessible for large-scale traffic analysis. Several studies demonstrate that trajectory-derived indicators, 88 

such as speed profiles and travel time distributions, can effectively reflect congestion dynamics and support link-89 

level traffic state inference in urban road networks [19,20]. More recent contributions explicitly show that 90 

congestion and traffic density can be inferred from GPS-based trajectories, even in contexts where direct 91 

measurements are unavailable or unreliable [13,18]. In particular, ride-hailing trajectory data have attracted growing 92 

attention due to their high temporal resolution and extensive spatial coverage, making them well suited for traffic 93 

analysis in cities with sparse sensing infrastructure [14]. Empirical studies based on probe vehicle and GPS data 94 

further confirm the ability of trajectory-based approaches to capture spatial heterogeneity and localized congestion 95 

patterns across large urban networks [21,22].  96 

In parallel, a growing stream of research has focused on graph-based spatiotemporal models that explicitly exploit 97 

the structure of road networks, with attention-driven temporal graph convolutional architectures increasingly 98 

adopted in traffic forecasting studies [23]. 99 

More recent developments emphasize the importance of jointly modeling local and global spatial interactions, as 100 

illustrated by local–global spatiotemporal graph convolutional formulations proposed to better capture traffic flow 101 

dynamics across urban networks [24]. 102 

More recent studies have moved beyond the use of single-source trajectory data by incorporating data fusion 103 

strategies, in which heterogeneous information streams are combined with machine learning models to enhance the 104 

robustness and generalization of traffic prediction, particularly in environments affected by sparse or noisy sensing 105 

conditions [25]. 106 

Alongside the diversification of traffic data sources, supervised machine learning techniques have become central to 107 

traffic prediction and congestion analysis. Linear regression models remain widely used as baseline approaches due 108 

to their simplicity and interpretability, often serving as reference points for more advanced models [26]. 109 



 

4 

 

Nevertheless, numerous empirical studies report that linear models struggle to capture the nonlinear relationships 110 

inherent in traffic dynamics, particularly under variable demand and complex network interactions [6,7]. Kernel-111 

based methods, such as Support Vector Regression, have been shown to improve predictive performance by 112 

modeling nonlinear patterns in traffic data, while ensemble approaches, including Random Forest, offer robustness 113 

to noise and heterogeneous feature distributions [27-29]. Artificial Neural Networks have also been extensively 114 

applied to traffic forecasting tasks, with several studies demonstrating their capacity to model complex temporal and 115 

spatial dependencies when sufficient training data and appropriate regularization strategies are employed [30]. 116 

Recent survey studies point to a rapid growth of deep learning and hybrid learning approaches in traffic prediction, 117 

while also underlining the decisive role played by data characteristics and evaluation protocols in shaping 118 

comparative performance outcomes [31,32]. Survey and comparative analyses consistently stress that no single 119 

learning paradigm systematically outperforms others across all traffic prediction scenarios. Instead, model 120 

performance is highly dependent on data characteristics, feature design, and experimental settings, highlighting the 121 

importance of systematic and controlled model comparison within a unified evaluation framework [8,33]. Despite 122 

these advances, existing studies rarely provide comprehensive comparisons of multiple supervised learning models 123 

for link-level traffic density estimation using real-world trajectory data in sub-Saharan African cities. Prior work 124 

addressing African urban contexts often focuses on broader mobility challenges and data scarcity, with limited 125 

quantitative evaluation of fine-grained traffic density models [3,11]. 126 

This study contributes to the literature by addressing these gaps through a systematic evaluation of multiple 127 

supervised regression models for link-level traffic density prediction in Abidjan using trajectory data derived 128 

exclusively from an e-hailing platform. By comparing a baseline model with linear, ensemble-based, kernel-based, 129 

and neural network approaches within a consistent experimental framework, the paper provides empirical insights 130 

into the suitability and robustness of different modeling strategies in a data-constrained urban environment. The 131 

proposed approach emphasizes practicality and scalability, offering a data-driven framework that can support traffic 132 

analysis and decision-making in cities where conventional monitoring infrastructure remains limited. 133 

Methodology: - 134 

This study relies on a supervised machine learning framework to estimate traffic density at the level of individual 135 

road segments in Abidjan.  136 

The methodological pipeline integrates trajectory-based data processing, feature construction, model training, and 137 

performance evaluation, with a focus on robustness and reproducibility under realistic urban mobility conditions. An 138 

overview of the workflow is provided in Figure 1. 139 

 140 
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 141 
Figure 1: - Overview of the machine learning pipeline used 142 

 143 

Dataset and Study Area:  144 

The empirical analysis is based on trajectory data collected from an e-hailing platform operating in Abidjan, Côte 145 

d’Ivoire. The dataset consists of anonymized vehicle trajectories describing completed trips within the metropolitan 146 

area. Each record contains spatiotemporal information that allows trajectories to be associated with individual road 147 

segments and aggregated at the link level. 148 

During preprocessing, only trips with consistent timestamps, valid GPS traces, and origins and destinations located 149 

within the study area were retained. Cancelled trips, incomplete trajectories, and corrupted records were 150 

systematically removed. All data were handled in aggregated and anonymized form to ensure compliance with 151 

privacy and ethical requirements. Although the present analysis focuses on Abidjan, the overall methodological 152 

framework is designed to remain applicable to other urban environments facing similar data constraints. 153 

Feature Construction and Descriptive Statistics: 154 

A set of explanatory variables was constructed to characterize traffic conditions at the road-segment level. These 155 

variables reflect complementary aspects of the urban network, including geometric properties of links, regulatory 156 

attributes such as posted speed limits, and trajectory-derived indicators capturing vehicle movement patterns. The 157 

target variable corresponds to traffic density estimated for each segment over predefined time intervals. 158 

Table 1: - Summary of descriptive statistics for key variables 159 

Variable Mean Variance Standard Deviation Median Mode Range Min Max 

BBox Area (m²) 6085 330856000 18189,40 303,28 0 141191 0 141191 

BBox Height (m) 71,26 8202,66 90,57 35,9 10,56 487,2 0,33 487,54 

BBox Width (m) 43,6 4869,94 69,78 16,96 0 466,39 0 466,39 

Mean Bearing (°) 164,04 13478,6 116,1 179,72 0 357,61 0 357,61 

Chord (m) 93,05 11388,2 106,72 50,79 10,57 564,79 2,35 567,13 

End Bearing (°) 164,07 13437,5 115,92 179,72 0 359,82 0 359,82 
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Length (m) 93,64 11734,2 108,32 51,06 10,57 587,54 2,35 589,89 

Vertices 3,27 5,94 2,44 2 2 14 2 16 

Seg. Max (m) 53,3 1884,03 43,41 36,51 10,57 179,32 2,35 181,66 

Seg. Mean (m) 44,62 1360,6 36,89 29,82 10,57 174,01 2,35 176,36 

Seg. SD (m) 5,58 119,16 10,92 0 0 45,22 0 45,22 

Sinuosity 1 0 0,01 1 1 0,05 1 1,05 

Start Bearing (°) 164,34 13609,4 116,66 180 0 359,37 0 359,37 

Straightness 1 0 0,01 1 1 0,04 0,96 1 

Max Turn (°) 4,08 5,78 2,4 4,08 4,08 14,96 0 14,96 

Mean Turn (°) 2,83 3,24 1,8 2,83 2,83 13,12 0 13,12 

Turn p90 (°) 3,7 4,53 2,13 3,7 3,7 14,22 0 14,22 

Vertex Density (m
-1

) 0,04 0 0,05 0,03 0,03 0,42 0,01 0,43 

Length 93,33 11653,9 107,95 50,7 21,2 585,2 2,4 587,6 

Segments 2,27 5,94 2,44 1 1 14 1 15 

Speed Limit 66,11 624,79 25 60 50 70 50 120 

 160 

Descriptive statistics were computed to summarize the distributions of the explanatory variables and the target 161 

variable. Table 1 reports key summary measures, including indicators of central tendency, dispersion, and range. 162 

The results reveal pronounced heterogeneity across road segments. Several geometry-related variables exhibit 163 

strongly skewed distributions, with median values substantially lower than means, indicating the presence of a 164 

limited number of large or structurally complex segments alongside a majority of shorter and simpler links. 165 

Regulatory attributes also display considerable variability across the network, reflecting differences in road function 166 

and hierarchy. Taken together, these descriptive patterns underline the structural diversity of Abidjan’s road network 167 

and motivate the use of flexible regression models capable of capturing nonlinear relationships. 168 

Correlation Analysis: 169 

To explore relationships among explanatory variables and assess potential redundancy, a correlation matrix was 170 

computed using Pearson correlation coefficients. The resulting heatmap is presented in Figure 2. The analysis 171 

highlights distinct correlation structures associated with different feature groups. 172 

Regulatory attributes form a coherent cluster, while geometric descriptors related to segment size and extent are 173 

strongly correlated with one another. In contrast, indicators of local structural complexity and orientation display 174 

weaker associations with size-related variables. Importantly, correlations between regulatory and geometric feature 175 

groups remain moderate, suggesting limited redundancy across these dimensions. 176 
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Overall, the correlation patterns indicate that the selected features provide complementary information rather than 177 

duplicating the same signal. On this basis, all constructed variables were retained for the supervised learning 178 

experiments. 179 

 180 

Figure 2: - Heatmap of the Correlation Between the Top 15 Predictive Features 181 

Supervised Learning Models: 182 

Rather than relying on a single predictive approach, this study compares several regression models with distinct 183 

assumptions and levels of flexibility, selected to cover the main families of supervised learning approaches 184 

commonly applied in traffic prediction. These range from simple baseline and linear models to ensemble-based, 185 

kernel-based, and neural methods, thereby ensuring a balanced and methodologically sound comparison [34, 35]. 186 

To capture nonlinear relationships while maintaining model stability, Linear Regression with Polynomial Ridge 187 

regularization was retained. Polynomial feature expansion allows interaction effects to be modeled, while L2 188 

regularization helps control estimation variance in the presence of correlated predictors [26]. 189 

An ensemble-based approach is represented by the Random Forest Regressor, which aggregates multiple decision 190 

trees trained on randomized subsets of the data. This method is well suited to heterogeneous feature spaces and 191 

complex nonlinear dependencies [29]. 192 
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Support Vector Regression (SVR) was also considered, as it uses kernel-based transformations to approximate 193 

nonlinear relationships through margin-based optimization, often yielding strong generalization performance on 194 

structured datasets [36, 37]. 195 

Finally, an Artificial Neural Network (ANN) was employed to learn nonlinear interactions across multiple 196 

explanatory variables. The network relies on layered representations optimized through gradient-based learning and 197 

is capable of capturing complex feature interactions [30]. 198 

A Dummy Regressor serves as a baseline, providing a reference level of performance against which more advanced 199 

models can be evaluated [38]. 200 

Hyperparameter Tuning and Experimental Protocol: 201 
To ensure a fair comparison across models, hyperparameter tuning was conducted using a randomized search 202 

strategy. This approach enables efficient exploration of the hyperparameter space while limiting computational cost. 203 

The Dummy Regressor was excluded from this tuning procedure and evaluated using baseline strategies. 204 

Model performance was assessed through a K-fold cross-validation scheme in order to obtain stable estimates of 205 

predictive accuracy and generalization. Evaluation relied on standard regression metrics, including the coefficient of 206 

determination (R²) and error-based measures such as Mean Absolute Error (MAE) and Root Mean Squared Error 207 

(RMSE). The optimized hyperparameter configurations retained for each model are summarized in Table 2. 208 

Table 2: - Summary of Machine Learning Models and their Optimized Hyperparameter Settings 209 

Model Best Hyperparameters 

Dummy Regressor {'strategy': 'mean'} 

Polynomial+Ridge 
{'poly__degree': 2, 'poly__include_bias': False, 'poly__interaction_only': False, 

'ridge__alpha': 0.1, 'ridge__fit_intercept': True} 

Random Forest {'learning_rate': 0.1, 'max_depth': 6, 'n_estimators': 200, 'subsample': 0.8} 

SVM Regressor {'C': 10, 'gamma': 'scale', 'kernel': 'rbf'} 

Artificial Neural Network {'activation': 'relu', 'alpha': 0.01, 'hidden_layer_sizes': (50, 30)} 

 210 

Experimental Results and Analysis: - 211 

This section reports the experimental results obtained from the supervised learning models used to estimate link-212 

level traffic density in Abidjan. The analysis builds exclusively on results already produced in the complete study 213 

and focuses on global performance, error behavior, and calibration quality. No explainable AI techniques are 214 

considered at this stage, and the discussion is deliberately limited to empirical observations. 215 

Global Model Performance: 216 

The first level of analysis compares the overall predictive performance of the models using standard regression 217 

metrics. Cross-validated values of R², RMSE, MAE, MSE, and MAPE are summarized in Table 3, providing a 218 

consistent basis for comparison across models. 219 

As expected, the Dummy Regressor performs poorly across all metrics, yielding a coefficient of determination close 220 

to zero and very large errors, with an RMSE exceeding 13. It therefore serves only as a baseline reference. In 221 

contrast, Polynomial Ridge Regression represents a clear improvement, reaching an R² of about 0.96 and reducing 222 
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the RMSE to roughly 2.7. This gain suggests that the inclusion of nonlinear terms captures a significant part of the 223 

structure underlying traffic density variation across road segments. 224 

Table 3: - Cross-validation performance of the regression models for traffic density prediction 225 

Models R2 RMSE MAE MSE MAPE 

Dummy Regressor -0.000045 13.116091 10.470514 172.031836 9.184379 

Polynomial + Ridge 0.961704 2.700657 2.023422 7.293547 1.842884 

Random Forest 0.990780 1.472332 1.058527 2.167762 0.969000 

SVM Regressor 0.907712 4.273489 3.179472 18.262707 2.965131 

Artificial Neural Network 0.953348 3.396052 2.569213 11.533171 2.312873 

 226 

Among the remaining models, Random Forest stands out as the best-performing approach. It achieves the highest 227 

explanatory power, with an R² close to 0.99, while maintaining low prediction errors (RMSE ≈ 1.47 and MAE ≈ 228 

1.06). Support Vector Regression and the Artificial Neural Network also outperform the linear baseline, with 229 

coefficients of determination above 0.90, but they are associated with larger residual errors and greater variability 230 

across cross-validation folds. These differences in predictive behavior are further illustrated in Figure 3, which 231 

highlights the progressive improvement obtained when moving from simpler to more flexible learning models. 232 

 233 
Figure 3: - Comparative Barplot of Model Performance by Metric Using Cross-Validation 234 

Taken together, the global metrics reveal a clear hierarchy among the evaluated approaches, with ensemble-based 235 

methods providing the most accurate and reliable estimates of traffic density at the link level. 236 

Error Analysis and Diagnostic Plots: 237 

While aggregate metrics provide a first indication of model performance, residual analysis offers deeper insight into 238 

stability and robustness. The distributions of prediction errors obtained under cross-validation are shown in Figure 4. 239 

The Dummy Regressor produces wide and unstructured residual distributions, confirming its inability to capture 240 

meaningful variation in traffic density. Polynomial Ridge Regression yields residuals that remain centered around 241 

zero but exhibit heavier tails, suggesting reduced accuracy for extreme density values. 242 

Random Forest displays the most balanced residual behavior. Its error distribution is narrow, approximately 243 

symmetric, and closely centered on zero, indicating both low variance and limited systematic bias across different 244 
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traffic regimes. Support Vector Regression and the Artificial Neural Network also generate centered residuals, 245 

although with broader dispersion, reflecting higher sensitivity to local fluctuations and model configuration. 246 

Overall, the diagnostic plots confirm that ensemble-based models not only achieve higher accuracy but also provide 247 

more stable and consistent error behavior, a desirable property for link-level traffic density estimation in 248 

heterogeneous urban networks. 249 

 250 

Figure 4: - Residual distributions (Predictions – Actual) for all regression models under cross-validation 251 

Predicted–Actual Relationship Analysis: 252 

Model calibration was further examined by comparing predicted and observed traffic density values. Scatter plots of 253 

predicted versus actual densities are presented in Figure 5, with the identity line included as a reference. 254 

Polynomial Ridge Regression shows a reasonable alignment with the diagonal but tends to smooth high-density 255 

observations, resulting in mild underestimation at the upper end of the range. Random Forest exhibits the strongest 256 

agreement with observed values, with predictions tightly clustered around the identity line across both low- and 257 

high-density conditions. 258 
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Support Vector Regression and the Artificial Neural Network capture the overall trend but display greater dispersion 259 

around the diagonal, indicating increased variability in predictions. As expected, the Dummy Regressor shows no 260 

meaningful alignment with observed densities. 261 

These visual patterns are consistent with the numerical results and residual diagnostics. Together, they indicate that 262 

Random Forest provides the most accurate and well-calibrated representation of link-level traffic density among the 263 

models considered. 264 

 265 

Figure 5: -Predicted vs. Actual traffic density plots for the regression models under cross-validation 266 

Global Feature Importance: 267 
To complement the performance analysis with a global view of variable influence, feature importance was examined 268 

using the Random Forest model. The relative importance of the most influential predictors is shown in Figure 6. 269 
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Regulatory and contextual variables dominate the ranking. Speed Limit emerges as the most influential feature, 270 

followed by indicators related to road category and spatial context. Geometric descriptors contribute more 271 

moderately, while fine-grained orientation and segmentation variables appear at the lower end of the ranking. 272 

This global importance analysis confirms that traffic density patterns in Abidjan are driven primarily by regulatory 273 

context and network hierarchy, with geometric characteristics providing secondary refinement. The analysis remains 274 

strictly global and does not rely on local explainability techniques. 275 

 276 
Figure 6: -Top 15 most important features according to the Random Forest model 277 

Discussion: - 278 

This study shows that supervised machine learning can provide a reliable and effective framework for estimating 279 

link-level traffic density in Abidjan in situations where conventional traffic sensing infrastructure remains sparse or 280 

unevenly deployed. By combining trajectory data from an e-hailing platform with geometric and regulatory 281 

descriptors, the proposed approach captures structural congestion patterns that are difficult to observe through 282 

traditional monitoring systems alone. 283 

Why Some Models Perform Better Than Others: 284 

The results indicate that Random Forest tends to outperform linear, kernel-based, and neural network approaches in 285 

the considered setting. This advantage can largely be attributed to the ability of tree-based ensemble methods to 286 

model complex and nonlinear interactions between heterogeneous predictors, including road geometry, regulatory 287 

constraints, and spatial context. Such interactions are particularly relevant at the link level, where traffic density is 288 

strongly shaped by structural characteristics of the road network rather than by purely temporal dynamics. Similar 289 

observations have been reported in recent comparative studies on traffic flow and congestion prediction, in which 290 

ensemble-based methods consistently demonstrate strong robustness in heterogeneous urban environments [4,5,28]. 291 
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Polynomial regression achieves reasonable performance but remains limited in its capacity to capture higher-order 292 

interactions across diverse road segments. Kernel-based methods and artificial neural networks also provide 293 

acceptable levels of accuracy; however, their performance appears more sensitive to feature scaling, hyperparameter 294 

configuration, and data distribution. This sensitivity may reduce their stability in operational contexts where 295 

calibration data are limited or unevenly distributed [39,40]. 296 

Consistency with the Existing Literature: 297 

The observed dominance of ensemble-based models is well aligned with recent findings in the traffic prediction 298 

literature. Several reviews of machine learning applications in intelligent transportation systems emphasize that tree-299 

based ensembles offer a favorable balance between predictive accuracy, robustness to noise, and computational 300 

efficiency, particularly in contexts characterized by uneven data quality and coverage [6,30,41]. Empirical studies 301 

conducted in African and North African cities report similar trends, highlighting the suitability of these models for 302 

congestion estimation using trajectory-based data [4,5]. 303 

In addition, the strong influence of regulatory variables, such as speed limits and road hierarchy, is consistent with 304 

prior work showing that contextual and functional attributes often play a more decisive role than fine-grained 305 

geometric descriptors when explaining congestion patterns at the scale of urban road networks [9,42]. This finding 306 

reinforces the importance of integrating regulatory information when modeling traffic density in rapidly urbanizing 307 

cities. 308 

Relevance for Data-Constrained Cities: 309 

From an applied perspective, these results underline the practical value of trajectory-driven learning frameworks for 310 

cities with limited fixed sensing infrastructure. In Abidjan, as in many cities of the Global South, the uneven 311 

deployment of traffic sensors restricts the ability to monitor congestion comprehensively across the network. 312 

Trajectory data generated by e-hailing services therefore represent a valuable alternative source of high-resolution 313 

information that can support network-wide traffic analysis at relatively low cost [13,14]. 314 

By focusing on supervised learning models rather than complex spatiotemporal architectures, the proposed approach 315 

remains computationally tractable and adaptable to other urban contexts facing similar data constraints. This makes 316 

it particularly relevant for transport authorities seeking scalable tools to support congestion diagnosis and mobility 317 

planning in environments where data availability remains heterogeneous [15,43]. 318 

Limitations: 319 

Some limitations nevertheless deserve to be acknowledged. First, the analysis relies on trajectory data from a single 320 

mobility platform, which may introduce spatial sampling bias toward high-demand corridors and central areas. As a 321 

result, peripheral neighborhoods with lower e-hailing activity may be underrepresented, potentially affecting 322 

prediction accuracy in these zones [44,12]. Second, the temporal scope of the dataset is limited, which restricts the 323 

ability to capture long-term seasonal effects or atypical congestion patterns associated with special events or 324 

disruptions. Finally, although the selected features capture key structural and regulatory drivers of traffic density, 325 

other potentially relevant factors, such as land-use intensity or weather conditions, were not explicitly modeled and 326 

may explain part of the residual variability observed in the predictions [16,45]. 327 

Despite these limitations, the consistency of the results with prior studies and the stability of the best-performing 328 

models suggest that the proposed framework constitutes a robust and relevant foundation for link-level traffic 329 

density estimation in data-constrained urban environments. 330 

Conclusion: - 331 

This paper investigated the problem of link-level traffic density prediction in Abidjan using trajectory data derived 332 

from an e-hailing platform and supervised machine learning models. The study was motivated by the persistent lack 333 

of fine-grained traffic monitoring infrastructure in many rapidly growing cities of the Global South, where 334 

conventional sensing systems provide only partial and uneven coverage of urban road networks. 335 
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By comparing a baseline model with linear, ensemble-based, kernel-based, and neural network regressors within a 336 

unified experimental framework, the results demonstrate that supervised learning can effectively capture traffic 337 

density patterns at the scale of individual road segments. Among the evaluated approaches, ensemble-based 338 

methods, and in particular Random Forest, consistently provide the most accurate and stable predictions across 339 

global performance metrics, residual diagnostics, and calibration analyses. These findings highlight the importance 340 

of modeling nonlinear interactions between regulatory context, road hierarchy, and trajectory-derived indicators 341 

when addressing heterogeneous urban traffic conditions. 342 

Beyond predictive accuracy, the analysis shows that regulatory and contextual variables play a dominant role in 343 

shaping traffic density patterns in Abidjan, while detailed geometric descriptors contribute more moderately once 344 

higher-level structural information is taken into account. This observation reinforces the relevance of incorporating 345 

regulatory and functional attributes in data-driven traffic models, especially in urban environments characterized by 346 

mixed transport systems and uneven infrastructure development. 347 

From an applied perspective, the proposed framework illustrates the practical value of trajectory-based data for 348 

traffic analysis in data-constrained contexts. By relying on widely available mobility data and supervised learning 349 

models that remain computationally tractable, the approach offers a scalable alternative to sensor-dependent 350 

monitoring systems. It can support network-wide congestion assessment and provide quantitative insights that are 351 

difficult to obtain through traditional data sources alone. 352 

Several limitations nonetheless remain. The reliance on a single mobility data provider may introduce spatial and 353 

behavioral biases, and the indirect estimation of traffic density from trajectories cannot fully replace ground-truth 354 

measurements. In addition, the analysis focuses on global predictive behavior and does not explicitly address 355 

temporal dynamics or localized congestion phenomena. 356 

Despite these constraints, the study provides a solid empirical foundation for the use of supervised learning and 357 

trajectory data in link-level traffic density estimation in rapidly urbanizing cities. Future work may extend this 358 

framework by integrating additional data sources, exploring temporal modeling strategies, or applying the approach 359 

to other urban contexts facing similar monitoring challenges. Taken together, the results contribute to ongoing 360 

efforts to develop data-driven, scalable, and context-aware tools for urban traffic analysis and mobility planning. 361 

 362 

References: - 363 

[1] J. Doherty, ―Mobilizing social reproduction: Gendered mobility and everyday infrastructure in Abidjan,‖ 364 

Mobilities, vol. 16, no. 5, pp. 758–774, 2021, doi: 10.1080/17450101.2021.1944288.  365 

[2] G. Falchetta, M. Noussan, and A. T. Hammad, ―Comparing paratransit in seven major African cities: An 366 

accessibility and network analysis,‖ Journal of Transport Geography, vol. 94, p. 103131, 2021, doi: 367 

10.1016/j.jtrangeo.2021.103131.  368 

[3] G. Sylla, P. Apparicio, and A. N. (coauthors), ―Mapping road traffic noise descriptors in a sub-Saharan city: 369 

An extensive mobile data collection in Abidjan (Ivory Coast),‖ African Transport Studies, vol. 3, p. 100067, 370 

2025, doi: 10.1016/j.aftran.2025.100067.  371 

[4] U. U. Imoh and M. Movahedi Rad, ―Analysis and prediction of traffic conditions using machine learning 372 

models on Ikorodu Road in Lagos State, Nigeria,‖ Infrastructures, vol. 10, no. 5, p. 122, 2025, 373 

doi:10.3390/infrastructures10050122.  374 

[5] L. Hammoumi et al., ―Leveraging machine learning to predict traffic jams: Case study of Casablanca, 375 

Morocco,‖ J. Urban Manag., 2025, doi: 10.1016/j.jum.2025.02.004.  376 

[6] P. Qi, C. Pan, X. Xu, J. Wang, J. Liang, and W. Zhou, ―A review of dynamic traffic flow prediction methods 377 

for global energy-efficient route planning,‖ Sensors, vol. 25, no. 17, p. 5560, 2025, doi:10.3390/s25175560.  378 



 

15 

 

[7] K. N. Lam, ―Traffic prediction using LSTM, RF and XGBoost,‖ in Proc. 2nd Int. Conf. Data Analysis and 379 

Machine Learning (DAML), 2024, vol. 1, pp. 267–274, doi:10.5220/0013515600004619.  380 

[8] N. A. M. Razali, N. Shamsaimon, K. K. Ishak et al., ―Gap, techniques and evaluation: Traffic flow prediction 381 

using machine learning and deep learning,‖ J. Big Data, vol. 8, p. 152, 2021, doi:10.1186/s40537-021-00542-382 

7.  383 

[9] K. Hamad, E. Alotaibi, W. Zeiada, G. Al-Khateeb, S. Abu Dabous, M. Omar, B. R. K. Mantha, M. G. Arab, 384 

and T. Merabtene, ―Explainable artificial intelligence visions on incident duration using eXtreme Gradient 385 

Boosting and SHapley Additive exPlanations,‖ Multimodal Transportation, vol. 4, no. 2, p. 100209, 2025, 386 

doi: 10.1016/j.multra.2025.100209.  387 

[10] B. Lv, H. Gong, B. Dong; Z. Wang, H. Guo, J. Wang, and J. Wu, "An Explainable XGBoost Model for 388 

International Roughness Index Prediction and Key Factor Identification," Applied Sciences, vol. 15, no. 4, p. 389 

1893, 2025. doi: 10.3390/app15041893.  390 

[11] G. Spire, A. Steck, and S. M. Koffi, ―La modernisation urbaine depuis la portière d’un minibus à Yopougon 391 

(Abidjan). Les effets du nouvel ordre infrastructurel sur les vies citadines,‖ Flux, no. 135, pp. 103–114, 2024, 392 

doi: 10.3917/flux1.135.0103.  393 

[12] W. Deng, H. Lei, and X. Zhou, ―Traffic state estimation and uncertainty quantification based on 394 

heterogeneous data sources: A three detector approach,‖ Transp. Res. Part B, vol. 57, pp. 132–157, 2013, 395 

doi: 10.1016/j.trb.2013.08.015. 396 

[13] S. Xu, L. Zhao, C. Wang & Z. He,―Traffic congestion estimation on urban road segments considering 397 

dynamic critical bottleneck based on GPS trajectory data,‖Transportation Letters, pp. 1–20, 2025,doi: 398 

10.1080/19427867.2025.2546422.  399 

[14] Y. Liu et al., ―How machine learning informs ride-hailing services: A survey,‖ Mach. Learn. Appl., Vol. 2, p. 400 

100075, 2022, doi:10.1016/j.commtr.2022.100075.  401 

[15] A. Y. Asuah, R. A. Acheampong, ―Transport accessibility research in African cities: Systematic evidence 402 

review, knowledge gaps and directions for future research,‖ Urban Transitions, vol. 3, p. 100013, 2025, doi: 403 

10.1016/j.ubtr.2025.100013.  404 

[16] Y. Hou, Z. Deng, and H. Cui, ―Short-term traffic flow prediction with weather conditions: Based on Deep 405 

Learning Algorithms and Data Fusion,‖ Complexity, Vol. 2021, no 1, p. 6662959, 2021, doi: 406 

10.1155/2021/6662959.  407 

[17] S. Yu, J. Peng, Y. Ge, X. Yu, F. Ding, S. Li, C. Ma, ―A traffic state prediction method based on spatial-408 

temporal data mining of floating car data by using autoformer architecture,‖ Computer-Aided Civil and 409 

Infrastructure Engineering, Vol. 39, no. 18, pp. 2774 – 2787, 2024, doi: 10.1111/mice.13179.  410 

[18] S. Sun, J. Chen, and J. Sun, ―Traffic congestion prediction based on GPS trajectory data,” Int. J. Distrib. 411 

Sensor Netw., vol. 15, no. 5, 2019, doi: 10.1177/1550147719847440.  412 

[19] I. Benfaress, B. Afaf and Z. Ahmed, "Enhancing Traffic Accident Severity Prediction Using ResNet and 413 

SHAP for Interpretability," AI, vol. 5, no. 4, pp. 2568-2585, doi: 10.3390/ai5040124.  414 

[20] A. Grigorev et al., ―Traffic incident duration prediction: A systematic review of techniques,‖ Adv. 415 

Transportation Rev., Vol. 2024, no.1, p. 3748345, 2024, doi:10.1155/atr/3748345.  416 

[21] Y. Zhang et al., ―Incorporating multimodal context information into traffic speed forecasting through graph 417 

deep learning,‖ International Journal of Geographical Information Science, Vol. 37, no. 9, pp. 1909 – 1935, 418 

2023, doi: 10.1080/13658816.2023.2234959. 419 

[22] S. Guo et al., ―Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow 420 

Forecasting,‖ in Proc. AAAI, vol. 33, no. 1, pp. 922–929, 2019, doi: 10.1609/aaai.v33i01.3301922.  421 

[23] Bai et al., ―A3T-GCN: Attention Temporal Graph Convolutional Network for Traffic Forecasting,‖ ISPRS 422 

Int. J. Geo-Inf., vol. 10, no. 7, p. 485, 2021, doi: 10.3390/ijgi10070485. 423 

[24] X. Zong, Z. Chen, F. Yu & S. Wei, ―Local-global spatial-temporal graph convolutional network for traffic 424 

flow forecasting,‖ Electronics, vol. 13, no. 3, p. 636, 2024, doi: 10.3390/electronics13030636. 425 



 

16 

 

[25] Qiu et al., ―Traffic prediction with data fusion and machine learning,‖ Digital, vol. 4, no. 2, p. 12, 2025, 426 

doi:10.3390/analytics4020012.  427 

[26] A. E. Hoerl and R. W. Kennard, ―Ridge Regression: Biased Estimation for Nonorthogonal Problems,‖ 428 

Technometrics, vol. 12, no. 1, pp. 55–67, 2012, doi: 10.1080/00401706.1970.10488634. 429 

[27] C. Wang, Y. Hou, and M. Barth, ―Data-driven multi-step demand prediction for ride-hailing services using 430 

convolutional neural network,‖ in Advances in Computer Vision, vol. 944, Springer, 2020, pp. 11–22, 431 

doi:10.1007/978-3-030-17798-0_2. 432 

[28] R. Liu and S. Shin, ―A review of traffic flow prediction methods in intelligent transportation system 433 

construction,‖ Appl. Sci., vol. 15, no. 7, p. 3866, 2025, doi:10.3390/app15073866.  434 

[29] L. Breiman, ―Random forests,‖ Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001, doi: 435 

10.1023/A:1010933404324.  436 

[30] M. Attioui et al., ―Congestion forecasting using machine learning: A systematic review,‖ Smart Cities, vol. 5, 437 

no. 3, p. 76, 2025, doi:10.3390/futuretransp5030076.  438 

[31] M. Veres & M. Moussa, ―Deep learning for intelligent transportation systems: A survey of emerging trends,‖ 439 

IEEE Transactions on Intelligent transportation systems, vol. 21, no. 8, p. 3152-3168, 2019, doi: 440 

10.1109/TITS.2019.2929020.  441 

[32] X. Liu, L. Qin, M. Xu et al., ―A comprehensive review of traffic flow forecasting based on deep learning,‖ 442 

Neurocomputing, p. 132269, 2025, doi: 10.1016/j.neucom.2025.132269.  443 

[33] R. A. Acheampong, E. Agyemang, and A. Y. Asuah, ―Is ride-hailing a step closer to personal car use? 444 

Exploring associations between car-based ride-hailing and car ownership and use aspirations among young 445 

adults,‖ Travel Behaviour and Society, vol. 33, p. 100614, 2023, doi: 10.1016/j.tbs.2023.100614.  446 

[34] Yizhe Wang, Yangdong Liu & Xiaoguang Yang, ―An Empirical Comparison of Urban Road Travel Time 447 

Prediction Methods — Deep Learning, Ensemble Strategies and Performance Evaluation‖, Applied Sciences, 448 

15(14): 8075, 2025. https://doi.org/10.3390/app15148075 MDPI 449 

[35] Ali, R., Ali, A., Naeem, H. M. Y., Asad, M., Alsarhan, T., & Heyat, M. B. B., ―A Comprehensive Survey of 450 

Deep Learning-Based Traffic Flow Prediction Models for Intelligent Transportation Systems‖,ICCK 451 

Transactions on Advanced Computing and Systems, 1(3): 117–137, 2024. 452 

https://doi.org/10.62762/TACS.2025.795448 453 

[36] A. J. Smola and B. Schölkopf, ―A tutorial on support vector regression,‖ Stat. Comput., vol. 14, no. 3, pp. 454 

199–222, 2004, doi: 10.1023/B:STCO.0000035301.49549.88.  455 

[37] K.-L. Du, B. Jiang, J. Lu, J. Hua, M. N. S. Swamy, ―Exploring Kernel Machines and Support Vector 456 

Machines: Principles, Techniques, and Future Directions,‖ Mathematics, Vol. 12, no. 24, p. 3935, 2024, doi: 457 

10.3390/math12243935. 458 

[38] S. Yang et al., ―Ensemble learning for short-term traffic prediction,‖ J. Sensors, Vol. 2017, no. 1, 2017, doi: 459 

10.1155/2017/7074143.  460 

[39] Y. Ning et al., ―A review of research on traffic flow prediction methods based on deep learning,‖ ACM 461 

Comput. Surv., 2024, pp. 166–170, doi:10.1145/3677892.3677922.  462 

[40] S. Afandizadeh, S. Abdolahi, and H. Mirzahossein, ―Deep learning algorithms for traffic forecasting: A 463 

comprehensive review and comparison with classical ones,‖ J. Adv. Transportation, Vol. 2024, no. 1, p. 464 

9981657, 2024, doi:10.1155/2024/9981657.  465 

[41] B. Gomes, J. Coelho, and H. Aidos, ―A survey on traffic flow prediction and classification,‖ Intell. Syst. 466 

Appl., vol. 20, p. 200268, 2023, doi:10.1016/j.iswa.2023.200268.  467 

[42] J. Dong et al., ―TCEVIS: Visual analytics of traffic congestion influencing factors based on explainable 468 

machine learning,‖ Visual Informatics, vol. 8, no. 1, pp. 56–66, 2024, doi: 10.1016/j.visinf.2023.11.003. 469 

[43] H. Zhang and Z. Jing, ―Machine learning in intelligent transportation: A systematic review,‖ Adv. Eng. 470 

Technol. Res., vol. 14, no. 1, p. 945, 2025, doi: 10.56028/aetr.14.1.945.2025.  471 



 

17 

 

[44] W. Xu and Y. Huang, ―Mining urban congestion evolution characteristics,‖ Am. J. Traffic Transp. Eng., vol. 472 

5, no. 1, pp. 1–7, 2020, doi: 10.11648/j.ajtte.20200501.11. 473 

[45] Y. Deng, ―A hybrid network congestion prediction method integrating association rules and LSTM for 474 

enhanced spatiotemporal forecasting,‖ Transactions on Computational and Scientific Methods, vol. 5, no. 2, 475 

2025, doi: 10.5281/zenodo.14912727. 476 

 477 

 478 

Author Biography: - 479 
 480 

Dr. Amadou DIABAGATE received his Ph.D in computer science (artificial intelligence) at the Faculty 481 
of Science and Technology of AbdelmalekEssaadi University in Morocco (Tangier) in 2016. Since 2018, 482 
he has been Assistant Professor in computer science at the Faculty of Mathematics and Computer Science 483 
of Félix Houphouet-Boigny University in Abidjan, Côte d’Ivoire. He is a member of the artificial 484 
intelligence and big data research team at the Faculty of Mathematics and Computer Science. His research 485 
focuses on artificial intelligence, data science and big data. He is the President of the NGO IDTDS 486 
(Intelligent Digital Transformation and Data Strategies) which works to promote artificial intelligence and 487 
digital transformation. 488 

 489 
 490 

 491 
Prof. Abdellah AZMANI (Morocco, Tangier) received his Ph.D in Industrial Computing at the 492 
University of Science and Technology of Lille (France) in 1991. He worked as a professor at the Ecole 493 
Centrale de Lille and at the Institute of Computer and Industrial Engineering from Lens.  494 
He is a member of the Laboratory of Automatics and Informatics of Lille (LAIL). He is professor at 495 
Faculty of Sciences and Technology of Tangier, Morocco. He has contributed to many scientific 496 
researches. 497 
 498 
 499 

 500 
 501 

Prof. Adama Coulibaly works as a professor at the Faculty of Mathematics and Computer Science of 502 
Felix Houphouet-Boigny University (Côte d’Ivoire). He obtained his doctorate in mathematics in July 503 
1994 at Blaise-Pascal University in Clermont-Ferrand (France). 504 
He is currently the Director of the Mathematics Research Institute (IRMA) of Felix Houphouet-Boigny 505 
University. 506 
 507 

 508 

 509 


