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Just Transition Pathways for Small-Scale Fisheries: A Carbon Footprint and Socio-
Economic Assessment in Sindangan, Zamboanga del Norte

ABSTRACT

This study examines the socio-demographic, livelihood, governance, and carbon-
emission characteristics of small-scale fisheries across three coastal barangays in
Sindangan, Zamboanga del Norte, empirical findings within social well-being, gendered
livelihood, and fisheries sustainability frameworks. Results reveal gender-based labor
roles, age and education-based differentiation in fishing participation, and widespread
dependence on rented and non-registered vessels, reflecting structural constraints rather
than individual choice or non-compliance. These conditions shape material, relational,
and subjective well-being, reinforcing economic vulnerability and limited access to
assets, governance mechanisms, and livelihood diversification. Analysis of fuel use and
CO,, emissions shows substantial site-level variation in carbon efficiency despite similar
gears, vessels, and fishing distances, with trip frequency and operational practices
emerging as key drivers of emissions intensity. Overall, the findings highlight the
importance of integrated, locally grounded fisheries policies that address social equity,
governance barriers, and operational efficiency to enhance both livelihood resilience and
climate sustainability in small-scale fisheries.

1. INTRODUCTION
1.1 Small-scale Fisheries in the Philippines

Marine capture fisheries are central to Philippine food security, employment, and
cultural identity. The country’s archipelagic geography enables fisheries to support the
livelihoods of 2.29 million fisherfolks (FishR, 2023; Philippine Fisheries Profile, 2023)
and sustain protein intake for coastal and inland populations alike. Fisheries production in
the Philippines includes municipal, commercial, and aquaculture sectors. Preliminary
data in 2022 indicated that municipal fishing shared 25.8% of the total production of 4.3
million MT compared to other sectors (BFAR, 2023; Ferrer., et.al., 2023).
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The municipal fishers in the country are those fishing without or with boats within
the 12 km — 15 km from the shoreline and expectedly capable of three (3) GT and below
fish catch using active or passive gears (Ferrer., et.al., 2023; RA 10654). They are
commonly viewed as small-scale fishers (Ferrer., et.al., 2023). Globally, small-scale
fisheries contribute about half of fish catches. When considering catches destined for
direct human consumption, the share contributed by the small-scale fisheries increases to
two-thirds (FAO, Voluntary Guidelines for Securing Sustainable Small-Scale Fisheries,
2015).

However, contemporary fisheries are increasingly dependent on fossil fuel
propulsion, particularly diesel and petrol engines used in both municipal and registered
commercial fleets (Sarmiento, et.al., 2021; Smith, et.al., 1982; Maiti, et.al, 2005). As a
result, fishing activities contribute to national greenhouse gas (GHG) emissions, linking
local livelihood practices to global climate challenges (Teh & Sumaila, 2007).

The Philippines has committed to reducing GHG emissions. However, the
national decarbonization agenda has largely ignored the fishing industry, in part because
of a lack of carbon accounting data and worries that its policies might negatively impact
the livelihoods of fishermen. Fuel price volatility, overfishing and the degradation of
marine ecosystems (Mualil, et.al., 2014) have already made fishing households more
economically vulnerable, especially small-scale and municipal fishermen (Salayo, et al.,
2012). According to research, fishing effort and fuel consumption rise as fish biomass
decreases, increasing carbon emissions per unit of catch (Ferrer et al., 2022; World Bank,
2017). As a result, emissions reduction and ecological conservation are closely related
rather than distinct issues.

Conversely,making sure that decarbonization in fisheries is socially-justbecomes a
challenge. A shift that lowers emissions, but compromises livelihood security runs the
risk of perpetuating poverty, inequality, and food insecurity which are outcomes that are

at odds with the more general goals of sustainable development.

1.2 Carbon Emissions Intensification and Fisheries Fuel Use
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Iribarren et al., (2010) and Dineshbabu et al., (2024) in their study reveals
thatfossil fuel combustion from fishing operations constitutes most emissions in capture
fisheries, often accounting for 70-95% of total life-cycle carbon footprint. The absence of
standardized carbon footprint accounting methodologies like the use of fuel logs and GPS
monitoringis the gap which is pronounced in small-scale or artisanal fishing(Brewer,
2008). Also, some studies suggest that carbon accounting helps you find your hot spots
and pinpoint where to target reductions (Ferrer, et.al., 2022; Salayo, et.al., 2012; Brewer,
2008; Iribarren, et.al., 2010).

The depletion of fish biomass below biologically optimal levels increases fishing
effort, fuel consumption, and subsequent carbon emissions (World Bank, 2017). Ferrer et
al. (2022) empirically demonstrated that small-scale fisheries exhibit significantly higher
carbon intensity when operating in overfished waters, revealing an inherent ecological-
economic-climate feedback loop.

Resource state dependent effects also operate through their influence on fisher
fuel use and gear type that affect the amount of carbon released per unit fishing effort.
Increased emissions and decreasing distributions seasonal of these resources strengthen a
livelihood vulnerability, particularly for small-scale fishers whose ability to adapt is
limited due to lack of financial resources and ecological variability. These pressures
shape governance responses such as regulation, capacity building and incentives for low-
carbon technologies which influence these communities trajectories of social-ecological
change (Allison, et.al., 2001; Bennett, et.al., 2015; Cinner, et.al., 2018; Geels, et.al.,
2011; Kroodsma, et.al., 2018; Mahon, et.al., 2020; Ostrom, et.al., 2009; Parker, et.al.,
2018; Sala, et.al., 2018; Zhou, et.al., 2010).

Results from the study of Agosto, et.al., (2024), Assessment on the Marine
Capture Fisheries of Sindangan, Zamboanga Del Norte: Vessels, Gears And Species
Caught, (unpub.) found out that 93% of fisherfolk utilize motorized boats, while only 7%
operate non-motorized boats in the three (3) barangays of Zamboanga del Norte namely
Gampis, Lawis, Bantayan.

According to Sarmiento, et., al. (2021), motorized boats are typically preferred
due to their improved mobility, efficiency, and range, which allow fishermen to go farther

into offshore fishing grounds and increase their CPUE. By cutting down on travel time
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and providing access to more varied and abundant fish stocks, motorization in small-scale
fisheries greatly improves income generation (Smith, et.al., 1982). And this causes
depletion of nearshore fish stocks (Pauly, 1997).

However, reliance on motorized boats may have environmental implications.
Extended fishing range enabled by engines may contribute to overfishing if not regulated,
and the use of gasoline or diesel-powered engines contributes to marine pollution and

carbon emissions (Teh & Sumaila, 2007).

1.3 Socioeconomic Vulnerability

Small-scale fishers often experience limited access to capital, unstable earnings,
exposure to climate hazards, and weak bargaining power in markets (Salayo et al., 2012;
Sadekin,et.al.,2018).

Income levels also reflect the degree of exposure to livelihood risks. According to
Pomeroy and Andrew (2011), small-scale fisherfolk are particularly vulnerable to
economic shocks due to the seasonality of fish catch, natural disasters, and policy shifts
in fisheries governance.Low income among fisherfolk is a common issue in small-scale
fisheries associated with limited access to modern fishing equipment, lack of post-harvest
facilities, fluctuating fish prices, overfishing, and environmental degradation (Béné,
2006; Allison & Ellis, 2001).

Salayo et al. (2012); Ferrer, et.al., (2022), further highlight that small-scale
fisheries generally including the Philippines are not only biologically overexploited but
also socio-economically vulnerable, making the balance between conservation and

livelihood particularly delicate.

1.4 Just Transition in Decarbonization

Co-management organizations, community quota systems, and targeted subsidies
can support fair low-carbon transitions, as demonstrated by comparative examples from
Japan, Korea, India, and the UK (Tsurita., et.al., 2018; Kim, et.al., 2023). These highlight
the necessity of transition frameworks in fisheries governance that are phased, financially

supported, and participatory.
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For Philippine fishing vessels, particularly at the municipal level, there is
presently no standardized carbon emission profiling system. There are currently no
institutional support systems, community engagement frameworks, or livelihood
safeguards in place to encourage low-carbon transitions in fisheries. The mitigation may
come with increased operating costs, exclusion from fishing grounds or dropping fishing
revenues in the absence of a Just-transition framework.

Decarbonization failure, however, constitutes long term erosion of livelihood as
well as increased carbon intensity and ecological decline.This research contributes to
Sustainable Development by linking carbon accounting (SDG 7,13,14), livelihood
resilience (SDG 8), and just transition governance (SDG 10) within the fisheries sector. It
provides empirical evidence for policymakers and resource managers to design
decarbonization strategies that are not only environmentally sound but also socio-
economically just. The findings can directly inform BFAR policy programming,
strengthen the implementation of FishR and BoatR, LGU coastal resource management
planning, fisher cooperatives’ fuel and gear investments, and climate adaptation
initiatives in coastal zones.The aim of this study is therefore to quantify fuel consumption
and calculate carbon emissions, to assess demographic and socio-economic conditions
among fishing households, then finally proposing a Just- transition pathway for
Philippine fisheries based on empirical emission patterns, socio-economic conditions, and
governance feasibility.

2. MATERIALS AND METHODS
2.1 Study Site and Data Collection

Sindangan is characterized by high fisheries dependence, fluctuating catch
volumes, limited livelihood diversification, and observable effects of fuel price volatility
on fishing effort. The research was conducted in barangayGampis, Lawis, and Bantayan,

Sindangan, Zamboanga del Norte (Figure 1).



154
155

156
157
158
159
160
161
162
163
164

165
166
167
168
169
170
171
172
173

174

WOODBRT

<.
Y

£
g8
] 0 9 38 km

Technical Description

£ STATION LATITUDE LONGITUDE
g Station 1 8.2289842 122.9046048
Station2 | _8.2374741 122.9962587
Station 3 8231717 122.9943923

" 0000E 470008 940008

Figure 1. Map showing the locations for the focused areas.
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Data on socio-economicinformation in the study siteswere collected using the
Guidelines on the Collection of Demographic and Socio-economic Information on
Fishing Communities for Use in Coastal and Aquatic Resources Management of the Food
and Agriculture Organization (FAO). The study surveyed the family structure and
dynamics, age, education, fishing vessel ownership/rent, and registration
status.Moreover, carbon emission calculation explored the 2006 Intergovernmental Panel
on Climate Change’s (IPCC). IPCC Energy units were used in the calculation (Table 1).

Table 1. IPCC Energy Units

Carbon content, | Default CO; EF,
NCV, TU/Gg kg/GJ kg/TJ
Biomass (wood) 15.6 30.5 112 000
Peat 9.76 28.9 106 000
Lignite 8.9 27.6 101 000
Anthracite 26.7 26.8 98 300
Coking coal 28.2 25.8 94 600
('fi“l"s'd“a' fuel 40.4 211 77 400
Diesel ol 43 20.2 74 100
Motor gasoline 44.3 18.9 69 300
Natural gas 48 15.3 56 100
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Participants were given a matrix and recorded their fuel use and trip activity. This
provided a powerful lens for understanding the intertwined ecological and carbon
implications of small-scale fisheries.

Furthermore, carbon efficiency was calculated following the works of Zeigler,
et.al., 2013 and 2019, it provided the relationship of fish catch and carbon emission, and
fishing gears were identified using the classification and illustrated definition of fishing
gears of FAO and the Field Guidebook on Philippine Fishing Gears by Monteclaro, et.al.,
2017, this supported the assumption on catch per unit effort.

3. RESULTS

Family structure and dynamics are fundamental to small-scale fisheries, as fishing
households function as integrated social and economic units where labor allocation,
decision-making, and risk management are embedded in kinship relations (FAO, 2015;
Allison & Ellis, 2011; Bene, et.al., 2007).
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Figure 2. Family structure and dynamics surveyed in Gampis, Lawis, and
Bantayan.

*Perceived role of females based on the demographic and socio-economic survey
questionnaire.

Figure 2 presents a demographic and role-based view of a surveyed group,

revealing a community where marriage is slightly more common than being single, as

7
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indicated by the 19 married versus 16 single respondents. The average family size is
compact, with 2 children per household. The primary responsible for fishing are assumed
by males (35 individuals), while females (13) are perceived to primarily engaged in

domestic and caregiving roles.

Age-disaggregated profiling enables more accurate socio-economic analysis,
targeted policy and development interventions, and a clearer understanding of
intergenerational continuity and sustainability in small-scale fisheries (FAO, 2015;
BFAR, 2024).

m Adolescence (12-18) ™ Young Adulthood (19-40) m Adulthood (40-65)

Figure 3. Age profile categorized as adolescence, young adulthood, and
adulthood.

The data shows a concentration in Young Adult (19-40), which comprises the
majority with 22 individuals, suggesting this is the primary productive and physically
demanding cohort. The presence of 12 individuals in the Adulthood bracket (40-65)
indicates experienced fishers continue in the occupation. The near absence of adolescents
(1) could reflect legal working age restrictions, a cultural shift toward education over
early entry into fishing, or a lack of youth engagement, posing concern in the transfer of

intergenerational knowledge.



234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

250
251
252
253
254
255
256
257
258
259
260
261
262

Profiling educational attainmentacross different levels enables policymakers and
development practitioners to tailor extension services, co-management strategies, and
livelihood programs according to learning capacities and aspirations, supporting
sustainability, resilience, and inclusive development in small-scale fisheries (FAO, 2015;
Pomeroy & Andrew, 2011; FAO, 2018; Chuenpagdee, et.al., 2006).

Highschool 22.86%

College Graduate 5.71%

0 5 10 15 20 25 30

Figure 4. Educational background.

This data reveals a significant educational disparity within small-scale fisheries,
with the vast majority (71.4%) of individuals possessing only an elementary-level
education, followed by a modest segment (22.9%) who have completed high school, and a
very small minority (5.7%) who are college graduates. The low percentage of college
graduates highlights a critical gap in higher-level technical, business, or scientific
expertise within the community, potentially hindering innovation, advocacy, and

sustainable practices.

As emphasized in key references like FAO’s SSF Guidelines (2015) and analyses
by Bene (2003) and Crona, et.al.,, (2010), detailed ownership and rental data is
foundational step toward implementing context-sensitive management that balances
ecological resilience with social justice in small-scale fisheries. Owners retain a larger

share of catch profits and have greater access to fishing grounds, while renters or laborers
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Figure 5. Fishing vessel ownership and rent.

The data indicates33 vessels (approximately 94.3%) are rented, while only 2
vessels about 5.7% are owned, yielding a rental-to-ownership ratio exceeding 16:1. This
strong predominance of vessel rental suggests a structural preference for minimizing

capital investment and maintaining operational flexibility.

Fishing vessel registration in small-scale fisheries is essential for sustainable
management, legal recognition, and improved livelihoods. It provides an official record
of all operating vessels, enabling authorities to monitor fishing effort, enforce regulations,
and provide accurate information. Which are critical for ecosystem-based fisheries
management (FAO, 2015; Allison, et.al., 2012; RA 10654; Bene, et.al., 2016).
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Figure 6. Fishing vessel registration status.
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Based on the data, non-registered fishing vessel constitutes30 vessels making up
approximately 85.7% of the total and only 14.3% with fishing vessels that are registered.
This suggests a large informal or unregulated sector operating outside official oversight,
which can undermine sustainable fisheries management, compromise crew safety and

labor rights and lead to inaccurate catch data that hinders effective resource conservation.

Table 2.CO, emissions in kg CO- for 15 km.

Average Fuel

. . Fuel . Fishing . Average CO,Emissions
Sampling Sites type Distance Gear Consurli\ptlon/ Trips for 15 km
Brgy. . .

c Gasoli  12-15 Gillnets -
)Gampls(n—lo ne Km (pukot) 10L 1 22.7 kg CO:
Brgy. . .

Gasoli  12-15 Gillnets -
Baﬂwtayan ne Kkm (pukot) 103 L 1 23.4 kg CO:
(n=10)
Brgy. Gasoli  12-15  Gillnets 46_.5*kg CO:
N 20.47 L 3 3=*1395
Lawis(n=15) ne km (pukot)
kg CO:

*CO, emissions = amount of fuel (L) x Gasoline EF(2.27 kg CO: per liter)
*1 trip = 15 km (municipal waters)

Table Z2illustrates the calculated CO, emissions from small-scale fishing
operations across three barangays, revealing significant variation primarily driven by
differences in the volume of fuel consumed per trip and the frequency of trips. While all
sampled fishers used gasoline-powered boats to travel 12-15 km into municipal waters
using gillnets, the average fuel consumption per trip varied notably from 10 liters in Brgy.
Gampis to over 20 liters in Brgy. Lawis. Consequently, the CO; emissions for single 15
km trip, calculated using standard gasoline emission factor, ranged from approximately
22.7 kg to 46.5 kg. The most substantial total emissions, however, came from Brgy.
Lawis, where an average of 3 trips per reporting period multiplied its per trip emissions
of 46.5 kg CO; to a total of 139.5 kgCO,, demonstrating that trip frequency is a critical
multiplier in the overall carbon footprint of these fishing activities.

11
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Table 3. Carbon efficiency (fish to emission ratio).

. . CO, Emissions Average -
Samling Sites for 15 km Catch/kg Carbon Efficiency
Brgy. Gampis(n=10) 22.7 kg CO: 39 kg *1.72 kg fish/kg CO:
Brgy. Bantayan (n=10) 23.4 kg CO: 63 kg *2.7 kg fish/kg CO:
L 22.27kgx3= .
Brgy. Lawis(n=15) 139.5 kg CO: 66.81 kg 0.48 kg fish/kg CO2
Catch (kg)

*Carbon efficiency = COrermissions

Table 3 compares the carbon efficiency of 3 fishing sites, showing that Brgy.
Bantayan is the most efficient, producing 2.7 kg of fish per kg of CO: emitted, due to a
high average catch of 63 kg with relatively low emissions of 23.4 kg CO..Brgy. Gampis
is moderately efficient (1.72 kg fish/kg CO.), while Brgy. Lawis is the least efficient
(0.48 kg fish/kg COy.), as it emits substantially more CO: (139.5 kg) for a catch of 66.81

kg, indicating a much higher carbon footprint per unit of fish harvested.

4. DICUSSIONS

4.1 Demographic and socio-economic Profile

The demographic and role-based trendsshown in Figure 2 can be better understood
when viewed through the lens of Coulthard, et.al., (2011) social well-being framework
and Weeratunge, et.al., (2010) gendered livelihoods perspectives. The clear division, with
men primarily engaged in fishing and women focused on domestic and caregiving roles,
highlights how small-scale fisheries livelihoods are shaped by culturally defined gender
norms rather than solely by economic factors. The slightly higher proportion of married
respondents (54.29%) and small average household size (average of 2 children) further
emphasize the relational aspect of well-being, this suggests that household cooperation
and gender-based division of labor play a key role in building resilience amidst livelihood
uncertainty (Coulthard, et.al., 2011; Weeratunge, et.al., 2010; Kleiber, et.al., 2013).

Age-disaggregated profiling provides a more precise socio-economic analysis,
enabling targeted policy and development interventions, while offering a better
understanding of intergenerational continuity and sustainability in small-scale fisheries

12
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(FAO, 2015; BFAR, 2024).Adolescents (3%)are ofteninvolved in family-based fishing,
gleaning, or post-harvest activities, making age data crucial for understanding transfer
across generations, balancing education and work, and addressing child labor concerns
(FAO, 2015; Fry, et.al., 2021). Young adults form the backbone of the labor forcedriving
innovation, adaptation, and livelihood diversification. As shown in Figure 3, they make
up 63% of the workforce,meaning their age-specific involvement significantly impacts
fishing efforts, productivity, and resilience to environmental and economic challenges
(Arulingam, et.al., 2019; Suh, et.al., 2023). Meanwhile, adults (34%)in the three
barangays,possess accumulated ecological knowledge and take on leadership roles in
household and community governance, influencing co-management, compliance, and
long-term resource stewardship (FAO 2015; Reis-Filho, et.al., 2025).

With similar importance, fishers with only elementary-level education (71.43%
according toFigure 4) often rely on traditional ecological knowledge and family-based
fishing practices.While these are vital for local resource stewardship they may limit
access to written regulations, formal training, and alternative livelihood opportunities
(Allison & Ellis, 2001; Bene, et.al., 2016). Those with a high school education
(22.86%)typically have a better understanding of fisheries policies, are more likely to
adopt improved fishing gear and post-harvest technologies,andtend to engage in
community-based management and cooperatives (FAO, 2015; Pomeroy & Andrew,
2011). College educated individuals, though fewer in the three barangays (5.71%), play a
crucial role in leadership, enterprise development, value-chain enhancement, and
connecting fishing communities with government agencies, NGOs, and markets.They are
also more likely to diversity their livelihoods, which helps alleviate on fishery resources
(FAO, 2018; Chuenpagdee, et.al., 2006).

Ownership status plays a significant role in fishers’ income, economic security, and
resilience.Vessel owners typically retain a larger share of catch profits and have better
access to fishing grounds, while renters or laborers are more economically dependent and
face challenges in accumulating capital (Muslim, et.al., 2023; Arias-Schreiber, et.al.,
2018).The overwhelming reliance on rented fishing vessels (94.3%) compared to owned

vessels (5.7%) in Figure 5,suggests that the fleet is shaped more by capital constraints

13
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than by ownership preference. This aligns with finding by Muslim, et.al., (2023), which
show that limited vessel ownership is linked to lower net incomes and on going poverty
among small-scale fishers, as rental arrangements increase operating costs and restrict
limit asset accumulation. Viewed through the social well-being framework of Voyer,
et.al., (2017), this pattern has broader implications than just by income. From a material
well-being perspective, dependence on rented vessels indicates weak livelihood security
and diminished long-term resilience.Relationally, it creates a dependence on vessel
owners of financiers, reducing autonomy and bargaining power. Subjectively, it can erode
perceptions of stability and future prospects. Therefore, the dominance of rented vessels
highlights a structural vulnerability that limits both economic performance and overall
fisher well-being. This underscores the need for fisheries policies that promote equitable
access to productive assets and ensure long-term livelihood sustainability.

On a sustainability note, data from registered vessels support scientific research and
policy planning by providing accurate information on fleet composition, capacity, and
spatial distribution, which is critical for ecosystem-based fisheries management.Building
the discussions from the findings of Peralta-Milana, et.al., (2012), the data based on
Figure 6,provides strong empirical support for interpreting the high proportion of non-
registered fishing vessels (85.7%) as a manifestation of structural and governance
constraints rather than simple non-compliance. The study shows that when fisheries
registration and licensing were centralized at the municipal level, compliance was
extremely low due to transportation costs, time burdens, literacy limitations, and mistrust,
especially fears that registration would lead to taxation or increased surveillance (Peralta-
Milana, et.al., 2012; Digal & Palencia, 2017). The absence of registration also excludes
fishers from formal markets, licensing-based incentives, and conservation program,

reinforcing cycles of informality and marginalization (Digal & Palencia, 2017).

4.2 Carbon emissions and Efficiency
Consequently, the data on fishing vessel ownership and registration is part of the
equation to the calculated CO, emissionsfrom small-scale fishing operations across the

three barangays which reflect patterns consistent with broader assessments of fisheries’

14
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reliance on fossil fuels, where direct fuel use constitute the dominant source of energy
consumption and emissions (Tyedmers, et.al., 2005; Crona, et.al., 2023). Despite
operating similar gasoline-powered boats, traveling comparable distances (12-15 km),
and using the same fishing gear (gillnets), substantial variation in fuel consumption per
trip was observed, ranging from approximately 10 liters in Brgy. Gampis to over 20 liter

in Brgy. Lawis. Such variability in Table 2, parallels global findings that fuel-use

intensity can differ markedly among fisheries with similar targets and technologies,
reflecting differences in operational efficiency and fishing effort (Tyedmers, et.al., 2005;
Nooraiepour, et.al., 2025; Sumaila, R.U., 2024). Importantly, the results demonstrate that
trip frequency acts as a critical multiplier of emissions, as evidenced by Brgy. Lawis,
where higher per-trip fuel consumption combined with an average of three trips per
reporting period produced the highest cumulative emissions (139.5 kg CO,). This
supports evidence that increasing fishing effort, rather than distance alone, drives
importance of managing fuel use and trip frequency even within small-scale municipal
fisheries (Tyedmers, et.al., 2005;Mahon, et.al., 2020; Ferrer, et.al., 2022; Zeigler, et.al.,
2019; Sarmiento, et.al., 2021).

Moreover, the carbon efficiency differences observed among the three fishing sites
Table 3 are consistent with broader findings in fisheries emissions research, particularly
regarding the strong influence of operational practices on fuel use and carbon intensity.
Brgy. Bantayan’s high carbon efficiency (2.7 kg CO;) reflects a favorable balance
between catch volume and fuel-related emissions, aligning with evidence that fisheries
achieving higher catch rates with relatively low fuel inputs exhibit substantially lower
carbon footprints per unit of harvest. In contrast, Brgy. Lawis demonstrates markedly
lower efficiency (0.48 kg fish per kg CO,), emitting more than five times the CO, of
Bantayan for a comparable catch. This pattern mirrors findings highlighted by Ziegler,
et.al., 2013 and 2019, who emphasize that fuel use and emissions are poorly predicted by
effort alone and are instead strongly shaped by how engines are operated, fishing
methods employedand contextual factors such as gear type (Parker, et.al., 2015), and
stock conditions. High emissions relative to catch in Brgy. Lawis may therefore indicate

inefficient operational profiles such as longer engine run times, higher fuel consumption

15
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per fishing trip, or less effective harvesting strategies rather than differences in catch
volume (Tyedmers, et.al., 2005; Freon, et.al., 2014).

The intermediate efficiency observed in Brgy. Gampis (1.72 kg fish per kg CO,)
further supports the argument that fisheries performance exists along a spectrum rather

than fitting into simplistic categories. The site-level variation evident Table 3 reinforces

the value of localized, data-driven assessments of carbon efficiency rather than relying
solely on generalized effort-based or sector-level models.Overall, the results underscore
that improving carbon efficiency in fisheries is not solely a matter of increasing catch, but
of optimizing fuel use relative to harvest outcomes (Avadi, et.al., 2013). As emphasized
in the works of Zeigler, et.al., strategies such as reducing unnecessary engine operation,
improving gear efficiency, and aligning fishing effort with stock availability are critical to
lowering emissions intensity. The contrast between Brgy. Bantayan and Brgy. Lawis
illustrates how site-specific practices can lead to substantially different climate impacts,

even where total catches are similar.

5. CONCLUSIONS

This study demonstrates that livelihood structures, assets access, governance
arrangements, and carbon efficiency in small-scale fisheries are significantly linked and
socially embedded. However, this study is not conclusive to its objectives since there
were only 35 respondents who consented to participate but can best reflect in a case
study. The researcher recommends bigger sample size and longer sampling duration; and
further exploration on stock conditions, fishing methods, types of gear used and engine

operations.

Gender-based division of labor, age-specific roles, and education levels shape not
only fishing practices but also the distribution of risks, benefits, and adaptive capacity
within households and communities. The dominance of rented and unregistered vessels
reflects structural constraints such as capital limitation, governance barriers, and
institutional exclusion rather than individual non-compliance, reinforcing economic

vulnerability and limiting long-term resilience.
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The observed variation in fuel use and carbon efficiency across barangays further
highlights that emissions in small-scale fisheries are driven less by technology alone and
more by operational practices, access to assets, and local ecological conditions. These
differences underscore the need for place-based, data-driven interventions that reduce
emissions without undermining livelihoods. Importantly, the findings show that
increasing fishing effort can exacerbate both economic precarity and carbon intensity,
revealing a critical intersection between social well-being and environmental

sustainability.

Taken together, the results point toward the necessity of Just Transition pathways that
simultaneously address climate mitigation, livelihood security, and social equity. Such
pathways should prioritize equitable access to productive assets, simplified and inclusive
vessel registration systems, gender-responsive and age-sensitive livelihood support, and
capacity-building aligned with educational realities. Supporting fuel efficiency,
operational optimization, and livelihood diversification particularly for young adults and
women who can reduce emissions while strengthening resilience. A Just Transition in
small-scale fisheries, therefore, mut move beyond technological fixes to comfort
structural inequalities, ensuring that climate action enhances, rather than compromises,

the social well-being and dignity of fishing-dependent communities.
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