

1
2 **Just Transition Pathways for Small-Scale Fisheries: A Carbon Footprint and Socio-**
3 **Economic Assessment in Sindangan, Zamboanga del Norte**
4
5

6 **ABSTRACT**

7 This study examines the socio-demographic, livelihood, governance, and carbon-
8 emission characteristics of small-scale fisheries across three coastal barangays in
9 Sindangan, Zamboanga del Norte, empirical findings within social well-being, gendered
10 livelihood, and fisheries sustainability frameworks. Results reveal gender-based labor
11 roles, age and education-based differentiation in fishing participation, and widespread
12 dependence on rented and non-registered vessels, reflecting structural constraints rather
13 than individual choice or non-compliance. These conditions shape material, relational,
14 and subjective well-being, reinforcing economic vulnerability and limited access to
15 assets, governance mechanisms, and livelihood diversification. Analysis of fuel use and
16 *CO₂ emissions* shows substantial site-level variation in carbon efficiency despite similar
17 gears, vessels, and fishing distances, with trip frequency and operational practices
18 emerging as key drivers of emissions intensity. Overall, the findings highlight the
19 importance of integrated, locally grounded fisheries policies that address social equity,
20 governance barriers, and operational efficiency to enhance both livelihood resilience and
21 climate sustainability in small-scale fisheries.

22

23 **1. INTRODUCTION**

24 **1.1 Small-scale Fisheries in the Philippines**

25 Marine capture fisheries are central to Philippine food security, employment, and
26 cultural identity. The country's archipelagic geography enables fisheries to support the
27 livelihoods of 2.29 million fisherfolks (FishR, 2023; Philippine Fisheries Profile, 2023)
28 and sustain protein intake for coastal and inland populations alike. Fisheries production in
29 the Philippines includes municipal, commercial, and aquaculture sectors. Preliminary
30 data in 2022 indicated that municipal fishing shared 25.8% of the total production of 4.3
31 million MT compared to other sectors (BFAR, 2023; Ferrer., et.al., 2023).

32 The municipal fishers in the country are those fishing without or with boats within
33 the 12 km – 15 km from the shoreline and expectedly capable of three (3) GT and below
34 fish catch using active or passive gears (Ferrer., et.al., 2023; RA 10654). They are
35 commonly viewed as small-scale fishers (Ferrer., et.al., 2023). Globally, small-scale
36 fisheries contribute about half of fish catches. When considering catches destined for
37 direct human consumption, the share contributed by the small-scale fisheries increases to
38 two-thirds (FAO, Voluntary Guidelines for Securing Sustainable Small-Scale Fisheries,
39 2015).

40 However, contemporary fisheries are increasingly dependent on fossil fuel
41 propulsion, particularly diesel and petrol engines used in both municipal and registered
42 commercial fleets (Sarmiento, et.al., 2021; Smith, et.al., 1982; Maiti, et.al, 2005). As a
43 result, fishing activities contribute to national greenhouse gas (GHG) emissions, linking
44 local livelihood practices to global climate challenges (Teh & Sumaila, 2007).

45 The Philippines has committed to reducing GHG emissions. However, the
46 national decarbonization agenda has largely ignored the fishing industry, in part because
47 of a lack of carbon accounting data and worries that its policies might negatively impact
48 the livelihoods of fishermen. Fuel price volatility, overfishing and the degradation of
49 marine ecosystems (Mualil, et.al., 2014) have already made fishing households more
50 economically vulnerable, especially small-scale and municipal fishermen (Salayo, et al.,
51 2012). According to research, fishing effort and fuel consumption rise as fish biomass
52 decreases, increasing carbon emissions per unit of catch (Ferrer et al., 2022; World Bank,
53 2017). As a result, emissions reduction and ecological conservation are closely related
54 rather than distinct issues.

55 Conversely, making sure that decarbonization in fisheries is socially-just becomes a
56 challenge. A shift that lowers emissions, but compromises livelihood security runs the
57 risk of perpetuating poverty, inequality, and food insecurity which are outcomes that are
58 at odds with the more general goals of sustainable development.

59

60

61 *1.2 Carbon Emissions Intensification and Fisheries Fuel Use*

62 Iribarren et al., (2010) and Dineshbabu et al., (2024) in their study reveals
63 that fossil fuel combustion from fishing operations constitutes most emissions in capture
64 fisheries, often accounting for 70–95% of total life-cycle carbon footprint. The absence of
65 standardized carbon footprint accounting methodologies like the use of fuel logs and GPS
66 monitoring is the gap which is pronounced in small-scale or artisanal fishing (Brewer,
67 2008). Also, some studies suggest that carbon accounting helps you find your hot spots
68 and pinpoint where to target reductions (Ferrer, et.al., 2022; Salayo, et.al., 2012; Brewer,
69 2008; Iribarren, et.al., 2010).

70 The depletion of fish biomass below biologically optimal levels increases fishing
71 effort, fuel consumption, and subsequent carbon emissions (World Bank, 2017). Ferrer et
72 al. (2022) empirically demonstrated that small-scale fisheries exhibit significantly higher
73 carbon intensity when operating in overfished waters, revealing an inherent ecological-
74 economic-climate feedback loop.

75 Resource state dependent effects also operate through their influence on fisher
76 fuel use and gear type that affect the amount of carbon released per unit fishing effort.
77 Increased emissions and decreasing distributions seasonal of these resources strengthen a
78 livelihood vulnerability, particularly for small-scale fishers whose ability to adapt is
79 limited due to lack of financial resources and ecological variability. These pressures
80 shape governance responses such as regulation, capacity building and incentives for low-
81 carbon technologies which influence these communities trajectories of social-ecological
82 change (Allison, et.al., 2001; Bennett, et.al., 2015; Cinner, et.al., 2018; Geels, et.al.,
83 2011; Kroodsma, et.al., 2018; Mahon, et.al., 2020; Ostrom, et.al., 2009; Parker, et.al.,
84 2018; Sala, et.al., 2018; Zhou, et.al., 2010).

85 Results from the study of Agosto, et.al., (2024), *Assessment on the Marine*
86 *Capture Fisheries of Sindangan, Zamboanga Del Norte: Vessels, Gears And Species*
87 *Caught, (unpub.)* found out that 93% of fisherfolk utilize motorized boats, while only 7%
88 operate non-motorized boats in the three (3) barangays of Zamboanga del Norte namely
89 Gampis, Lawis, Bantayan.

90 According to Sarmiento, et., al. (2021), motorized boats are typically preferred
91 due to their improved mobility, efficiency, and range, which allow fishermen to go farther
92 into offshore fishing grounds and increase their CPUE. By cutting down on travel time

93 and providing access to more varied and abundant fish stocks, motorization in small-scale
94 fisheries greatly improves income generation (Smith, et.al., 1982). And this causes
95 depletion of nearshore fish stocks (Pauly, 1997).

96 However, reliance on motorized boats may have environmental implications.
97 Extended fishing range enabled by engines may contribute to overfishing if not regulated,
98 and the use of gasoline or diesel-powered engines contributes to marine pollution and
99 carbon emissions (Teh & Sumaila, 2007).

100

101 *1.3 Socioeconomic Vulnerability*

102 Small-scale fishers often experience limited access to capital, unstable earnings,
103 exposure to climate hazards, and weak bargaining power in markets (Salayo et al., 2012;
104 Sadekin,et.al.,2018).

105 Income levels also reflect the degree of exposure to livelihood risks. According to
106 Pomeroy and Andrew (2011), small-scale fisherfolk are particularly vulnerable to
107 economic shocks due to the seasonality of fish catch, natural disasters, and policy shifts
108 in fisheries governance.Low income among fisherfolk is a common issue in small-scale
109 fisheries associated with limited access to modern fishing equipment, lack of post-harvest
110 facilities, fluctuating fish prices, overfishing, and environmental degradation (Béné,
111 2006; Allison & Ellis, 2001).

112 Salayo et al. (2012); Ferrer, et.al., (2022), further highlight that small-scale
113 fisheries generally including the Philippines are not only biologically overexploited but
114 also socio-economically vulnerable, making the balance between conservation and
115 livelihood particularly delicate.

116

117 *1.4 Just Transition in Decarbonization*

118 Co-management organizations, community quota systems, and targeted subsidies
119 can support fair low-carbon transitions, as demonstrated by comparative examples from
120 Japan, Korea, India, and the UK (Tsurita., et.al., 2018; Kim, et.al., 2023). These highlight
121 the necessity of transition frameworks in fisheries governance that are phased, financially
122 supported, and participatory.

123 For Philippine fishing vessels, particularly at the municipal level, there is
124 presently no standardized carbon emission profiling system. There are currently no
125 institutional support systems, community engagement frameworks, or livelihood
126 safeguards in place to encourage low-carbon transitions in fisheries. The mitigation may
127 come with increased operating costs, exclusion from fishing grounds or dropping fishing
128 revenues in the absence of a Just-transition framework.

129 Decarbonization failure, however, constitutes long term erosion of livelihood as
130 well as increased carbon intensity and ecological decline. This research contributes to
131 Sustainable Development by linking carbon accounting (SDG 7,13,14), livelihood
132 resilience (SDG 8), and just transition governance (SDG 10) within the fisheries sector. It
133 provides empirical evidence for policymakers and resource managers to design
134 decarbonization strategies that are not only environmentally sound but also socio-
135 economically just. The findings can directly inform BFAR policy programming,
136 strengthen the implementation of FishR and BoatR, LGU coastal resource management
137 planning, fisher cooperatives' fuel and gear investments, and climate adaptation
138 initiatives in coastal zones. The aim of this study is therefore to quantify fuel consumption
139 and calculate carbon emissions, to assess demographic and socio-economic conditions
140 among fishing households, then finally proposing a Just- transition pathway for
141 Philippine fisheries based on empirical emission patterns, socio-economic conditions, and
142 governance feasibility.

143

144 **2. MATERIALS AND METHODS**

145 *2.1 Study Site and Data Collection*

146 Sindangan is characterized by high fisheries dependence, fluctuating catch
147 volumes, limited livelihood diversification, and observable effects of fuel price volatility
148 on fishing effort. The research was conducted in barangay Gampis, Lawis, and Bantayan,
149 Sindangan, Zamboanga del Norte ([Figure 1](#)).

150

151

152

153

154

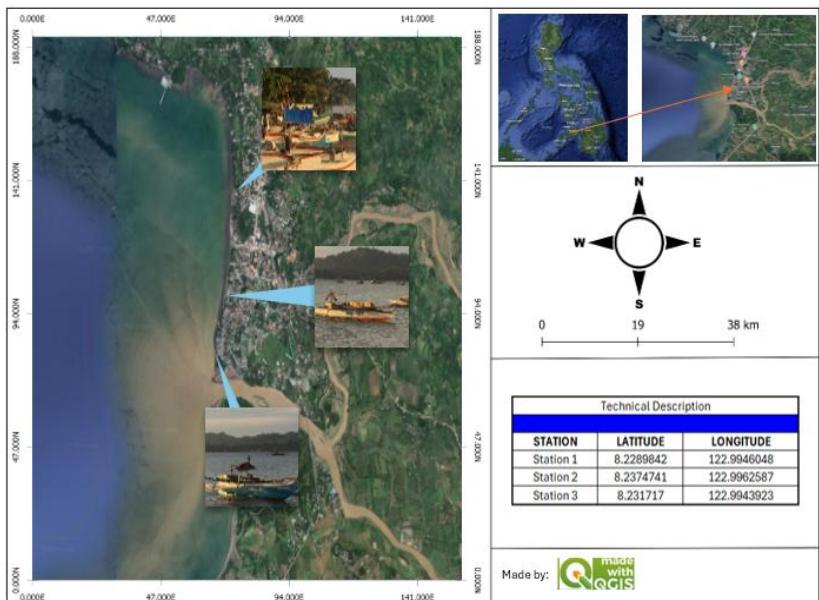
155

156

157

158

159


160

161

162

163

164

165 **Figure 1.** Map showing the locations for the focused areas.

166

167 Data on socio-economic information in the study sites were collected using the
 168 Guidelines on the Collection of Demographic and Socio-economic Information on
 169 Fishing Communities for Use in Coastal and Aquatic Resources Management of the Food
 170 and Agriculture Organization (FAO). The study surveyed the family structure and
 171 dynamics, age, education, fishing vessel ownership/rent, and registration
 172 status. Moreover, carbon emission calculation explored the 2006 Intergovernmental Panel
 173 on Climate Change's (IPCC). IPCC Energy units were used in the calculation ([Table 1](#)).

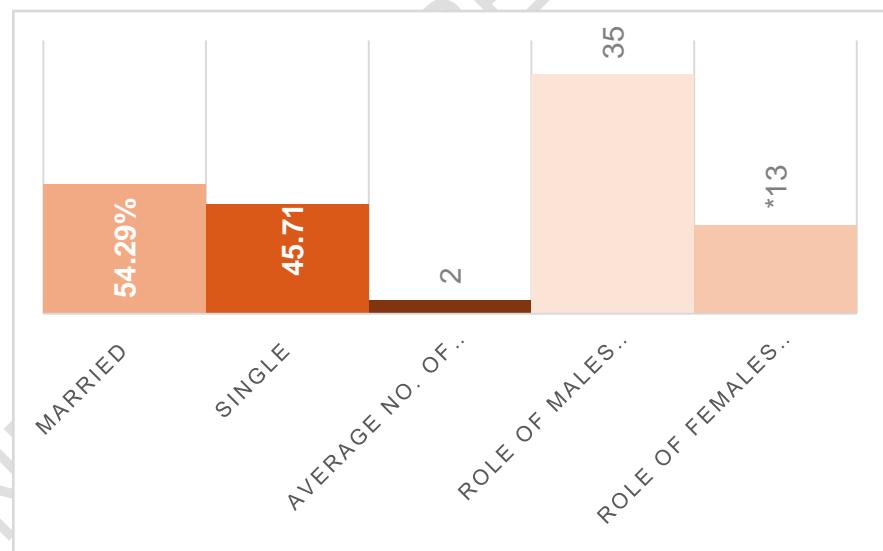
173

Table 1. IPCC Energy Units

	NCV, TJ/Gg	Carbon content, kg/GJ	Default CO ₂ EF, kg/TJ
Biomass (wood)	15.6	30.5	112 000
Peat	9.76	28.9	106 000
Lignite	8.9	27.6	101 000
Anthracite	26.7	26.8	98 300
Coking coal	28.2	25.8	94 600
Residual fuel oil	40.4	21.1	77 400
Diesel oil	43	20.2	74 100
Motor gasoline	44.3	18.9	69 300
Natural gas	48	15.3	56 100

174

175 Participants were given a matrix and recorded their fuel use and trip activity. This
176 provided a powerful lens for understanding the intertwined ecological and carbon
177 implications of small-scale fisheries.


178 Furthermore, carbon efficiency was calculated following the works of Zeigler,
179 et.al., 2013 and 2019, it provided the relationship of fish catch and carbon emission, and
180 fishing gears were identified using the classification and illustrated definition of fishing
181 gears of FAO and the Field Guidebook on Philippine Fishing Gears by Monteclaro, et.al.,
182 2017, this supported the assumption on catch per unit effort.

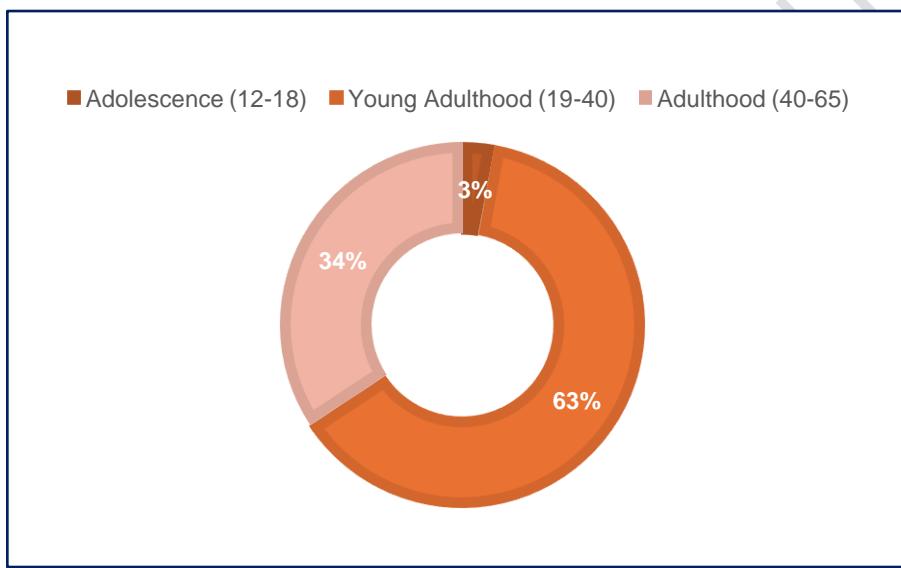
183

184 **3. RESULTS**

185

186 Family structure and dynamics are fundamental to small-scale fisheries, as fishing
187 households function as integrated social and economic units where labor allocation,
188 decision-making, and risk management are embedded in kinship relations (FAO, 2015;
189 Allison & Ellis, 2011; Bene, et.al., 2007).

199 **Figure 2.** Family structure and dynamics surveyed in Gampis, Lawis, and
200 Bantayan.


201 **Perceived role of females based on the demographic and socio-economic survey
202 questionnaire.*

203 *Figure 2* presents a demographic and role-based view of a surveyed group,
204 revealing a community where marriage is slightly more common than being single, as

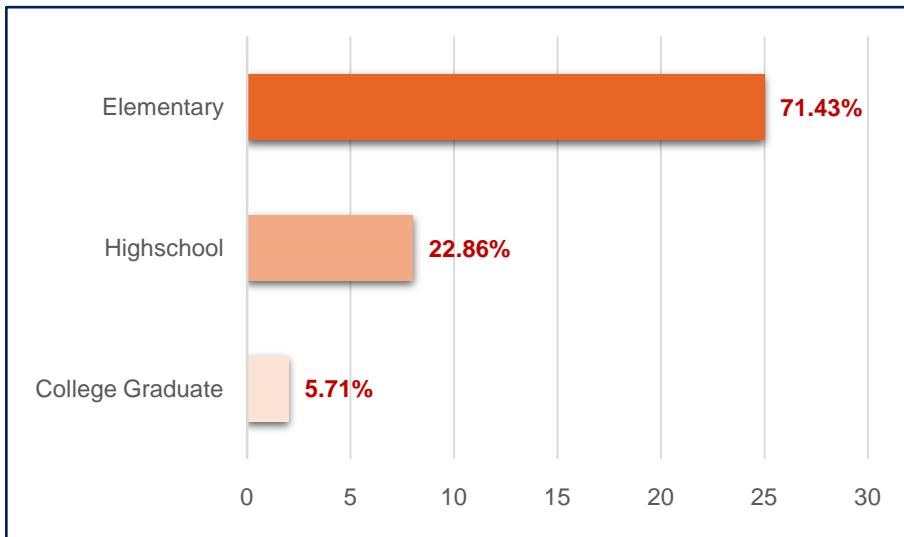
205 indicated by the 19 married versus 16 single respondents. The average family size is
206 compact, with 2 children per household. The primary responsible for fishing are assumed
207 by males (35 individuals), while females (13) are perceived to primarily engaged in
208 domestic and caregiving roles.

209

210 Age-disaggregated profiling enables more accurate socio-economic analysis,
211 targeted policy and development interventions, and a clearer understanding of
212 intergenerational continuity and sustainability in small-scale fisheries (FAO, 2015;
213 BFAR, 2024).

224 **Figure 3.** Age profile categorized as adolescence, young adulthood, and
225 adulthood.

226


227 The data shows a concentration in Young Adult (19-40), which comprises the
228 majority with 22 individuals, suggesting this is the primary productive and physically
229 demanding cohort. The presence of 12 individuals in the Adulthood bracket (40-65)
230 indicates experienced fishers continue in the occupation. The near absence of adolescents
231 (1) could reflect legal working age restrictions, a cultural shift toward education over
232 early entry into fishing, or a lack of youth engagement, posing concern in the transfer of
233 intergenerational knowledge.

234 Profiling educational attainment across different levels enables policymakers and
235 development practitioners to tailor extension services, co-management strategies, and
236 livelihood programs according to learning capacities and aspirations, supporting
237 sustainability, resilience, and inclusive development in small-scale fisheries (FAO, 2015;
238 Pomeroy & Andrew, 2011; FAO, 2018; Chuenpagdee, et.al., 2006).

239

240

241

242

243

244

245

246

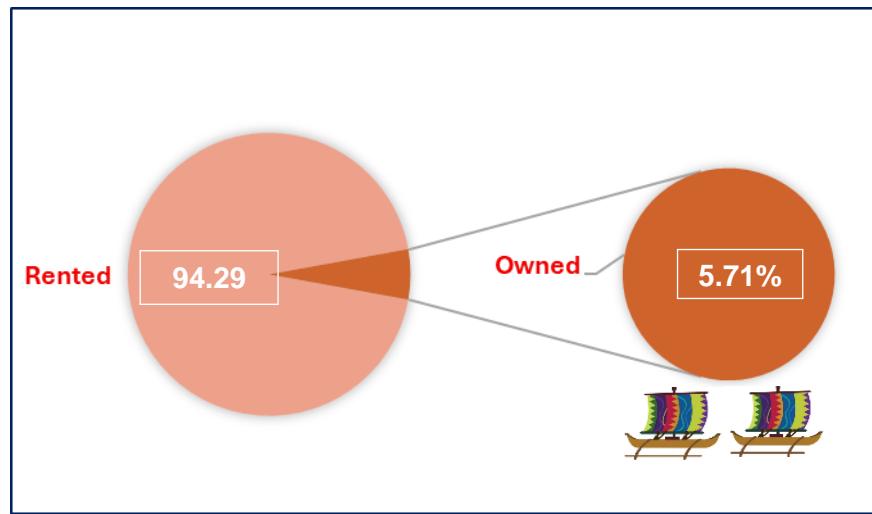
247

248

249

Figure 4. Educational background.

250


This data reveals a significant educational disparity within small-scale fisheries, with the vast majority (71.4%) of individuals possessing only an elementary-level education, followed by a modest segment (22.9%) who have completed high school, and a very small minority (5.7%) who are college graduates. The low percentage of college graduates highlights a critical gap in higher-level technical, business, or scientific expertise within the community, potentially hindering innovation, advocacy, and sustainable practices.

257

258

As emphasized in key references like FAO's SSF Guidelines (2015) and analyses by Bene (2003) and Crona, et.al., (2010), detailed ownership and rental data is foundational step toward implementing context-sensitive management that balances ecological resilience with social justice in small-scale fisheries. Owners retain a larger share of catch profits and have greater access to fishing grounds, while renters or laborers

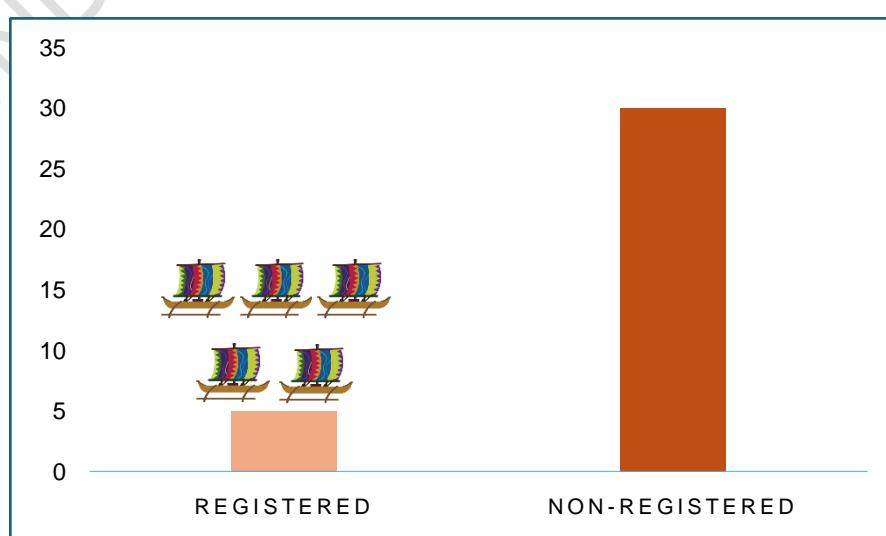

263 face economic dependency and limited capital accumulation (Muslim, et.al., 2023; Arias-
264 Schreiber, et.al., 2018).

Figure 5. Fishing vessel ownership and rent.

275 The data indicates 33 vessels (approximately 94.3%) are rented, while only 2
276 vessels about 5.7% are owned, yielding a rental-to-ownership ratio exceeding 16:1. This
277 strong predominance of vessel rental suggests a structural preference for minimizing
278 capital investment and maintaining operational flexibility.

279
280 Fishing vessel registration in small-scale fisheries is essential for sustainable
281 management, legal recognition, and improved livelihoods. It provides an official record
282 of all operating vessels, enabling authorities to monitor fishing effort, enforce regulations,
283 and provide accurate information. Which are critical for ecosystem-based fisheries
284 management (FAO, 2015; Allison, et.al., 2012; RA 10654; Bene, et.al., 2016).

Figure 6. Fishing vessel registration status.

293 Based on the data, non-registered fishing vessel constitutes 30 vessels making up
294 approximately 85.7% of the total and only 14.3% with fishing vessels that are registered.
295 This suggests a large informal or unregulated sector operating outside official oversight,
296 which can undermine sustainable fisheries management, compromise crew safety and
297 labor rights and lead to inaccurate catch data that hinders effective resource conservation.
298

299 **Table 2.***CO₂ emissions in kg CO₂ for 15 km.*

<i>Sampling Sites</i>	<i>Fuel type</i>	<i>Distance</i>	<i>Fishing Gear</i>	<i>Average Fuel Consumption/ L</i>	<i>Average Trips</i>	<i>CO₂ Emissions for 15 km</i>
Brgy. Gampis (n=10)	Gasoline	12-15 km	Gillnets (pukot)	10 L	1	*22.7 kg CO ₂
Brgy. Bantayan (n=10)	Gasoline	12-15 km	Gillnets (pukot)	10.3 L	1	*23.4 kg CO ₂
Brgy. Lawis (n=15)	Gasoline	12-15 km	Gillnets (pukot)	20.47 L	3	46.5 kg CO ₂ x 3 = *139.5 kg CO ₂

*CO₂ emissions = amount of fuel (L) x Gasoline EF(2.27 kg CO₂ per liter)

*1 trip = 15 km (municipal waters)

300

301 Table 2 illustrates the calculated CO₂ emissions from small-scale fishing
302 operations across three barangays, revealing significant variation primarily driven by
303 differences in the volume of fuel consumed per trip and the frequency of trips. While all
304 sampled fishers used gasoline-powered boats to travel 12-15 km into municipal waters
305 using gillnets, the average fuel consumption per trip varied notably from 10 liters in Brgy.
306 Gampis to over 20 liters in Brgy. Lawis. Consequently, the CO₂ emissions for single 15
307 km trip, calculated using standard gasoline emission factor, ranged from approximately
308 22.7 kg to 46.5 kg. The most substantial total emissions, however, came from Brgy.
309 Lawis, where an average of 3 trips per reporting period multiplied its per trip emissions
310 of 46.5 kg CO₂ to a total of 139.5 kg CO₂, demonstrating that trip frequency is a critical
311 multiplier in the overall carbon footprint of these fishing activities.

312

313

314

315 **Table 3.** Carbon efficiency (*fish to emission ratio*).

Samling Sites	CO ₂ Emissions for 15 km	Average Catch/kg	Carbon Efficiency
Brgy. Gampis(<i>n</i> =10)	22.7 kg CO ₂	39 kg	*1.72 kg fish/kg CO ₂
Brgy. Bantayan (<i>n</i> =10)	23.4 kg CO ₂	63 kg	*2.7 kg fish/kg CO ₂
Brgy. Lawis(<i>n</i> =15)	139.5 kg CO ₂	22.27 kg x 3 = 66.81 kg	*0.48 kg fish/kg CO ₂

$$\text{*Carbon efficiency} = \frac{\text{Catch (kg)}}{\text{CO}_2 \text{ emissions}}$$

316 *Table 3* compares the carbon efficiency of 3 fishing sites, showing that Brgy.
 317 Bantayan is the most efficient, producing 2.7 kg of fish per kg of CO₂ emitted, due to a
 318 high average catch of 63 kg with relatively low emissions of 23.4 kg CO₂. Brgy. Gampis
 319 is moderately efficient (1.72 kg fish/kg CO₂), while Brgy. Lawis is the least efficient
 320 (0.48 kg fish/kg CO₂), as it emits substantially more CO₂ (139.5 kg) for a catch of 66.81
 321 kg, indicating a much higher carbon footprint per unit of fish harvested.

322

323 **4. DISCUSSIONS**

324

325 *4.1 Demographic and socio-economic Profile*

326 The demographic and role-based trends shown in *Figure 2* can be better understood
 327 when viewed through the lens of Coulthard, et.al., (2011) social well-being framework
 328 and Weeratunge, et.al., (2010) gendered livelihoods perspectives. The clear division, with
 329 men primarily engaged in fishing and women focused on domestic and caregiving roles,
 330 highlights how small-scale fisheries livelihoods are shaped by culturally defined gender
 331 norms rather than solely by economic factors. The slightly higher proportion of married
 332 respondents (54.29%) and small average household size (average of 2 children) further
 333 emphasize the relational aspect of well-being, this suggests that household cooperation
 334 and gender-based division of labor play a key role in building resilience amidst livelihood
 335 uncertainty (Coulthard, et.al., 2011; Weeratunge, et.al., 2010; Kleiber, et.al., 2013).

336 Age-disaggregated profiling provides a more precise socio-economic analysis,
 337 enabling targeted policy and development interventions, while offering a better
 338 understanding of intergenerational continuity and sustainability in small-scale fisheries

339 (FAO, 2015; BFAR, 2024). Adolescents (3%) are often involved in family-based fishing,
340 gleaning, or post-harvest activities, making age data crucial for understanding transfer
341 across generations, balancing education and work, and addressing child labor concerns
342 (FAO, 2015; Fry, et.al., 2021). Young adults form the backbone of the labor force driving
343 innovation, adaptation, and livelihood diversification. As shown in [Figure 3](#), they make
344 up 63% of the workforce, meaning their age-specific involvement significantly impacts
345 fishing efforts, productivity, and resilience to environmental and economic challenges
346 (Arulingam, et.al., 2019; Suh, et.al., 2023). Meanwhile, adults (34%) in the three
347 barangays, possess accumulated ecological knowledge and take on leadership roles in
348 household and community governance, influencing co-management, compliance, and
349 long-term resource stewardship (FAO 2015; Reis-Filho, et.al., 2025).

350 With similar importance, fishers with only elementary-level education (71.43%
351 according to [Figure 4](#)) often rely on traditional ecological knowledge and family-based
352 fishing practices. While these are vital for local resource stewardship they may limit
353 access to written regulations, formal training, and alternative livelihood opportunities
354 (Allison & Ellis, 2001; Bene, et.al., 2016). Those with a high school education
355 (22.86%) typically have a better understanding of fisheries policies, are more likely to
356 adopt improved fishing gear and post-harvest technologies, and tend to engage in
357 community-based management and cooperatives (FAO, 2015; Pomeroy & Andrew,
358 2011). College educated individuals, though fewer in the three barangays (5.71%), play a
359 crucial role in leadership, enterprise development, value-chain enhancement, and
360 connecting fishing communities with government agencies, NGOs, and markets. They are
361 also more likely to diversify their livelihoods, which helps alleviate overfishing on fishery resources
362 (FAO, 2018; Chuenpagdee, et.al., 2006).

363

364 Ownership status plays a significant role in fishers' income, economic security, and
365 resilience. Vessel owners typically retain a larger share of catch profits and have better
366 access to fishing grounds, while renters or laborers are more economically dependent and
367 face challenges in accumulating capital (Muslim, et.al., 2023; Arias-Schreiber, et.al.,
368 2018). The overwhelming reliance on rented fishing vessels (94.3%) compared to owned
369 vessels (5.7%) in [Figure 5](#), suggests that the fleet is shaped more by capital constraints

370 than by ownership preference. This aligns with finding by Muslim, et.al., (2023), which
371 show that limited vessel ownership is linked to lower net incomes and on going poverty
372 among small-scale fishers, as rental arrangements increase operating costs and restrict
373 limit asset accumulation. Viewed through the social well-being framework of Voyer,
374 et.al., (2017), this pattern has broader implications than just by income. From a material
375 well-being perspective, dependence on rented vessels indicates weak livelihood security
376 and diminished long-term resilience.Relationally, it creates a dependence on vessel
377 owners of financiers, reducing autonomy and bargaining power. Subjectively, it can erode
378 perceptions of stability and future prospects. Therefore, the dominance of rented vessels
379 highlights a structural vulnerability that limits both economic performance and overall
380 fisher well-being. This underscores the need for fisheries policies that promote equitable
381 access to productive assets and ensure long-term livelihood sustainability.

382

383 On a sustainability note, data from registered vessels support scientific research and
384 policy planning by providing accurate information on fleet composition, capacity, and
385 spatial distribution, which is critical for ecosystem-based fisheries management.Building
386 the discussions from the findings of Peralta-Milana, et.al., (2012), the data based on
387 Figure 6,provides strong empirical support for interpreting the high proportion of non-
388 registered fishing vessels (85.7%) as a manifestation of structural and governance
389 constraints rather than simple non-compliance. The study shows that when fisheries
390 registration and licensing were centralized at the municipal level, compliance was
391 extremely low due to transportation costs, time burdens, literacy limitations, and mistrust,
392 especially fears that registration would lead to taxation or increased surveillance (Peralta-
393 Milana, et.al., 2012; Digal & Palencia, 2017). The absence of registration also excludes
394 fishers from formal markets, licensing-based incentives, and conservation program,
395 reinforcing cycles of informality and marginalization (Digal & Palencia, 2017).

396

397 4.2 Carbon emissions and Efficiency

398 Consequently, the data on fishing vessel ownership and registration is part of the
399 equation to the calculated *CO₂ emissions*from small-scale fishing operations across the
400 three barangays which reflect patterns consistent with broader assessments of fisheries'

401 reliance on fossil fuels, where direct fuel use constitute the dominant source of energy
402 consumption and emissions (Tyedmers, et.al., 2005; Crona, et.al., 2023). Despite
403 operating similar gasoline-powered boats, traveling comparable distances (12-15 km),
404 and using the same fishing gear (gillnets), substantial variation in fuel consumption per
405 trip was observed, ranging from approximately 10 liters in Brgy. Gampis to over 20 liter
406 in Brgy. Lawis. Such variability in Table 2, parallels global findings that fuel-use
407 intensity can differ markedly among fisheries with similar targets and technologies,
408 reflecting differences in operational efficiency and fishing effort (Tyedmers, et.al., 2005;
409 Nooraiepour, et.al., 2025; Sumaila, R.U., 2024). Importantly, the results demonstrate that
410 trip frequency acts as a critical multiplier of emissions, as evidenced by Brgy. Lawis,
411 where higher per-trip fuel consumption combined with an average of three trips per
412 reporting period produced the highest cumulative emissions (139.5 kg CO_2). This
413 supports evidence that increasing fishing effort, rather than distance alone, drives
414 importance of managing fuel use and trip frequency even within small-scale municipal
415 fisheries (Tyedmers, et.al., 2005;Mahon, et.al., 2020; Ferrer, et.al., 2022; Ziegler, et.al.,
416 2019; Sarmiento, et.al., 2021).

417

418 Moreover, the carbon efficiency differences observed among the three fishing sites
419 Table 3 are consistent with broader findings in fisheries emissions research, particularly
420 regarding the strong influence of operational practices on fuel use and carbon intensity.
421 Brgy. Bantayan's high carbon efficiency (2.7 kg CO_2) reflects a favorable balance
422 between catch volume and fuel-related emissions, aligning with evidence that fisheries
423 achieving higher catch rates with relatively low fuel inputs exhibit substantially lower
424 carbon footprints per unit of harvest. In contrast, Brgy. Lawis demonstrates markedly
425 lower efficiency (0.48 kg fish per kg CO_2), emitting more than five times the CO_2 of
426 Bantayan for a comparable catch. This pattern mirrors findings highlighted by *Ziegler,
427 et.al., 2013 and 2019*, who emphasize that fuel use and emissions are poorly predicted by
428 effort alone and are instead strongly shaped by how engines are operated, fishing
429 methods employedand contextual factors such as gear type (Parker, et.al., 2015), and
430 stock conditions. High emissions relative to catch in Brgy. Lawis may therefore indicate
431 inefficient operational profiles such as longer engine run times, higher fuel consumption

432 per fishing trip, or less effective harvesting strategies rather than differences in catch
433 volume (Tyedmers, et.al., 2005; Freon, et.al., 2014).

434 The intermediate efficiency observed in Brgy. Gampis (1.72 kg fish per kg CO_2)
435 further supports the argument that fisheries performance exists along a spectrum rather
436 than fitting into simplistic categories. The site-level variation evident **Table 3** reinforces
437 the value of localized, data-driven assessments of carbon efficiency rather than relying
438 solely on generalized effort-based or sector-level models. Overall, the results underscore
439 that improving carbon efficiency in fisheries is not solely a matter of increasing catch, but
440 of optimizing fuel use relative to harvest outcomes (Avadi, et.al., 2013). As emphasized
441 in the works of *Zeigler, et.al.*, strategies such as reducing unnecessary engine operation,
442 improving gear efficiency, and aligning fishing effort with stock availability are critical to
443 lowering emissions intensity. The contrast between Brgy. Bantayan and Brgy. Lawis
444 illustrates how site-specific practices can lead to substantially different climate impacts,
445 even where total catches are similar.

446

447 **5. CONCLUSIONS**

448

449 This study demonstrates that livelihood structures, assets access, governance
450 arrangements, and carbon efficiency in small-scale fisheries are significantly linked and
451 socially embedded. However, this study is not conclusive to its objectives since there
452 were only 35 respondents who consented to participate but can best reflect in a case
453 study. The researcher recommends bigger sample size and longer sampling duration; and
454 further exploration on stock conditions, fishing methods, types of gear used and engine
455 operations.

456 Gender-based division of labor, age-specific roles, and education levels shape not
457 only fishing practices but also the distribution of risks, benefits, and adaptive capacity
458 within households and communities. The dominance of rented and unregistered vessels
459 reflects structural constraints such as capital limitation, governance barriers, and
460 institutional exclusion rather than individual non-compliance, reinforcing economic
461 vulnerability and limiting long-term resilience.

462 The observed variation in fuel use and carbon efficiency across barangays further
463 highlights that emissions in small-scale fisheries are driven less by technology alone and
464 more by operational practices, access to assets, and local ecological conditions. These
465 differences underscore the need for place-based, data-driven interventions that reduce
466 emissions without undermining livelihoods. Importantly, the findings show that
467 increasing fishing effort can exacerbate both economic precarity and carbon intensity,
468 revealing a critical intersection between social well-being and environmental
469 sustainability.

470 Taken together, the results point toward the necessity of Just Transition pathways that
471 simultaneously address climate mitigation, livelihood security, and social equity. Such
472 pathways should prioritize equitable access to productive assets, simplified and inclusive
473 vessel registration systems, gender-responsive and age-sensitive livelihood support, and
474 capacity-building aligned with educational realities. Supporting fuel efficiency,
475 operational optimization, and livelihood diversification particularly for young adults and
476 women who can reduce emissions while strengthening resilience. A Just Transition in
477 small-scale fisheries, therefore, must move beyond technological fixes to comfort
478 structural inequalities, ensuring that climate action enhances, rather than compromises,
479 the social well-being and dignity of fishing-dependent communities.

480
481
482
483
484
485
486
487
488
489
490

491

492 **REFERENCES**

493

494 **Allison, E. H., & Ellis, F. (2001).** The livelihoods approach and management of small-scale
495 fisheries. *Marine Policy*, 25(5), 377–388. **Retrieved from** [https://doi.org/10.1016/S0308-597X\(01\)00023-9](https://doi.org/10.1016/S0308-597X(01)00023-9)

496
497 **Allison, E. H., & Ellis, F. (2001).** *The livelihoods approach and management of small-scale*
498 *fisheries*. Marine Policy, 25(5), 377–388. and illustrated definition of fishing gears. FAO
499 Fisheries and Aquaculture Technical Paper No. 672. Rome, FAO. **Retrieved from**
500 <https://doi.org/10.4060/cb4966en>.

501

502 **Arias-Schreiber, M., Linke, S., Delaney, A. E., & Jentoft, S. (2018).** Governing the
503 governance: small-scale fisheries in Europe with focus on the Baltic Sea.
504 In *Transdisciplinarity for small-scale fisheries governance: Analysis and practice* (pp. 357-
505 374). Cham: Springer International Publishing. **Retrieved from** https://doi.org/10.1007/978-3-319-94938-3_19.

506

507 **Avadí, A., & Fréon, P. (2013).** Life cycle assessment of fisheries: A review for fisheries scientists
508 and managers. *Fisheries Research*, 143, 21-38. Retrieved from
509 <https://doi.org/10.1016/j.fishres.2013.01.006>

510

511 **Béné, C. Small-scale fisheries:** assessing their contribution to rural livelihoods in
512 developing countries. FAO Fisheries Circular. No. 1008. Rome, FAO. 2006.
513 46p. <https://openknowledge.fao.org/handle/20.500.14283/j7551e>

514

515 **Béné, C., Arthur, R., Norbury, H., Allison, E. H., Beveridge, M., Bush, S., ... & Williams, M.**
516 (2016). Contribution of fisheries and aquaculture to food security and poverty reduction:
517 assessing the current evidence. *World development*, 79, 177-196. **Retrieved from**
518 <https://doi.org/10.1016/j.worlddev.2015.11.007>

519

520 **Bennett, N. J., Blythe, J., Tyler, S., & Ban, N. C. (2015).** Coastal and marine social-ecological
521 systems and global change: A review of adaptations. *Ecology and Society*, 21(4), 17. **Retrieved**
from <https://doi.org/10.5751/ES-08730-210441>

522

523 **Brewer, R. S. (2008).** *Literature Review on Carbon Footprint Collection and Analysis*. University
of Hawai‘i. <https://www.researchgate.net/publication/238622341>.

524

525 **Bureau of Fisheries and Aquatic Resources (BFAR). (2020).** *Philippine Fisheries Profile 2020*.
Quezon City: Department of Agriculture.

526

527 **Chen, X., Di, Q., Hou, Z., & Yu, Z. (2022).** Measurement of carbon emissions from marine
528 fisheries and system dynamics simulation analysis: China's northern marine economic zone
529 case. *Marine Policy*, 145, 105279. **Retrieved from** <https://doi.org/10.1016/j.marpol.2022.105279>.

530

531 **China Council for International Cooperation on Environment and Development (CCICED)**
Secretariat. (2025). Pathways and Policies of Blue Economy in Supporting Carbon-Neutrality

532 Target. In: Green Empowerment and High Quality Development. Springer, Singapore. **Retrieved**
533 from https://doi.org/10.1007/978-981-96-4218-2_2.

534 **Chuenpagdee, R., Liguori, L., Palomares, M. L. D., & Pauly, D. (2006).** Bottom-up, global
535 estimates of small-scale marine fisheries catches. **Retrieved from**
536 <https://dx.doi.org/10.14288/1.0074761>

537 **Cinner, J. E., et al. (2018).** Building adaptive capacity to climate change in tropical coastal
538 communities. *Nature Climate Change*, 8, 117–123. **Retrieved**
539 from<https://doi.org/10.1038/s41558-017-0065-x>

540 **Coello, J., Williams, I., Hudson, D. A., & Kemp, S. (2015).** An AIS-based approach to calculate
541 atmospheric emissions from the UK fishing fleet. *Atmospheric Environment*, 114, 1–7. **Retrieved**
542 from <https://doi.org/10.1016/j.atmosenv.2015.05.011>.

543 **Coulthard, S., Johnson, D., & McGregor, J. A. (2011).** Poverty, sustainability and human
544 wellbeing: a social wellbeing approach to the global fisheries crisis. *Global Environmental
545 Change*, 21(2), 453-463. **Retrieved from**<https://doi.org/10.1016/j.gloenvcha.2011.01.003>

546 **Crona, B., Nyström, M., Folke, C., & Jiddawi, N. (2010).** Middlemen, a critical social-
547 ecological link in coastal communities of Kenya and Zanzibar. *Marine policy*, 34(4), 761-771.
548 **Retrieved from**<https://doi.org/10.1016/j.marpol.2010.01.023>

549 **Devi, M. S., Xavier, K. M., Singh, A. S., Edwin, L., Singh, V. V., & Shenoy, L. (2021).**
550 Environmental pressure of active fishing method: A study on carbon emission by trawlers from
551 north-west Indian coast. *Marine Policy*, 127, 104453. **Retrieved from**
552 <https://doi.org/10.1016/j.marpol.2021.104453>

553 **Dineshbabu, A. P., Thomas, S., Kizhakudan, S. J., Zacharia, P. U., Ghosh, S., Dash, G.,**
554 **Vivekanandan, E., et al. (2024).** Carbon Footprint of Marine Fisheries in India. CMFRI Special
555 Publication No. 149. ICAR–Central Marine Fisheries Research Institute, Kochi, India. Retrieved
556 PDF.

557 **FAO. 2015. Voluntary Guidelines for Securing Sustainable Small-Scale Fisheries in the Context**
558 **of Food Security and Poverty Eradication.** Rome.
559 <https://openknowledge.fao.org/handle/20.500.14283/i4356en>

560 **Ferrer, A.J. G., & Montecarlo, H M., 2023.** Portrait of Small-Scale Fishers in the Philippines. E-
561 book. TBTI Global Series. ISBN: 978-7390539-1-8.

562 **Ferrer, A.J. G., & Montecarlo, H M., 2024.** Portrait of Small-Scale Fishers in the Philippines.
563 DA-National Fisheries Research and Development Institute. ISBN: 978-621-8360-18-1

564 **Ferrer, E. M., Giron-Navar, A., & Aburto-Oropeza, O. (2022).** Overfishing increases the
565 carbon footprint of seafood production from small-scale fisheries. *Frontiers in Marine Science*, 9,
566 768784. **Retrieved from** <https://doi.org/10.3389/fmars.2022.768784>

567 **Food and Agriculture Organization of the United Nations (FAO). (2018).** The State of World
568 Fisheries and Aquaculture 2018: Meeting the Sustainable Development Goals. FAO, Rome.
569 <https://www.fao.org/family-farming/detail/en/c/1145050/>

570 **Fréon, P., Avadí, A., Soto, W. M., & Negrón, R. (2014).** Environmentally extended comparison
571 table of large-versus small-and medium-scale fisheries: the case of the Peruvian anchoveta
572 fleet. *Canadian journal of fisheries and aquatic sciences*, 71(10), 1459-1474. **Retrieved**
573 **from**<https://doi.org/10.1139/cjfas-2013-0542>

574 **Fry, C., Arulingam, I., Nigussie, L., Sellamuttu, S. S., Beveridge, M., & Marwaha, N. (2021).**
575 Youth in small-scale fisheries and aquaculture.
576 <https://digitalarchive.worldfishcenter.org/server/api/core/bitstreams/069f50f5-f91d-4f17-ac5c-dee937d86eb8/content>
577

578 **Geels, F. W. (2011).** The multi-level perspective on sustainability transitions: Responses to seven
579 criticisms. *Environmental Innovation and Societal Transitions*, 1(1), 24–40. **Retrieved from**
580 <https://doi.org/10.1016/j.eist.2011.02.002>

581 **He, P., Chopin, F., Suuronen, P., Ferro, R.S.T. and Lansley, J. 2021.** Classification and
582 illustrated definition of fishing gears. FAO Fisheries and Aquaculture Technical Paper No. 672.
583 Rome, FAO. **Retrieved from** <https://doi.org/10.4060/cb4966en>

584 **Hornborg, S., & Smith, A. D. M. (2020).** Fisheries for the future: Greenhouse gas emission
585 consequences of different fishery reference points. *ICES Journal of Marine Science*, 77(5), 1666–
586 1671. **Retrieved from** <https://doi.org/10.1093/icesjms/fsaa077>.

587 **Ipcc, I. P. C. C. (2006).** Guidelines for national greenhouse gas inventories. *Prepared by the*
588 *National Greenhouse Gas Inventories Programme. Eggleston HS, Buendia L, Miwa K, Ngara T,*
589 *Tanabe K, editors. Published: IGES, Japan.*

590 **Iribarren, D., Moreira, M. T., & Feijoo, G. (2010).** Carbon footprint of Galician fishing activity
591 (NW Spain). *Science of the Total Environment*, 408(22), 5284–5294. **Retrieved from**
592 <https://doi.org/10.1016/j.scitotenv.2010.07.082>.

593 **Kim, J. K., Jeong, B., Choi, J. H., & Lee, W. J. (2023).** Life cycle assessment of LPG engines
594 for small fishing vessels and the applications of bio LPG fuel in Korea. *Journal of Marine*
595 *Science and Engineering*, 11(8), 1488. **Retrieved from** <https://doi.org/10.3390/jmse11081488>

596 **Kleiber, D., Harris, L. M., & Vincent, A. C. (2015).** Gender and small-scale fisheries: a case for
597 counting women and beyond. *Fish and Fisheries*, 16(4), 547-562. **Retrieved from**
598 <https://doi.org/10.1111/faf.12075>

599 **Kroodsma, D. A., et al. (2018).** Tracking the global footprint of fisheries. *Science*, 359(6378),
600 904–908. <https://doi.org/10.1126/science.aoa5646>

601 **Mahon, R., Fanning, L., & McConney, P. (2020).** Governance for the world's oceans: Linking
602 knowledge to action. *Earth System Governance*, 3, 100047. **Retrieved from**
603 <https://doi.org/10.1016/j.esg.2019.100047>

604 **Maiti, A. K., Banerjee, B. N., & Akbar, A. (2005).** A Comparative Assessment of
605 Motorized and Non-Motorized Craft Fisheries in Andaman Island, India. *Economic Affairs*
606 (Calcutta), 50(3), 184.

607

608 **Monteclaro H., Anraku K. and Ishikawa S. 2017.** Filed Guidebook on Philippine Fishing
609 Gears: Fishing Gears in Estuaries. Research Institute for Humanity and Nature, Kyoto,
610 Japan, 159 p.

611

612 **Muslim, A. I., Fujimura, M., Kazunari, T., & Salam, M. (2023).** Small-scale marine fishers'
613 possession of fishing vessels and their impact on net income levels: A case study in Takalar
614 District, South Sulawesi Province, Indonesia. *Fishes*, 8(9), 463. **Retrieved**
615 **from**<https://doi.org/10.3390/fishes8090463>

616 **Nigussie, L., SenaratnaSellamuttu, S., & Debevec, L. (2019).** *Youth participation in small-*
617 *scale fisheries, aquaculture and value chains in Africa and the Asia-Pacific*. The WorldFish
618 Center. <https://digitalarchive.worldfishcenter.org/items/d58211f1-2a7b-4507-a86c-315ef77e8aba>

619 **Ostrom, E. (2009).** A general framework for analyzing sustainability of socio-ecological systems.
620 *Science*, 325(5939), 419–422. **Retrieved from** <https://doi.org/10.1126/science.1172133>

621 **Parker, R. W., & Tyedmers, P. H. (2015).** Fuel consumption of global fishing fleets: current
622 understanding and knowledge gaps. *Fish and Fisheries*, 16(4), 684-696. **Retrieved from**
623 <https://doi.org/10.1111/faf.12087>

624 **Parker, R. W., Blanchard, J. L., Gardner, C., Green, B. S., Hartmann, K., Tyedmers, P. H.,**
625 **& Watson, R. A. (2018).** Fuel use and greenhouse gas emissions of world fisheries. *Nature*
626 *Climate Change*, 8(4), 333-337. **Retrieved from** <https://doi.org/10.1038/s41558-018-0117-x>

627 **Pauly, D. (1997).** Small-scale fisheries in the tropics: marginality, marginalization, and
628 some implications for fisheries management. *Global trends: fisheries management*, 20, 40-
629 49.

630 **Philippine Statistics Authority (PSA). (2021).** *Fisheries Situation Report*. Quezon City: PSA.

631 **Pollnac, R. B., & Poggie, J. J. (2008).** Happiness, well-being and psychocultural adaptation to
632 the stresses associated with marine fishing. *Human Ecology Review*, 194-200. **Retrieved from**
633 <https://www.jstor.org/stable/24707603>

634 **Pomeroy, R. S., & Andrew, N. (Eds.). (2011).** *Small-scale fisheries management: frameworks and approaches for the developing world*. Cabi.

635

636

637 **Sadekin, M. N., Ali, J., & Islam, R. (2018).** Livelihood vulnerability index: an application to
638 assess the climatic vulnerability status of inland small scale fishing livelihood. *International*
639 *Journal of Sustainable Development*, 21(1-4), 75-101. **Retrieved from**
640 <https://doi.org/10.1504/IJSD.2018.100826>

641 **Sala, A., Damalas, D., Labanchi, L., Martinsohn, J., Moro, F., Sabatella, R., & Notti, E.**
642 **(2022).** Energy audit and carbon footprint in trawl fisheries. *Scientific Data*. **Retrieved from**
643 <https://doi.org/10.1038/s41597-022-01478-0>.

644 **Sala, E., et al. (2018).** The economics of fishing the high seas. *Science Advances*, 4(6), eaat2504.
645 Retrieved from <https://doi.org/10.1126/sciadv.aat2504>

646 **Salayo, N. D., Perez, M. L., Garces, L. R., & Pido, M. D. (2012).** Mariculture development and
647 livelihood diversification in the Philippines. *Marine Policy*, 36(4), 867-881. Retrieved from
648 <https://doi.org/10.1016/j.marpol.2011.12.003>

649 **Sarmiento, J. M. P., Mendez, Q. L. T., Estaña, L. M. B., Giray, E. S., Nañola Jr, C. L.,**
650 **& Alviola IV, P. A. (2021).** The role of motorized boats in fishers' productivity in marine
651 protected versus non-protected areas in Davao Gulf, Philippines. *Environment, Development*
652 and *Sustainability*, 23(11), 16786-16802. Retrieved from <https://doi.org/10.1007/s10668-021-01354-8>

653

654 **Smith, I. R., & Mines, A. N. (1982).** Small-scale fisheries of San Miguel Bay, Philippines:
655 economics of production and marketing. *Monographs*.

656

657 **Suh, N. N., Efed, B. T., & Nyiawung, R. A. (2023).** Youth recruitment and retainment in
658 small-scale fisheries: Factors influencing succession and participation decisions in
659 Cameroon. *Aquaculture, Fish and Fisheries*, 3(5), 424-434. Retrieved from
660 <https://doi.org/10.1002/aff2.129>

661

662 **Tan, R. R., & Culaba, A. B. (2009).** Estimating the carbon footprint of tuna fisheries. *WWWF*
663 *Binary Item*, 17870, 14.

664 **Teh, L. C. L., & Sumaila, U. R. (2007).** *Malthusian overfishing in small-scale fisheries: A*
665 *case study of Sabah, Malaysia*. *Marine Policy*, 31(5), 483-491. Retrieved
666 from doi:10.1016/j.marpol.2007.01.001

667

668 **Thompson, B. S., Clubbe, C. P., Primavera, J. H., Curnick, D., & Koldewey, H. J. (2014).**
669 Locally assessing the economic viability of blue carbon: A case study from Panay Island, the
670 Philippines. *Ecosystem Services*, 8, 128-140. Retrieved from
671 <https://doi.org/10.1016/j.ecoser.2014.03.004>

672

673 **Tsurita, I., Hori, J., Kunieda, T., Hori, M., & Makino, M. (2018).** Marine protected areas,
674 Satoumi, and territorial use rights for fisheries: A case study from hinase, Japan. *Marine*
Policy, 91, 41-48. Retrieved from <https://doi.org/10.1016/j.marpol.2018.02.001>

675

676 **Turolla, E., Castaldelli, G., Fano, E. A., & Tamburini, E. (2020).** Life cycle assessment (LCA)
677 proves that Manila clam farming (*Ruditapes philippinarum*) is a fully sustainable aquaculture
678 practice and a carbon sink. *Sustainability*, 12(13), 5252. Retrieved from
<https://doi.org/10.3390/su12135252>

679

680 **Tyedmers, P. H., Watson, R., & Pauly, D. (2005).** Fueling global fishing fleets. *AMBIO: a*
Journal of the Human Environment, 34(8), 635-638. Retrieved from
681 <https://doi.org/10.1579/0044-7447-34.8.635>

682 **Villareal, L.V.; Kelleher, V. (ed.); Tietze, U. (ed.)**
683 Guidelines on the collection of demographic and socio-economic information on fishing

684 communities for use in coastal and aquatic resources management.
685 FAO Fisheries Technical Paper. No. 439. Rome, FAO. 2004. 120p.

686 **Voyer, M., Barclay, K., McIlgorm, A., & Mazur, N. (2017).** Using a well-being approach to
687 develop a framework for an integrated socio-economic evaluation of professional fishing. *Fish
688 and fisheries*, 18(6), 1134-1149. **Retrieved from**<https://doi.org/10.1111/faf.12229>

689 **Weeratunge, N., Snyder, K. A., & Sze, C. P. (2010).** Gleaner, fisher, trader, processor:
690 understanding gendered employment in fisheries and aquaculture. *Fish and Fisheries*, 11(4), 405-
691 420. **Retrieved from**<https://doi.org/10.1111/j.1467-2979.2010.00368.x>

692 **World Bank. (2017).** *The Sunken Billions Revisited: Progress and Challenges in Global Marine
693 Fisheries*. Washington, DC: World Bank.

694 **Zacharia, P.U., Ninan, R.G. (2021).** Synergies and Trade-offs Between Climate Change and the
695 Sustainable Development Goals in the Context of Marine Fisheries. In: Venkatramanan, V., Shah,
696 S., Prasad, R. (eds) Exploring Synergies and Trade-offs between Climate Change and the
697 Sustainable Development Goals . Springer, Singapore. **Retrieved from**
698 https://doi.org/10.1007/978-981-15-7301-9_8.

699 **Zhang, X., Ye, S., & Shen, M. (2023).** Driving factors and spatiotemporal characteristics of Co2
700 emissions from marine fisheries in China: A commonly neglected carbon-intensive
701 sector. *International Journal of Environmental Research and Public Health*, 20(1),
702 883. **Retrieved from**<https://doi.org/10.3390/ijerph20010883>.

703 **Zhou, S., et al. (2010).** Ecosystem-based fisheries management: A systematic overview. *Reviews
704 in Fish Biology and Fisheries*, 20(2), 207–221. **Retrieved from**[https://doi.org/10.1007/s11160-009-9126-7](https://doi.org/10.1007/s11160-
705 009-9126-7)