

SUPERVISED MODELS FOR ESTIMATING LINK-LEVEL TRAFFIC DENSITY USING TRAJECTORY DATA

Manuscript Info

Manuscript History

Received: xxxxxxxxxxxxxxxx

Final Accepted: xxxxxxxxxxxxxxxx

Published: xxxxxxxxxxxxxxxx

Key words:-

Urban congestion prediction, Supervised learning, Urban mobility, Trajectory-based mobility data, Abidjan (African cities).

Abstract

Traffic congestion is a growing concern in rapidly expanding cities, particularly in contexts where conventional traffic monitoring systems provide limited spatial and temporal coverage. This challenge is especially visible in many cities of the Global South, where the scarcity of fine-grained data restricts detailed analysis of urban mobility at the road-segment level. This study examines the prediction of link-level traffic density in Abidjan using trajectory data collected from an e-hailing platform and supervised machine learning methods. Road segments are described through a combination of geometric, regulatory, and trajectory-based features, and several regression models are evaluated within a common experimental framework. The results indicate that reliable traffic density estimates can be obtained even in the absence of dense sensing infrastructure. Random Forest provide consistently accurate and stable predictions across heterogeneous traffic conditions. The analysis also suggests that regulatory characteristics, such as speed limits and road hierarchy, exert a stronger influence on traffic density than detailed geometric descriptors. These findings highlight the practical relevance of trajectory-based supervised learning as a flexible and affordable solution for traffic analysis and mobility planning in data-constrained urban environments.

Copy Right, IJAR, 2019,. All rights reserved.

1
2 **Introduction: -**

3 Traffic congestion has become a structural challenge in large metropolitan areas, particularly in cities undergoing
4 rapid urban growth and increasing motorization [1]. Beyond longer travel times and higher fuel consumption,
5 congestion has been widely shown to undermine economic productivity and degrade environmental sustainability in
6 urban systems [2]. These effects are especially acute in cities of the Global South, where transport infrastructure
7 development and traffic monitoring capacities frequently fail to keep pace with rising mobility demand [3].

8 In sub-Saharan African cities, traffic dynamics reflect a combination of strong demographic pressure, spatial
9 expansion, and a highly heterogeneous transport supply [4]. In Abidjan, formal public transport services operate
10 alongside informal modes, private vehicles, and app-based mobility platforms, resulting in pronounced spatial and
11 temporal variations in congestion across the road network [1]. Although recent investments in major road
12 infrastructure have improved connectivity on selected corridors, congestion remains a persistent daily constraint,
13 largely due to the lack of continuous and fine-grained information on traffic conditions at the level of individual
14 road segments [2,3].

15 Conventional traffic monitoring systems are primarily based on fixed sensing infrastructure, such as loop detectors,
16 cameras, and dedicated counting stations [5]. While these technologies provide accurate measurements where they
17 are deployed, their high installation and maintenance costs often limit spatial coverage, particularly in rapidly
18 expanding urban environments [6]. As a consequence, large portions of road networks in cities like Abidjan remain
19 insufficiently observed, restricting comprehensive congestion assessment and evidence-based traffic management
20 [3].

21 In recent years, the rapid diffusion of digital mobility platforms has created new opportunities for traffic
22 observation. Ride-hailing services continuously generate high-resolution trajectory data that capture vehicle
23 movements across extensive parts of the urban network [7]. When properly anonymized and aggregated, these
24 trajectory data have been shown to provide a reliable proxy for traffic conditions, enabling link-level analysis of
25 congestion dynamics in complex and heterogeneous urban settings [8].

26 The growing availability of trajectory-based data has coincided with significant advances in supervised machine
27 learning for traffic analysis. Previous studies have demonstrated that nonlinear and ensemble-based models
28 outperform classical linear approaches when modeling complex relationships between traffic density, road
29 characteristics, and temporal demand variations [9]. In particular, machine learning techniques such as tree-based
30 ensembles, kernel-based models, and neural networks are well suited to capturing the nonstationary and
31 heterogeneous nature of urban traffic dynamics [10].

32 Building on these developments, this study investigates link-level traffic density prediction in Abidjan using
33 trajectory data derived from an e-hailing platform. The objective is to evaluate the ability of supervised learning
34 models to estimate traffic density at the scale of individual road segments in a data-constrained urban environment.
35 Five regression approaches are examined: a Dummy Regressor used as a baseline, Linear Regression enhanced with
36 Polynomial Ridge regularization, Random Forest, Support Vector Regression, and Artificial Neural Networks. All
37 models are assessed within a unified experimental framework to ensure a consistent comparison of predictive
38 performance and robustness.

39 The remainder of this paper is organized as follows. Section 2 presents the urban mobility context of Abidjan and
40 motivates the use of trajectory-based data. Section 3 reviews related work on traffic density estimation, trajectory-
41 based traffic analysis, and supervised machine learning approaches. Section 4 describes the methodological
42 framework, and the experimental protocol, including descriptive statistics, correlation analysis, and hyperparameter
43 tuning. Section 5 reports the experimental results, with particular emphasis on error analysis and predicted–actual
44 relationships. Section 6 discusses the implications and limitations of the findings. Finally, Section 7 concludes the
45 paper and outlines perspectives for future research.

46 **Urban Mobility Context in Abidjan: -**

47 Abidjan is the economic capital of Côte d'Ivoire and one of the major metropolitan areas in West Africa. Over
48 recent decades, sustained population growth and rapid spatial expansion have led to a steady increase in daily travel
49 demand, exerting growing pressure on the urban road network. These dynamics have been documented in recent
50 empirical studies focusing on traffic data collection and network characterization in Abidjan, which highlight the
51 challenges associated with monitoring and managing mobility in a rapidly expanding urban environment [3,11].

52 Urban mobility in Abidjan is characterized by a high degree of modal diversity. Formal public transport systems
53 coexist with a wide range of informal services, including shared minibuses and taxis, alongside private vehicles and,
54 more recently, app-based ride-hailing platforms. This heterogeneous transport supply contributes to complex traffic
55 dynamics, with congestion levels varying significantly across space and time depending on land-use patterns, peak-
56 hour demand, and network structure. Previous analyses of urban mobility transformations in Abidjan emphasize that
57 such diversity complicates both traffic observation and modeling, particularly at the level of individual road
58 segments [11].

59 Traffic monitoring in Abidjan remains constrained by the limited deployment of fixed sensing infrastructure. As in
60 many cities of the Global South, conventional monitoring technologies such as loop detectors, cameras, and
61 permanent counting stations are installed only on selected parts of the network, resulting in fragmented spatial
62 coverage and discontinuous temporal information. Studies on traffic state estimation and monitoring underline that
63 these limitations hinder comprehensive congestion assessment and restrict the operational use of data-driven traffic
64 management strategies in large urban networks [12]. In this context, the growing adoption of digital mobility
65 platforms has created new opportunities for traffic observation. Ride-hailing services generate large volumes of

66 high-resolution trajectory data that capture vehicle movements across extensive portions of the urban network.
67 Several recent studies demonstrate that trajectory-based data can serve as a reliable proxy for traffic conditions,
68 enabling the analysis of speed variations and congestion patterns at the link level, particularly in environments
69 where fixed sensors are sparse or unevenly distributed [13,14].

70 Taken together, the combination of rapid urban growth, heterogeneous mobility patterns, limited fixed sensing
71 infrastructure, and increasing availability of trajectory data makes Abidjan a particularly relevant case study for
72 exploring alternative approaches to traffic density estimation. In such data-constrained urban contexts, trajectory-
73 based methods supported by supervised machine learning offer a promising pathway toward more comprehensive,
74 scalable, and cost-effective link-level traffic analysis.

75 **Related Work: -**

76 Traffic density and congestion estimation constitute a long-standing research topic within intelligent transportation
77 systems. Early studies primarily relied on data collected from fixed sensing infrastructure, including loop detectors,
78 cameras, and permanent counting stations, to estimate traffic states and congestion levels. Such infrastructure has
79 supported numerous operational traffic models and control strategies, particularly in cities equipped with dense
80 monitoring networks [12]. However, multiple studies emphasize that the deployment and maintenance of fixed
81 sensors remain costly and often result in uneven spatial coverage, especially in rapidly expanding urban
82 environments, thereby limiting their ability to capture fine-grained congestion patterns at the level of individual road
83 segments [15-17]. These limitations are further exacerbated in complex urban networks characterized by
84 heterogeneous demand and highly variable traffic conditions [18].

85 To address the shortcomings of fixed sensing approaches, a growing body of literature has explored the use of
86 vehicle trajectory data as an alternative or complementary source of traffic information. With the widespread
87 availability of GPS-enabled devices, probe vehicles, and digital mobility platforms, trajectory data have become
88 increasingly accessible for large-scale traffic analysis. Several studies demonstrate that trajectory-derived indicators,
89 such as speed profiles and travel time distributions, can effectively reflect congestion dynamics and support link-
90 level traffic state inference in urban road networks [19,20]. More recent contributions explicitly show that
91 congestion and traffic density can be inferred from GPS-based trajectories, even in contexts where direct
92 measurements are unavailable or unreliable [13,18]. In particular, ride-hailing trajectory data have attracted growing
93 attention due to their high temporal resolution and extensive spatial coverage, making them well suited for traffic
94 analysis in cities with sparse sensing infrastructure [14]. Empirical studies based on probe vehicle and GPS data
95 further confirm the ability of trajectory-based approaches to capture spatial heterogeneity and localized congestion
96 patterns across large urban networks [21,22].

97 In parallel, a growing stream of research has focused on graph-based spatiotemporal models that explicitly exploit
98 the structure of road networks, with attention-driven temporal graph convolutional architectures increasingly
99 adopted in traffic forecasting studies [23].

100 More recent developments emphasize the importance of jointly modeling local and global spatial interactions, as
101 illustrated by local-global spatiotemporal graph convolutional formulations proposed to better capture traffic flow
102 dynamics across urban networks [24].

103 More recent studies have moved beyond the use of single-source trajectory data by incorporating data fusion
104 strategies, in which heterogeneous information streams are combined with machine learning models to enhance the
105 robustness and generalization of traffic prediction, particularly in environments affected by sparse or noisy sensing
106 conditions [25].

107 Alongside the diversification of traffic data sources, supervised machine learning techniques have become central to
108 traffic prediction and congestion analysis. Linear regression models remain widely used as baseline approaches due
109 to their simplicity and interpretability, often serving as reference points for more advanced models [26].

110 Nevertheless, numerous empirical studies report that linear models struggle to capture the nonlinear relationships
111 inherent in traffic dynamics, particularly under variable demand and complex network interactions [6,7]. Kernel-
112 based methods, such as Support Vector Regression, have been shown to improve predictive performance by
113 modeling nonlinear patterns in traffic data, while ensemble approaches, including Random Forest, offer robustness
114 to noise and heterogeneous feature distributions [27-29]. Artificial Neural Networks have also been extensively
115 applied to traffic forecasting tasks, with several studies demonstrating their capacity to model complex temporal and
116 spatial dependencies when sufficient training data and appropriate regularization strategies are employed [30].

117 Recent survey studies point to a rapid growth of deep learning and hybrid learning approaches in traffic prediction,
118 while also underlining the decisive role played by data characteristics and evaluation protocols in shaping
119 comparative performance outcomes [31,32]. Survey and comparative analyses consistently stress that no single
120 learning paradigm systematically outperforms others across all traffic prediction scenarios. Instead, model
121 performance is highly dependent on data characteristics, feature design, and experimental settings, highlighting the
122 importance of systematic and controlled model comparison within a unified evaluation framework [8,33]. Despite
123 these advances, existing studies rarely provide comprehensive comparisons of multiple supervised learning models
124 for link-level traffic density estimation using real-world trajectory data in sub-Saharan African cities. Prior work
125 addressing African urban contexts often focuses on broader mobility challenges and data scarcity, with limited
126 quantitative evaluation of fine-grained traffic density models [3,11].

127 This study contributes to the literature by addressing these gaps through a systematic evaluation of multiple
128 supervised regression models for link-level traffic density prediction in Abidjan using trajectory data derived
129 exclusively from an e-hailing platform. By comparing a baseline model with linear, ensemble-based, kernel-based,
130 and neural network approaches within a consistent experimental framework, the paper provides empirical insights
131 into the suitability and robustness of different modeling strategies in a data-constrained urban environment. The
132 proposed approach emphasizes practicality and scalability, offering a data-driven framework that can support traffic
133 analysis and decision-making in cities where conventional monitoring infrastructure remains limited.

134 **Methodology: -**

135 This study relies on a supervised machine learning framework to estimate traffic density at the level of individual
136 road segments in Abidjan.

137 The methodological pipeline integrates trajectory-based data processing, feature construction, model training, and
138 performance evaluation, with a focus on robustness and reproducibility under realistic urban mobility conditions. An
139 overview of the workflow is provided in Figure 1.

140

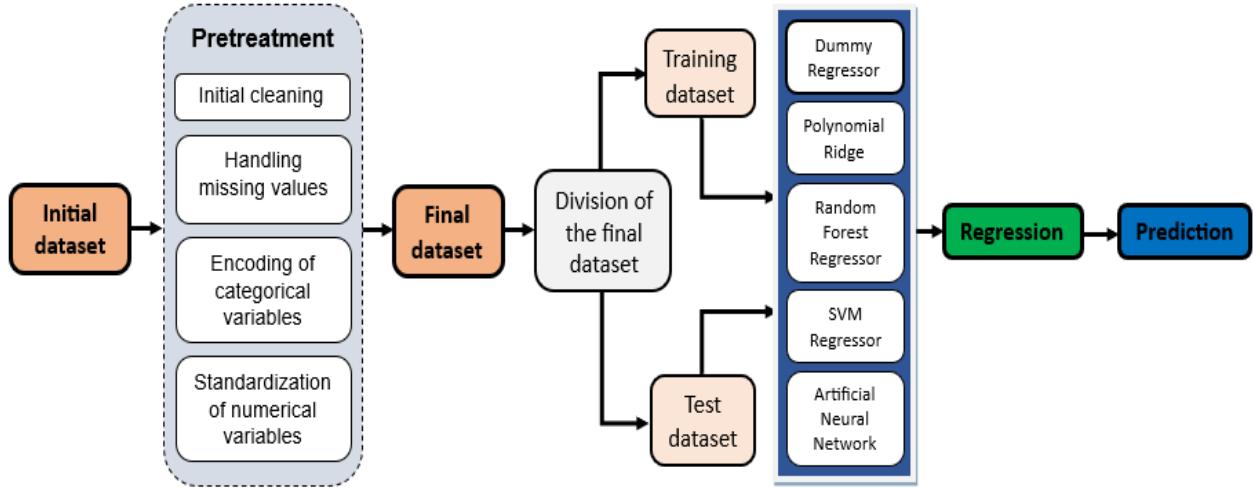


Figure 1: - Overview of the machine learning pipeline used

Dataset and Study Area:

The empirical analysis is based on trajectory data collected from an e-hailing platform operating in Abidjan, Côte d'Ivoire. The dataset consists of anonymized vehicle trajectories describing completed trips within the metropolitan area. Each record contains spatiotemporal information that allows trajectories to be associated with individual road segments and aggregated at the link level.

During preprocessing, only trips with consistent timestamps, valid GPS traces, and origins and destinations located within the study area were retained. Cancelled trips, incomplete trajectories, and corrupted records were systematically removed. All data were handled in aggregated and anonymized form to ensure compliance with privacy and ethical requirements. Although the present analysis focuses on Abidjan, the overall methodological framework is designed to remain applicable to other urban environments facing similar data constraints.

Feature Construction and Descriptive Statistics:

A set of explanatory variables was constructed to characterize traffic conditions at the road-segment level. These variables reflect complementary aspects of the urban network, including geometric properties of links, regulatory attributes such as posted speed limits, and trajectory-derived indicators capturing vehicle movement patterns. The target variable corresponds to traffic density estimated for each segment over predefined time intervals.

Table 1: - Summary of descriptive statistics for key variables

Variable	Mean	Variance	Standard Deviation	Median	Mode	Range	Min	Max
BBox Area (m ²)	6085	330856000	18189,40	303,28	0	141191	0	141191
BBox Height (m)	71,26	8202,66	90,57	35,9	10,56	487,2	0,33	487,54
BBox Width (m)	43,6	4869,94	69,78	16,96	0	466,39	0	466,39
Mean Bearing (°)	164,04	13478,6	116,1	179,72	0	357,61	0	357,61
Chord (m)	93,05	11388,2	106,72	50,79	10,57	564,79	2,35	567,13
End Bearing (°)	164,07	13437,5	115,92	179,72	0	359,82	0	359,82

Length (m)	93,64	11734,2	108,32	51,06	10,57	587,54	2,35	589,89
Vertices	3,27	5,94	2,44	2	2	14	2	16
Seg. Max (m)	53,3	1884,03	43,41	36,51	10,57	179,32	2,35	181,66
Seg. Mean (m)	44,62	1360,6	36,89	29,82	10,57	174,01	2,35	176,36
Seg. SD (m)	5,58	119,16	10,92	0	0	45,22	0	45,22
Sinuosity	1	0	0,01	1	1	0,05	1	1,05
Start Bearing (°)	164,34	13609,4	116,66	180	0	359,37	0	359,37
Straightness	1	0	0,01	1	1	0,04	0,96	1
Max Turn (°)	4,08	5,78	2,4	4,08	4,08	14,96	0	14,96
Mean Turn (°)	2,83	3,24	1,8	2,83	2,83	13,12	0	13,12
Turn p90 (°)	3,7	4,53	2,13	3,7	3,7	14,22	0	14,22
Vertex Density (m ⁻¹)	0,04	0	0,05	0,03	0,03	0,42	0,01	0,43
Length	93,33	11653,9	107,95	50,7	21,2	585,2	2,4	587,6
Segments	2,27	5,94	2,44	1	1	14	1	15
Speed Limit	66,11	624,79	25	60	50	70	50	120

160

161 Descriptive statistics were computed to summarize the distributions of the explanatory variables and the target
 162 variable. Table 1 reports key summary measures, including indicators of central tendency, dispersion, and range.
 163 The results reveal pronounced heterogeneity across road segments. Several geometry-related variables exhibit
 164 strongly skewed distributions, with median values substantially lower than means, indicating the presence of a
 165 limited number of large or structurally complex segments alongside a majority of shorter and simpler links.

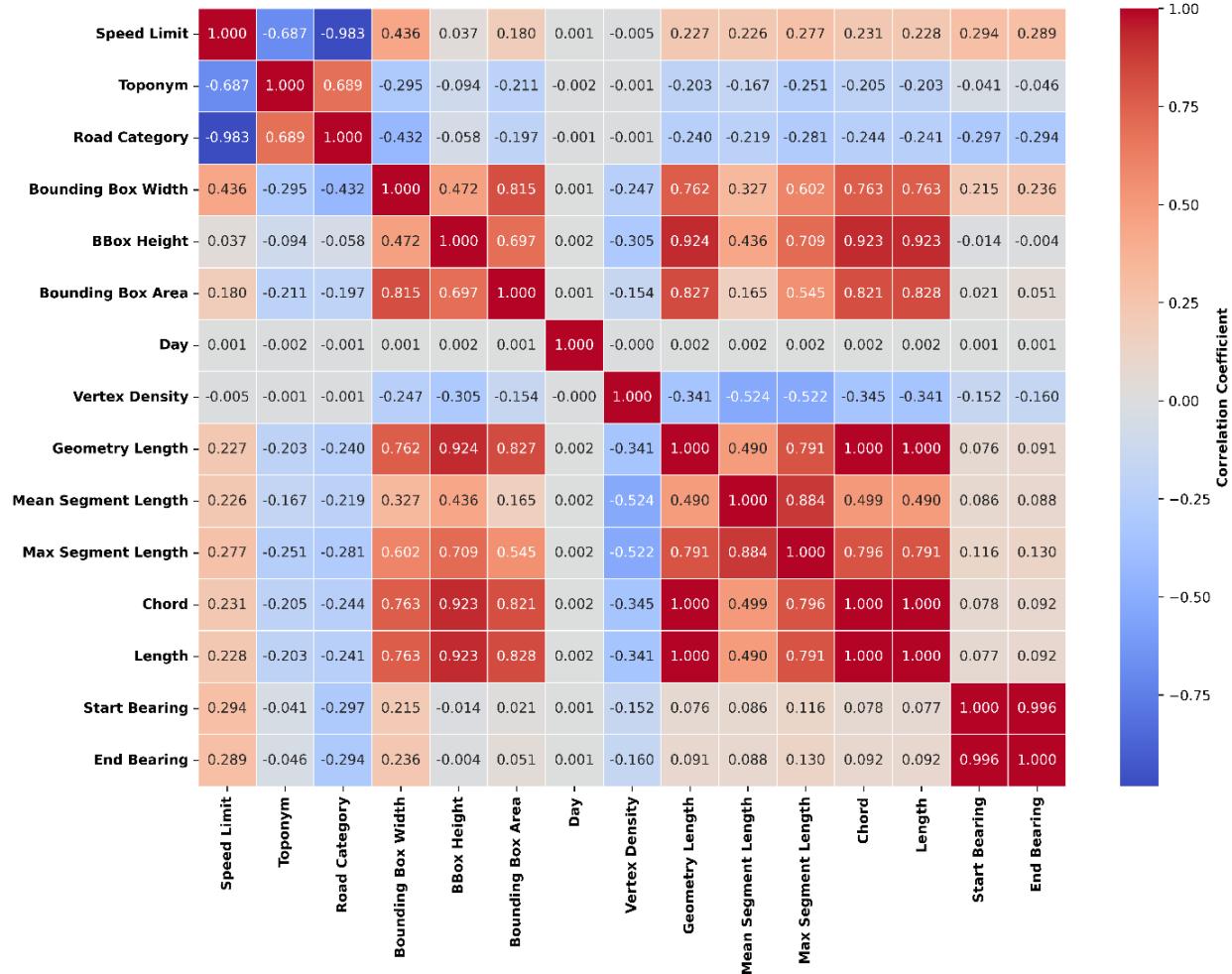
166 Regulatory attributes also display considerable variability across the network, reflecting differences in road function
 167 and hierarchy. Taken together, these descriptive patterns underline the structural diversity of Abidjan's road network
 168 and motivate the use of flexible regression models capable of capturing nonlinear relationships.

169 **Correlation Analysis:**

170 To explore relationships among explanatory variables and assess potential redundancy, a correlation matrix was
 171 computed using Pearson correlation coefficients. The resulting heatmap is presented in Figure 2. The analysis
 172 highlights distinct correlation structures associated with different feature groups.

173 Regulatory attributes form a coherent cluster, while geometric descriptors related to segment size and extent are
 174 strongly correlated with one another. In contrast, indicators of local structural complexity and orientation display
 175 weaker associations with size-related variables. Importantly, correlations between regulatory and geometric feature
 176 groups remain moderate, suggesting limited redundancy across these dimensions.

177 Overall, the correlation patterns indicate that the selected features provide complementary information rather than
 178 duplicating the same signal. On this basis, all constructed variables were retained for the supervised learning
 179 experiments.



180
 181 **Figure 2: - Heatmap of the Correlation Between the Top 15 Predictive Features**

182 **Supervised Learning Models:**

183 Rather than relying on a single predictive approach, this study compares several regression models with distinct
 184 assumptions and levels of flexibility, selected to cover the main families of supervised learning approaches
 185 commonly applied in traffic prediction. These range from simple baseline and linear models to ensemble-based,
 186 kernel-based, and neural methods, thereby ensuring a balanced and methodologically sound comparison [34, 35].

187 To capture nonlinear relationships while maintaining model stability, Linear Regression with Polynomial Ridge
 188 regularization was retained. Polynomial feature expansion allows interaction effects to be modeled, while L2
 189 regularization helps control estimation variance in the presence of correlated predictors [26].

190 An ensemble-based approach is represented by the Random Forest Regressor, which aggregates multiple decision
 191 trees trained on randomized subsets of the data. This method is well suited to heterogeneous feature spaces and
 192 complex nonlinear dependencies [29].

193 Support Vector Regression (SVR) was also considered, as it uses kernel-based transformations to approximate
194 nonlinear relationships through margin-based optimization, often yielding strong generalization performance on
195 structured datasets [36, 37].

196 Finally, an Artificial Neural Network (ANN) was employed to learn nonlinear interactions across multiple
197 explanatory variables. The network relies on layered representations optimized through gradient-based learning and
198 is capable of capturing complex feature interactions [30].

199 A Dummy Regressor serves as a baseline, providing a reference level of performance against which more advanced
200 models can be evaluated [38].

201 **Hyperparameter Tuning and Experimental Protocol:**

202 To ensure a fair comparison across models, hyperparameter tuning was conducted using a randomized search
203 strategy. This approach enables efficient exploration of the hyperparameter space while limiting computational cost.
204 The Dummy Regressor was excluded from this tuning procedure and evaluated using baseline strategies.

205 Model performance was assessed through a K-fold cross-validation scheme in order to obtain stable estimates of
206 predictive accuracy and generalization. Evaluation relied on standard regression metrics, including the coefficient of
207 determination (R^2) and error-based measures such as Mean Absolute Error (MAE) and Root Mean Squared Error
208 (RMSE). The optimized hyperparameter configurations retained for each model are summarized in Table 2.

209 **Table 2: - Summary of Machine Learning Models and their Optimized Hyperparameter Settings**

Model	Best Hyperparameters
Dummy Regressor	{'strategy': 'mean'}
Polynomial+Ridge	{'poly_degree': 2, 'poly_include_bias': False, 'poly_interaction_only': False, 'ridge_alpha': 0.1, 'ridge_fit_intercept': True}
Random Forest	{'learning_rate': 0.1, 'max_depth': 6, 'n_estimators': 200, 'subsample': 0.8}
SVM Regressor	{'C': 10, 'gamma': 'scale', 'kernel': 'rbf'}
Artificial Neural Network	{'activation': 'relu', 'alpha': 0.01, 'hidden_layer_sizes': (50, 30)}

210

211 **Experimental Results and Analysis: -**

212 This section reports the experimental results obtained from the supervised learning models used to estimate link-
213 level traffic density in Abidjan. The analysis builds exclusively on results already produced in the complete study
214 and focuses on global performance, error behavior, and calibration quality. No explainable AI techniques are
215 considered at this stage, and the discussion is deliberately limited to empirical observations.

216 **Global Model Performance:**

217 The first level of analysis compares the overall predictive performance of the models using standard regression
218 metrics. Cross-validated values of R^2 , RMSE, MAE, MSE, and MAPE are summarized in Table 3, providing a
219 consistent basis for comparison across models.

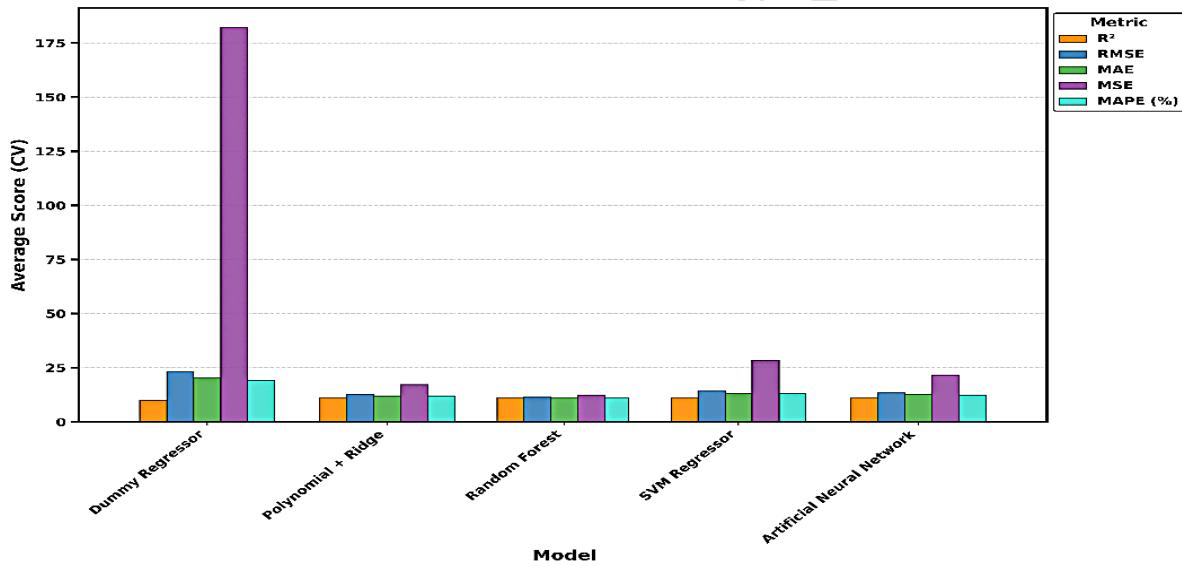
220 As expected, the Dummy Regressor performs poorly across all metrics, yielding a coefficient of determination close
221 to zero and very large errors, with an RMSE exceeding 13. It therefore serves only as a baseline reference. In
222 contrast, Polynomial Ridge Regression represents a clear improvement, reaching an R^2 of about 0.96 and reducing

223 the RMSE to roughly 2.7. This gain suggests that the inclusion of nonlinear terms captures a significant part of the
 224 structure underlying traffic density variation across road segments.

225 **Table 3: - Cross-validation performance of the regression models for traffic density prediction**

Models	R2	RMSE	MAE	MSE	MAPE
Dummy Regressor	-0.000045	13.116091	10.470514	172.031836	9.184379
Polynomial + Ridge	0.961704	2.700657	2.023422	7.293547	1.842884
Random Forest	0.990780	1.472332	1.058527	2.167762	0.969000
SVM Regressor	0.907712	4.273489	3.179472	18.262707	2.965131
Artificial Neural Network	0.953348	3.396052	2.569213	11.533171	2.312873

226
 227 Among the remaining models, Random Forest stands out as the best-performing approach. It achieves the highest
 228 explanatory power, with an R^2 close to 0.99, while maintaining low prediction errors (RMSE \approx 1.47 and MAE \approx
 229 1.06). Support Vector Regression and the Artificial Neural Network also outperform the linear baseline, with
 230 coefficients of determination above 0.90, but they are associated with larger residual errors and greater variability
 231 across cross-validation folds. These differences in predictive behavior are further illustrated in Figure 3, which
 232 highlights the progressive improvement obtained when moving from simpler to more flexible learning models.



233
 234 **Figure 3: - Comparative Barplot of Model Performance by Metric Using Cross-Validation**

235 Taken together, the global metrics reveal a clear hierarchy among the evaluated approaches, with ensemble-based
 236 methods providing the most accurate and reliable estimates of traffic density at the link level.

237 **Error Analysis and Diagnostic Plots:**

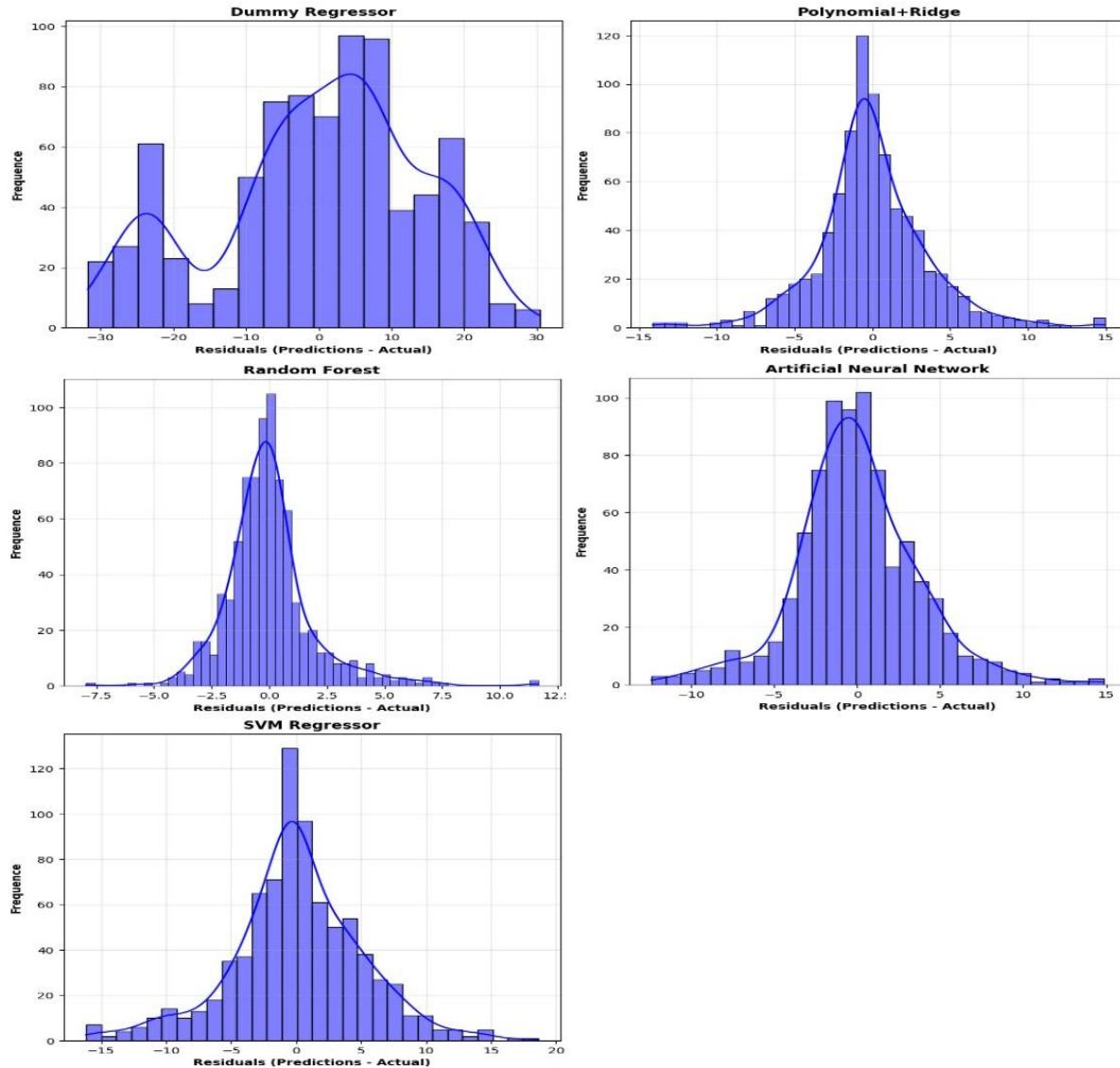
238 While aggregate metrics provide a first indication of model performance, residual analysis offers deeper insight into
 239 stability and robustness. The distributions of prediction errors obtained under cross-validation are shown in Figure 4.

240 The Dummy Regressor produces wide and unstructured residual distributions, confirming its inability to capture
 241 meaningful variation in traffic density. Polynomial Ridge Regression yields residuals that remain centered around
 242 zero but exhibit heavier tails, suggesting reduced accuracy for extreme density values.

243 Random Forest displays the most balanced residual behavior. Its error distribution is narrow, approximately
 244 symmetric, and closely centered on zero, indicating both low variance and limited systematic bias across different

245 traffic regimes. Support Vector Regression and the Artificial Neural Network also generate centered residuals,
246 although with broader dispersion, reflecting higher sensitivity to local fluctuations and model configuration.

247 Overall, the diagnostic plots confirm that ensemble-based models not only achieve higher accuracy but also provide
248 more stable and consistent error behavior, a desirable property for link-level traffic density estimation in
249 heterogeneous urban networks.



250

251 **Figure 4: - Residual distributions (Predictions – Actual) for all regression models under cross-validation**

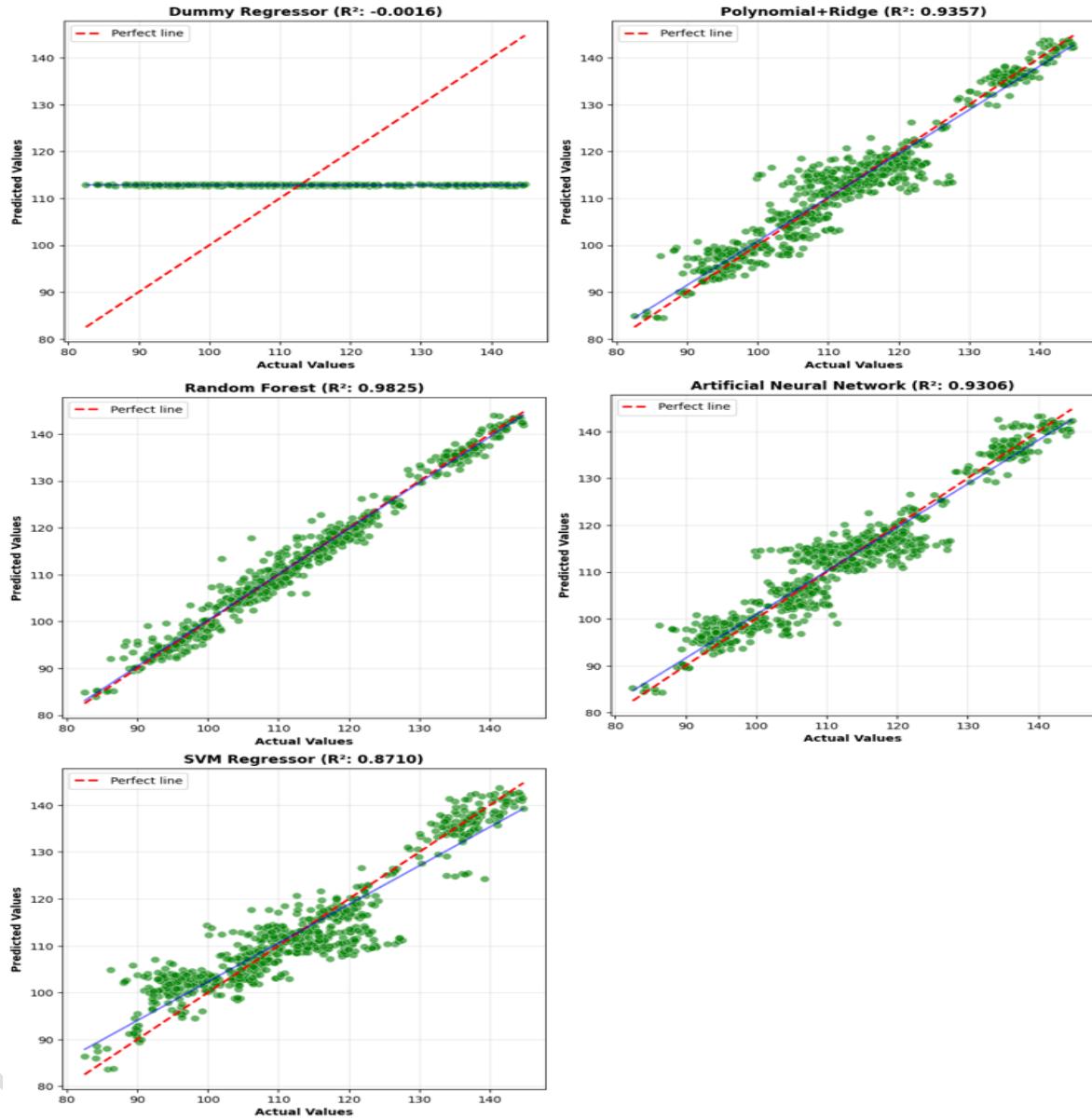
252 **Predicted–Actual Relationship Analysis:**

253 Model calibration was further examined by comparing predicted and observed traffic density values. Scatter plots of
254 predicted versus actual densities are presented in Figure 5, with the identity line included as a reference.

255 Polynomial Ridge Regression shows a reasonable alignment with the diagonal but tends to smooth high-density
256 observations, resulting in mild underestimation at the upper end of the range. Random Forest exhibits the strongest
257 agreement with observed values, with predictions tightly clustered around the identity line across both low- and
258 high-density conditions.

259 Support Vector Regression and the Artificial Neural Network capture the overall trend but display greater dispersion
260 around the diagonal, indicating increased variability in predictions. As expected, the Dummy Regressor shows no
261 meaningful alignment with observed densities.

262 These visual patterns are consistent with the numerical results and residual diagnostics. Together, they indicate that
263 Random Forest provides the most accurate and well-calibrated representation of link-level traffic density among the
264 models considered.



265

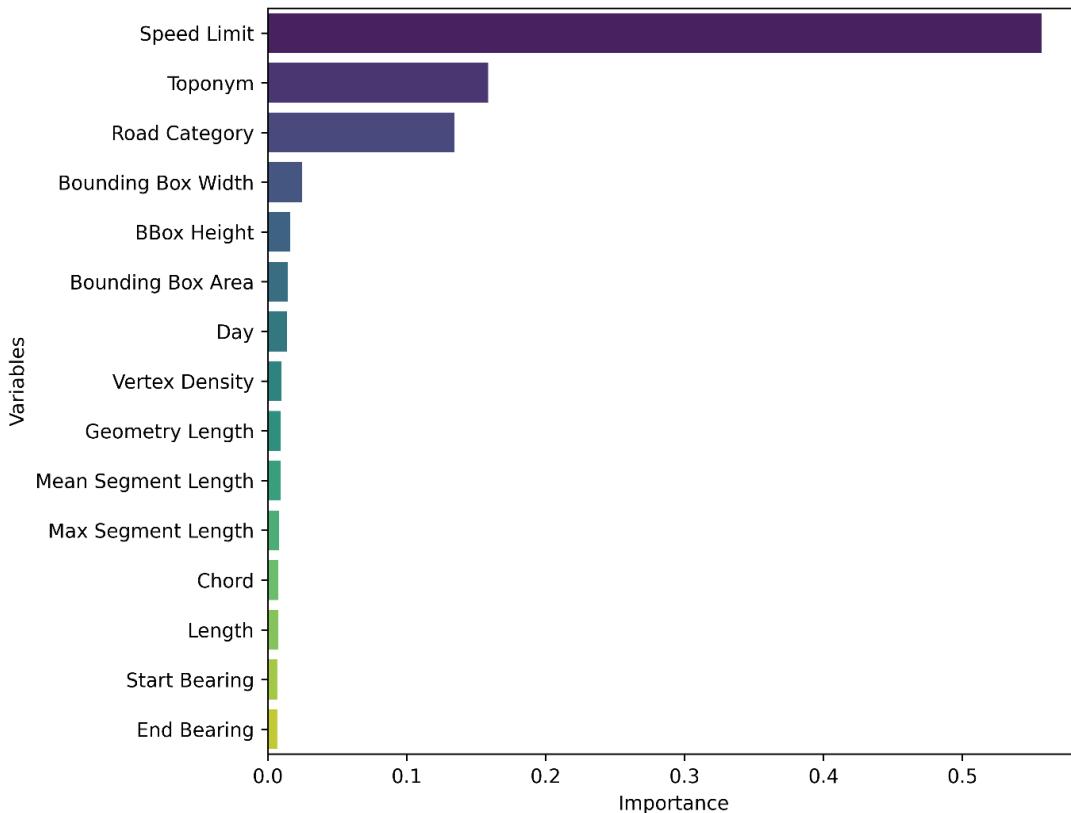
266 **Figure 5: -Predicted vs. Actual traffic density plots for the regression models under cross-validation**

267 **Global Feature Importance:**

268 To complement the performance analysis with a global view of variable influence, feature importance was examined
269 using the Random Forest model. The relative importance of the most influential predictors is shown in Figure 6.

270 Regulatory and contextual variables dominate the ranking. Speed Limit emerges as the most influential feature,
271 followed by indicators related to road category and spatial context. Geometric descriptors contribute more
272 moderately, while fine-grained orientation and segmentation variables appear at the lower end of the ranking.

273 This global importance analysis confirms that traffic density patterns in Abidjan are driven primarily by regulatory
274 context and network hierarchy, with geometric characteristics providing secondary refinement. The analysis remains
275 strictly global and does not rely on local explainability techniques.



276
277 **Figure 6: -Top 15 most important features according to the Random Forest model**

278 **Discussion: -**

279 This study shows that supervised machine learning can provide a reliable and effective framework for estimating
280 link-level traffic density in Abidjan in situations where conventional traffic sensing infrastructure remains sparse or
281 unevenly deployed. By combining trajectory data from an e-hailing platform with geometric and regulatory
282 descriptors, the proposed approach captures structural congestion patterns that are difficult to observe through
283 traditional monitoring systems alone.

284 **Why Some Models Perform Better Than Others:**

285 The results indicate that Random Forest tends to outperform linear, kernel-based, and neural network approaches in
286 the considered setting. This advantage can largely be attributed to the ability of tree-based ensemble methods to
287 model complex and nonlinear interactions between heterogeneous predictors, including road geometry, regulatory
288 constraints, and spatial context. Such interactions are particularly relevant at the link level, where traffic density is
289 strongly shaped by structural characteristics of the road network rather than by purely temporal dynamics. Similar
290 observations have been reported in recent comparative studies on traffic flow and congestion prediction, in which
291 ensemble-based methods consistently demonstrate strong robustness in heterogeneous urban environments [4,5,28].

292 Polynomial regression achieves reasonable performance but remains limited in its capacity to capture higher-order
293 interactions across diverse road segments. Kernel-based methods and artificial neural networks also provide
294 acceptable levels of accuracy; however, their performance appears more sensitive to feature scaling, hyperparameter
295 configuration, and data distribution. This sensitivity may reduce their stability in operational contexts where
296 calibration data are limited or unevenly distributed [39,40].

297 **Consistency with the Existing Literature:**

298 The observed dominance of ensemble-based models is well aligned with recent findings in the traffic prediction
299 literature. Several reviews of machine learning applications in intelligent transportation systems emphasize that tree-
300 based ensembles offer a favorable balance between predictive accuracy, robustness to noise, and computational
301 efficiency, particularly in contexts characterized by uneven data quality and coverage [6,30,41]. Empirical studies
302 conducted in African and North African cities report similar trends, highlighting the suitability of these models for
303 congestion estimation using trajectory-based data [4,5].

304 In addition, the strong influence of regulatory variables, such as speed limits and road hierarchy, is consistent with
305 prior work showing that contextual and functional attributes often play a more decisive role than fine-grained
306 geometric descriptors when explaining congestion patterns at the scale of urban road networks [9,42]. This finding
307 reinforces the importance of integrating regulatory information when modeling traffic density in rapidly urbanizing
308 cities.

309 **Relevance for Data-Constrained Cities:**

310 From an applied perspective, these results underline the practical value of trajectory-driven learning frameworks for
311 cities with limited fixed sensing infrastructure. In Abidjan, as in many cities of the Global South, the uneven
312 deployment of traffic sensors restricts the ability to monitor congestion comprehensively across the network.
313 Trajectory data generated by e-hailing services therefore represent a valuable alternative source of high-resolution
314 information that can support network-wide traffic analysis at relatively low cost [13,14].

315 By focusing on supervised learning models rather than complex spatiotemporal architectures, the proposed approach
316 remains computationally tractable and adaptable to other urban contexts facing similar data constraints. This makes
317 it particularly relevant for transport authorities seeking scalable tools to support congestion diagnosis and mobility
318 planning in environments where data availability remains heterogeneous [15,43].

319 **Limitations:**

320 Some limitations nevertheless deserve to be acknowledged. First, the analysis relies on trajectory data from a single
321 mobility platform, which may introduce spatial sampling bias toward high-demand corridors and central areas. As a
322 result, peripheral neighborhoods with lower e-hailing activity may be underrepresented, potentially affecting
323 prediction accuracy in these zones [44,12]. Second, the temporal scope of the dataset is limited, which restricts the
324 ability to capture long-term seasonal effects or atypical congestion patterns associated with special events or
325 disruptions. Finally, although the selected features capture key structural and regulatory drivers of traffic density,
326 other potentially relevant factors, such as land-use intensity or weather conditions, were not explicitly modeled and
327 may explain part of the residual variability observed in the predictions [16,45].

328 Despite these limitations, the consistency of the results with prior studies and the stability of the best-performing
329 models suggest that the proposed framework constitutes a robust and relevant foundation for link-level traffic
330 density estimation in data-constrained urban environments.

331 **Conclusion: -**

332 This paper investigated the problem of link-level traffic density prediction in Abidjan using trajectory data derived
333 from an e-hailing platform and supervised machine learning models. The study was motivated by the persistent lack
334 of fine-grained traffic monitoring infrastructure in many rapidly growing cities of the Global South, where
335 conventional sensing systems provide only partial and uneven coverage of urban road networks.

336 By comparing a baseline model with linear, ensemble-based, kernel-based, and neural network regressors within a
337 unified experimental framework, the results demonstrate that supervised learning can effectively capture traffic
338 density patterns at the scale of individual road segments. Among the evaluated approaches, ensemble-based
339 methods, and in particular Random Forest, consistently provide the most accurate and stable predictions across
340 global performance metrics, residual diagnostics, and calibration analyses. These findings highlight the importance
341 of modeling nonlinear interactions between regulatory context, road hierarchy, and trajectory-derived indicators
342 when addressing heterogeneous urban traffic conditions.

343 Beyond predictive accuracy, the analysis shows that regulatory and contextual variables play a dominant role in
344 shaping traffic density patterns in Abidjan, while detailed geometric descriptors contribute more moderately once
345 higher-level structural information is taken into account. This observation reinforces the relevance of incorporating
346 regulatory and functional attributes in data-driven traffic models, especially in urban environments characterized by
347 mixed transport systems and uneven infrastructure development.

348 From an applied perspective, the proposed framework illustrates the practical value of trajectory-based data for
349 traffic analysis in data-constrained contexts. By relying on widely available mobility data and supervised learning
350 models that remain computationally tractable, the approach offers a scalable alternative to sensor-dependent
351 monitoring systems. It can support network-wide congestion assessment and provide quantitative insights that are
352 difficult to obtain through traditional data sources alone.

353 Several limitations nonetheless remain. The reliance on a single mobility data provider may introduce spatial and
354 behavioral biases, and the indirect estimation of traffic density from trajectories cannot fully replace ground-truth
355 measurements. In addition, the analysis focuses on global predictive behavior and does not explicitly address
356 temporal dynamics or localized congestion phenomena.

357 Despite these constraints, the study provides a solid empirical foundation for the use of supervised learning and
358 trajectory data in link-level traffic density estimation in rapidly urbanizing cities. Future work may extend this
359 framework by integrating additional data sources, exploring temporal modeling strategies, or applying the approach
360 to other urban contexts facing similar monitoring challenges. Taken together, the results contribute to ongoing
361 efforts to develop data-driven, scalable, and context-aware tools for urban traffic analysis and mobility planning.

362

363 **References: -**

- 364 [1] J. Doherty, "Mobilizing social reproduction: Gendered mobility and everyday infrastructure in Abidjan,"
365 *Mobilities*, vol. 16, no. 5, pp. 758–774, 2021, doi: 10.1080/17450101.2021.1944288.
- 366 [2] G. Falchetta, M. Noussan, and A. T. Hammad, "Comparing paratransit in seven major African cities: An
367 accessibility and network analysis," *Journal of Transport Geography*, vol. 94, p. 103131, 2021, doi:
368 10.1016/j.jtrangeo.2021.103131.
- 369 [3] G. Sylla, P. Apparicio, and A. N. (coauthors), "Mapping road traffic noise descriptors in a sub-Saharan city:
370 An extensive mobile data collection in Abidjan (Ivory Coast)," *African Transport Studies*, vol. 3, p. 100067,
371 2025, doi: 10.1016/j.aftran.2025.100067.
- 372 [4] U. U. Imoh and M. Movahedi Rad, "Analysis and prediction of traffic conditions using machine learning
373 models on Ikorodu Road in Lagos State, Nigeria," *Infrastructures*, vol. 10, no. 5, p. 122, 2025,
374 doi:10.3390/infrastructures10050122.
- 375 [5] L. Hammoumi et al., "Leveraging machine learning to predict traffic jams: Case study of Casablanca,
376 Morocco," *J. Urban Manag.*, 2025, doi: 10.1016/j.jum.2025.02.004.
- 377 [6] P. Qi, C. Pan, X. Xu, J. Wang, J. Liang, and W. Zhou, "A review of dynamic traffic flow prediction methods
378 for global energy-efficient route planning," *Sensors*, vol. 25, no. 17, p. 5560, 2025, doi:10.3390/s25175560.

379 [7] K. N. Lam, "Traffic prediction using LSTM, RF and XGBoost," in *Proc. 2nd Int. Conf. Data Analysis and*
 380 *Machine Learning (DAML)*, 2024, vol. 1, pp. 267–274, doi:10.5220/0013515600004619.

381 [8] N. A. M. Razali, N. Shamsaimon, K. K. Ishak et al., "Gap, techniques and evaluation: Traffic flow prediction
 382 using machine learning and deep learning," *J. Big Data*, vol. 8, p. 152, 2021, doi:10.1186/s40537-021-00542-
 383 7.

384 [9] K. Hamad, E. Alotaibi, W. Zeiada, G. Al-Khateeb, S. Abu Dabous, M. Omar, B. R. K. Mantha, M. G. Arab,
 385 and T. Merabtene, "Explainable artificial intelligence visions on incident duration using eXtreme Gradient
 386 Boosting and SHapley Additive exPlanations," *Multimodal Transportation*, vol. 4, no. 2, p. 100209, 2025,
 387 doi: 10.1016/j.multra.2025.100209.

388 [10] B. Lv, H. Gong, B. Dong; Z. Wang, H. Guo, J. Wang, and J. Wu, "An Explainable XGBoost Model for
 389 International Roughness Index Prediction and Key Factor Identification," *Applied Sciences*, vol. 15, no. 4, p.
 390 1893, 2025. doi: 10.3390/app15041893.

391 [11] G. Spire, A. Steck, and S. M. Koffi, "La modernisation urbaine depuis la portière d'un minibus à Yopougon
 392 (Abidjan). Les effets du nouvel ordre infrastructurel sur les vies citadines," *Flux*, no. 135, pp. 103–114, 2024,
 393 doi: 10.3917/flux1.135.0103.

394 [12] W. Deng, H. Lei, and X. Zhou, "Traffic state estimation and uncertainty quantification based on
 395 heterogeneous data sources: A three detector approach," *Transp. Res. Part B*, vol. 57, pp. 132–157, 2013,
 396 doi: 10.1016/j.trb.2013.08.015.

397 [13] S. Xu, L. Zhao, C. Wang & Z. He, "Traffic congestion estimation on urban road segments considering
 398 dynamic critical bottleneck based on GPS trajectory data," *Transportation Letters*, pp. 1–20, 2025, doi:
 399 10.1080/19427867.2025.2546422.

400 [14] Y. Liu et al., "How machine learning informs ride-hailing services: A survey," *Mach. Learn. Appl.*, Vol. 2, p.
 401 100075, 2022, doi:10.1016/j.commr.2022.100075.

402 [15] A. Y. Asuah, R. A. Acheampong, "Transport accessibility research in African cities: Systematic evidence
 403 review, knowledge gaps and directions for future research," *Urban Transitions*, vol. 3, p. 100013, 2025, doi:
 404 10.1016/j.ubtr.2025.100013.

405 [16] Y. Hou, Z. Deng, and H. Cui, "Short-term traffic flow prediction with weather conditions: Based on Deep
 406 Learning Algorithms and Data Fusion," *Complexity*, Vol. 2021, no 1, p. 6662959, 2021, doi:
 407 10.1155/2021/6662959.

408 [17] S. Yu, J. Peng, Y. Ge, X. Yu, F. Ding, S. Li, C. Ma, "A traffic state prediction method based on spatial-
 409 temporal data mining of floating car data by using autoformer architecture," *Computer-Aided Civil and*
 410 *Infrastructure Engineering*, Vol. 39, no. 18, pp. 2774 – 2787, 2024, doi: 10.1111/mice.13179.

411 [18] S. Sun, J. Chen, and J. Sun, "Traffic congestion prediction based on GPS trajectory data," *Int. J. Distrib.
 412 Sensor Netw.*, vol. 15, no. 5, 2019, doi: 10.1177/1550147719847440.

413 [19] I. Benfaress, B. Afaf and Z. Ahmed, "Enhancing Traffic Accident Severity Prediction Using ResNet and
 414 SHAP for Interpretability," *AI*, vol. 5, no. 4, pp. 2568–2585, doi: 10.3390/ai5040124.

415 [20] A. Grigorev et al., "Traffic incident duration prediction: A systematic review of techniques," *Adv.
 416 Transportation Rev.*, Vol. 2024, no.1, p. 3748345, 2024, doi:10.1155/atr/3748345.

417 [21] Y. Zhang et al., "Incorporating multimodal context information into traffic speed forecasting through graph
 418 deep learning," *International Journal of Geographical Information Science*, Vol. 37, no. 9, pp. 1909 – 1935,
 419 2023, doi: 10.1080/13658816.2023.2234959.

420 [22] S. Guo et al., "Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow
 421 Forecasting," in *Proc. AAAI*, vol. 33, no. 1, pp. 922–929, 2019, doi: 10.1609/aaai.v33i01.3301922.

422 [23] Bai et al., "A3T-GCN: Attention Temporal Graph Convolutional Network for Traffic Forecasting," *ISPRS
 423 Int. J. Geo-Inf.*, vol. 10, no. 7, p. 485, 2021, doi: 10.3390/ijgi10070485.

424 [24] X. Zong, Z. Chen, F. Yu & S. Wei, "Local-global spatial-temporal graph convolutional network for traffic
 425 flow forecasting," *Electronics*, vol. 13, no. 3, p. 636, 2024, doi: 10.3390/electronics13030636.

426 [25] Qiu et al., "Traffic prediction with data fusion and machine learning," *Digital*, vol. 4, no. 2, p. 12, 2025,
427 doi:10.3390/analytics4020012.

428 [26] A. E. Hoerl and R. W. Kennard, "Ridge Regression: Biased Estimation for Nonorthogonal Problems,"
429 *Technometrics*, vol. 12, no. 1, pp. 55–67, 2012, doi: 10.1080/00401706.1970.10488634.

430 [27] C. Wang, Y. Hou, and M. Barth, "Data-driven multi-step demand prediction for ride-hailing services using
431 convolutional neural network," in *Advances in Computer Vision*, vol. 944, Springer, 2020, pp. 11–22,
432 doi:10.1007/978-3-030-17798-0_2.

433 [28] R. Liu and S. Shin, "A review of traffic flow prediction methods in intelligent transportation system
434 construction," *Appl. Sci.*, vol. 15, no. 7, p. 3866, 2025, doi:10.3390/app15073866.

435 [29] L. Breiman, "Random forests," *Mach. Learn.*, vol. 45, no. 1, pp. 5–32, 2001, doi:
436 10.1023/A:1010933404324.

437 [30] M. Attiou et al., "Congestion forecasting using machine learning: A systematic review," *Smart Cities*, vol. 5,
438 no. 3, p. 76, 2025, doi:10.3390/futuretransp5030076.

439 [31] M. Veres & M. Moussa, "Deep learning for intelligent transportation systems: A survey of emerging trends,"
440 *IEEE Transactions on Intelligent transportation systems*, vol. 21, no. 8, p. 3152-3168, 2019, doi:
441 10.1109/TITS.2019.2929020.

442 [32] X. Liu, L. Qin, M. Xu et al., "A comprehensive review of traffic flow forecasting based on deep learning,"
443 *Neurocomputing*, p. 132269, 2025, doi: 10.1016/j.neucom.2025.132269.

444 [33] R. A. Acheampong, E. Agyemang, and A. Y. Asuah, "Is ride-hailing a step closer to personal car use?
445 Exploring associations between car-based ride-hailing and car ownership and use aspirations among young
446 adults," *Travel Behaviour and Society*, vol. 33, p. 100614, 2023, doi: 10.1016/j.tbs.2023.100614.

447 [34] Yizhe Wang, Yangdong Liu & Xiaoguang Yang, "An Empirical Comparison of Urban Road Travel Time
448 Prediction Methods — Deep Learning, Ensemble Strategies and Performance Evaluation", *Applied Sciences*,
449 15(14): 8075, 2025. <https://doi.org/10.3390/app15148075> MDPI

450 [35] Ali, R., Ali, A., Naeem, H. M. Y., Asad, M., Alsarhan, T., & Heyat, M. B. B., "A Comprehensive Survey of
451 Deep Learning-Based Traffic Flow Prediction Models for Intelligent Transportation Systems", *ICCK
452 Transactions on Advanced Computing and Systems*, 1(3): 117–137, 2024.
453 <https://doi.org/10.62762/TACS.2025.795448>

454 [36] A. J. Smola and B. Schölkopf, "A tutorial on support vector regression," *Stat. Comput.*, vol. 14, no. 3, pp.
455 199–222, 2004, doi: 10.1023/B:STCO.0000035301.49549.88.

456 [37] K.-L. Du, B. Jiang, J. Lu, J. Hua, M. N. S. Swamy, "Exploring Kernel Machines and Support Vector
457 Machines: Principles, Techniques, and Future Directions," *Mathematics*, Vol. 12, no. 24, p. 3935, 2024, doi:
458 10.3390/math12243935.

459 [38] S. Yang et al., "Ensemble learning for short-term traffic prediction," *J. Sensors*, Vol. 2017, no. 1, 2017, doi:
460 10.1155/2017/7074143.

461 [39] Y. Ning et al., "A review of research on traffic flow prediction methods based on deep learning," *ACM
462 Comput. Surv.*, 2024, pp. 166–170, doi:10.1145/3677892.3677922.

463 [40] S. Afandizadeh, S. Abdolahi, and H. Mirzahosseini, "Deep learning algorithms for traffic forecasting: A
464 comprehensive review and comparison with classical ones," *J. Adv. Transportation*, Vol. 2024, no. 1, p.
465 9981657, 2024, doi:10.1155/2024/9981657.

466 [41] B. Gomes, J. Coelho, and H. Aidos, "A survey on traffic flow prediction and classification," *Intell. Syst.
467 Appl.*, vol. 20, p. 200268, 2023, doi:10.1016/j.iswa.2023.200268.

468 [42] J. Dong et al., "TCEVIS: Visual analytics of traffic congestion influencing factors based on explainable
469 machine learning," *Visual Informatics*, vol. 8, no. 1, pp. 56–66, 2024, doi: 10.1016/j.visinf.2023.11.003.

470 [43] H. Zhang and Z. Jing, "Machine learning in intelligent transportation: A systematic review," *Adv. Eng.
471 Technol. Res.*, vol. 14, no. 1, p. 945, 2025, doi: 10.56028/aetr.14.1.945.2025.

472 [44] W. Xu and Y. Huang, "Mining urban congestion evolution characteristics," *Am. J. Traffic Transp. Eng.*, vol.
473 5, no. 1, pp. 1–7, 2020, doi: 10.11648/j.ajtte.20200501.11.
474 [45] Y. Deng, "A hybrid network congestion prediction method integrating association rules and LSTM for
475 enhanced spatiotemporal forecasting," *Transactions on Computational and Scientific Methods*, vol. 5, no. 2,
476 2025, doi: 10.5281/zenodo.14912727.

477
478

479 **Author Biography: -**

480

489 **Dr. Amadou DIABAGATE** received his Ph.D in computer science (artificial intelligence) at the Faculty
490 of Science and Technology of AbdelmalekEssaadi University in Morocco (Tangier) in 2016. Since 2018,
491 he has been Assistant Professor in computer science at the Faculty of Mathematics and Computer Science
of Félix Houphouet-Boigny University in Abidjan, Côte d'Ivoire. He is a member of the artificial
intelligence and big data research team at the Faculty of Mathematics and Computer Science. His research
focuses on artificial intelligence, data science and big data. He is the President of the NGO IDTDS
(Intelligent Digital Transformation and Data Strategies) which works to promote artificial intelligence and
digital transformation.

500
501

491 **Prof. Abdellah AZMANI** (Morocco, Tangier) received his Ph.D in Industrial Computing at the
University of Science and Technology of Lille (France) in 1991. He worked as a professor at the Ecole
Centrale de Lille and at the Institute of Computer and Industrial Engineering from Lens.
He is a member of the Laboratory of Automatics and Informatics of Lille (LAIL). He is professor at
Faculty of Sciences and Technology of Tangier, Morocco. He has contributed to many scientific
researches.

509 **Prof. Adama Coulibaly** works as a professor at the Faculty of Mathematics and Computer Science of
Felix Houphouet-Boigny University (Côte d'Ivoire). He obtained his doctorate in mathematics in July
1994 at Blaise-Pascal University in Clermont-Ferrand (France).
He is currently the Director of the Mathematics Research Institute (IRMA) of Felix Houphouet-Boigny
University.