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Abstract

Malaria and Typhoid Fever are two diseases classified as potentially
epidemiological in Cameroon, and where cases of coinfection are often
reported in Health Facilities. To assess the degree and direction of this
interdependence, correlation and covariance are specifically used in this
work. A set of statistical approaches is applied using the Python
programming language to a dataset of weekly cases for both diseases in the
Adamawa Region of Cameroon, spanning from January 2021 to December
2024 (four years). The proposed analytical framework encompasses graphs

Dynamics, Adamawa Region of

Cameroon and algebraic approaches to correlation, including cross-correlation, cross-

covariance, and their corresponding time lags, as well as rolling window
functions. First and foremost, the stationarity of each series is examined. The
values obtained for the correlation coefficients are 0.73 for Pearson and 0.63
for Spearman, both of which exceed 0.5, indicating strong correlations.
There is a strong peak at lag 0 for cross-correlation, suggesting a significant
contemporaneous relationship. The time lag cross-correlation consistently
shows high values (between 0.8 and 1) for all lags. At lag zero, the series vary
together and the time lag cross-covariance remains above zero. Overall, the
two diseases exhibit the same directionality with an immediate correlation,
and peaks are explicitly observed in mid-2023 and the beginning of 2024.
This work provides statistical knowledge for both the population and
stakeholders, helps predict disease trends, and informs strategies for the joint
management of the diseases. It opens up ways for examining causalities and
multivariate analysis.
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Introduction:-

In Cameroon, around twenty diseases are classified as potentially epidemiological, requiring close monitoring to
anticipate any large-scale contamination [1]. Among them, malaria [2] and typhoid fever [3] appear to be two
predominant infectious diseases that substantially affect population health, and where cases of coinfection are
regularly encountered in Health facilities [4]. Various measures are then undertaken, including weekly data
collection on occurring cases, for disease monitoring.

To carry out this statistical assessment, the paper focuses on health data considered as a time series [5]. Time series
refers to a sequence of events observed and recorded over a period of time [6], [7]. The Adamawa Region is one of
the ten regions in Cameroon, located at the crossroads between the South and the North of the country. With a
population of about 1.18 million and an area of 63,701 km2, the Region is bordered on the West by Nigeria and on
the East by the Central African Republic. The climate is temperate, and its savannah vegetation is situated in a hilly
area, making the Region a suitable sample for these experiments [4], [8].

The primary motivation for this paper is, firstly, to pursue works undertaken on epidemiological prevention using
time series data and methods. The second motivation stems from the observation that several cases of coinfections
are frequently reported, which requires a better understanding of some factors, including the degree of correlation
and covariance, the co-evolution, the causality and so forth [9]. Lastly, research has revealed several studies based
on the analysis of malaria and typhoid fever coinfections [4], [10], but very few on their interdependence. The
challenge is to fill this gap and provide the various stakeholders with more statistical data on which to base decisions
and actions.

The primary purpose of this work is therefore to carry out an exhaustive and comprehensible statistical analysis of
both malaria and typhoid fever in the Adamawa Region of Cameroon, based on an approach involving correlation
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and covariance [11], [12]. This objective involves collecting data over a significant period for experiments, followed
by statistical analysis using the selected approaches, and ultimately providing valuable insights and
recommendations for stakeholders and decision-makers.

Various studies focused on statistical analysis of disease-related time series data. The subsequent paragraph presents
some relevant ones.

To assess Google Trends' accuracy for epidemiological surveillance of dengue and yellow fever and compare their
incidence on the population of Sdo Paulo state, the work in [13] was carried out. The correlation was calculated
using Pearson's coefficient and the cross-correlation function. The study in [14] investigated the transmissibility and
death distribution of COVID-19 and its association with meteorological parameters to study the propagation pattern
of COVID-19 in UK regions. The correlation and regression analysis between COVID-19 variables and
meteorological parameters was performed. To identify potential predictors of new health system overloads, [15]
analysed Twitter and emergency services data, comparing it to daily infected time series through wavelet and cross-
correlation analysis. Using real-world data and machine learning models, [16] conducted a retrospective study from
2010 to 2020 to analyse the trends and characteristics of Multidrug-resistant bacteria (MDRB) infections.
Combining 39 hospital indicators, the authors used a random forest model and cross-correlation analysis. The
study's aim in [4] was to determine the prevalence of malaria and typhoid fever, as well as their coinfection among
febrile patients at Ngaoundere Regional Hospital, Adamawa, Cameroon. A cross-sectional and descriptive study was
conducted on 208 febrile patients suspected of Malaria and/or typhoid fever from September to November 2019. A
similar work was conducted in a University Hospital in Nigeria by different authors in [10]. In [17], correlation tools
were applied to open-source COVID-19 data from different countries. A longitudinal time series study was carried
out with a cross-correlation analysis of Temporary Incapacity (T1) and COVID-19 cases, as reported by the work of
[18]. [8] used weekly collected surveillance data from health facilities in the Adamawa Region from January 2018 to
December 2022 and applied key statistical metrics for central tendency, data spread, distribution shape, and variable
dependence. The objective in [19] was to identify and estimate the autocorrelation and cross-correlation of time
series of hospitalisation rates for syphilis and HIV/AIDS in the State of Bahia from 2000 to 2020 by using
Detrended Fluctuation Analysis (DFA) and cross-correlation coefficient.

The main contribution of this work is a comprehensive description of the correlation and covariance of the diseases,
based on a relevant set of applied statistical approaches [5], [20]. This work introduces others on causalities and
multivariate analysis.

2. Materials and methods
The present work aims to analyse two disease-related time series. Stationarity is a key property to check before
starting a statistical assessment of a time series.

2.1 Stationarity of time series

For significance correlation analysis, the time series should be stationary, meaning that their statistical properties
(mean, variance, autocovariance) are constant over time [21]. Non-stationary series can produce misleading
correlation results and poor forecasts [22]. Several statistical tests assess stationarity in a time series. Among them,
the Augmented Dickey-Fuller (ADF) test tests the null hypothesis that a unit root is present in the time series, and
the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test assesses the null hypothesis that the time series is stationary
around a deterministic trend. If a non-stationarity is found in a time series, some techniques can be employed to
transform it. These techniques include differencing (subtracting the previous observation from the current
observation) and detrending (removing trends from the data) [23], [24].

2.2 Correlation and cross-correlation

Correlation of time series refers to the statistical relationship between two or more time series, indicating how
changes in one series relate to changes in another over time [25]. Understanding this correlation is crucial for
analysing and predicting the behaviour of interrelated time series.

There are two ways to assess time series correlation: graphs and algebraic approaches. The graphs approach includes
time series plots and scatter diagrams. Meanwhile, algebraic approaches are based on coefficients of correlation
[12].

The first step in testing for correlation between time series is to plot them in a common plan or referential and
inspect their appearance and aspect [25]. The scatter diagram is a graphical representation of the relationship
between two quantitative variables [26], [27]. For a positive correlation, points trend upwards from left to right,
indicating that as one variable increases, the other also increases. A negative correlation shows a downward trend in
points from left to right, indicating that as one variable increases, the other decreases. No correlation is when the
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points are scattered randomly, revealing no discernible relationship between the variables. A trend line (or line of
best fit) is added to summarise the relationship between variables. This line helps to visualise the general direction
of the data and is considered a regression line [28].

Besides, algebraic approaches include coefficients of correlation, statistical measures that quantify the strength and
direction of the linear relationship between two series [29]. The most common measure is Pearson's correlation
coefficient, which ranges from -1 (perfect negative correlation) to 1 (perfect positive correlation) [30]. A value close
to zero indicates no correlation, showing that the series do not move together. The Pearson correlation coefficient is
calculated using the formula:

N n(Exy)-E0CEy) 1)
Vo -0 T yI-(Ey)?]

where n is the number of pairs, x and y are correlated variables.

The other correlation measure used is Spearman's rank coefficient, a non-parametric measure that assesses how well
a monotonic function can describe the relationship between two variables [31]. It also ranges from -1 (perfect
negative correlation) to 1 (perfect positive correlation). A value around O exhibits no predictable relationship
between the variables [32]. The coefficient is obtained via the formula:
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where d; is the difference between the ranks of each pair of observations, and n is the number of observations.
The Cross-correlation function (CCF) measures the correlation between two series as a function of the time lag
applied to one of them [33]. The cross-correlation at lag k is mathematically expressed as:
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X and Y are the means of the series X and Y, respectively, and n is the number of observations. A positive value of
CCF indicates that as one time series increases, the other tends to increase after the specified lag. A negative CCF
suggests that as one series increases, the other decreases after the specified lag [34], [35].

The time lagged cross correlation (TLCC) function measures the correlation between two series at different time
lags [36]. This technique helps identify how one time series may influence or relate to another over time, accounting
for potential relationship delays.

The rolling windowed correlation (RWC) function computes the correlation coefficient over a moving window,
providing insights into how the relationship between the series evolves [37], [38].

2.3 Covariance and cross-covariance
The covariance of the two series measures how much they change together [9]. It can take any value and is
calculated using the following formula:

Cov(X,¥) = S (X = D)% ~T) (@)

where n is the total number of observations in the time series, X and ¥ are the means of X and Y, respectively [39].
A positive covariance indicates that the two series tend to increase or decrease together, while a negative covariance
suggests that when one time series increases, the other tends to decrease. A covariance close to zero implies no
relationship between the series' movements.

Cross-covariance extends the concept of covariance and measures the relationship between two series at different
time lags applied to one of them [9]. Itis a statistical measure that assesses the degree to which two series change
together over time.

Time lag cross-covariance measures the joint variability of two series at different lags [40], [41]. It helps to identify
how one time series may influence or relate to another over various time delays.

Rolling cross-covariance is used to analyse the time-varying relationship between two series over a specified
window.
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2.4 Data and programming environment

The dataset used encompasses weekly cases of malaria and typhoid fever from Health Districts of the Region, stored
via an online platform® and managed by the Health Information Unit of the Ministry of Public Health. The data,
aggregated at the region level from January 2021 to December 2024, comprise 208 records used for experiments.

To perform experimentations, the scientific programming language Python? is used via Google Colaboratory. It is
adapted for statistics, through several specialised libraries including Statistics for descriptive statistics; Pandas for
numerical computing; Matplotlib combined with Seaborn for graphics and data visualisation[42].

2.5 Methodology

The methodological approach defined involves six main stages:

Data collection and data set construction;

Stationarity tests;

Statistical description of the data set;

Correlation analysis:

e  Graphs approach (time series and scatter diagrams plot);

e Algebraic approach (Pearson and Spearman coefficients);

5. Cross-correlation, time lag cross-correlation and rolling correlation analysis;
6. Cross-covariance, time lag cross-covariance, and rolling covariance analysis.

PO E

3. Results
We assume that the dataset is already built.

3.1 Stationarity tests of time series

The stationarity test for the malaria series reveals a non-stationary with a stochastic trend, giving a p-value of 0.20
for ADF. However, the series is stationary in a deterministic trend with a p-value of KPSS = 0.10. In order to
preserve memory as much as possible and render the series stationary, fractional differentiation is used instead of
integer one [21]. The following values are obtained:

Differentiation order: 0.20, ADF p-value: 4.70 %, Correlation with original series: 0.93.

For the typhoid fever series, the tests indicate full stationarity: ADF p-value = 0.00, KPSS p-value = 0.10.

3.2 Data description
Table 1 contains the basic statistical properties of the series.

Table 1: Descriptive statistics of series

Indicator Malaria Typhoid fever
Mean 1813.55 736.21
Standard deviation 609.87 193.28
Minimum 11.98 513.00

1% quartile 1407.39 622.75

2" quartile 1697.08 677.50

3" quartile 2069.42 760.25
Maximum 3941.31 1609.00
Kurtosis 1.51 4.35
Skewness 0.97 2.08

3.3 Correlation and covariance analysis
The first assessment of the correlation is the graph approach. Figure 1 depicts the joint curves for Malaria and
Typhoid Fever, and the fractionally differentiated version of the malaria series.

1https://dhis-minsante-cm.org/
2www.python.org
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Figure 3: Regression of Typhoid Fever over Malaria
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182 For Figure 2, the slope of the curve is 0.23, and the intercept is 316.30. The equation for the regression curve is
183  therefore:

184  Typhoid Fever cases = 0.23*(Malaria cases) + 316.30.

185 The slope of the curve for Figure 3 is 2.30, and the intercept is 116.46. Thus, the equation of the regression curve
186  obtained is:

187 Malaria cases = 2.30*(Typhoid Fever cases) + 116.46.

188  The coefficient of determination R? for predicting Malaria cases from linear regression is R? = 0.53, slightly higher
189  than the one from the AutoRegressive Moving Average (ARIMA) prediction: R? = 0.27. This result suggests that
190 linear regression can be a viable option for estimating future cases.

191 Concerning the algebraic approach for the two series taken together, the values of the correlation coefficients are
192 0.73 for Pearson and 0.63 for Spearman. They are all above 0.5, unveiling strong correlations between series.

193  The cross-correlation, time lag cross-correlation, and rolling correlation functions produce the diagrams in Figures4,
194  5and 6. The curves are symmetric for both series, so calculating one is sufficient for analysis.
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Figure 4 shows the cross-correlation between Malaria and Typhoid Fever. The lag values of Typhoid Fever range
from -200 to 200, indicating how the correlation changes over time, both before and after the current observation of
Malaria. The larger lags have been chosen to appreciate the changes over the period better. The strength of the
correlation at each lag is sometimes above zero, showing a positive correlation at this specific lag, or under zero,
revealing a negative correlation. The strong peak at lag 0 suggests a significant contemporaneous correlation
between Malaria and Typhoid Fever, meaning that when cases of one disease are high, the other cases are also
simultaneously high. The time lag cross-correlation is presented in Figure 4, with values ranging from 0 to 100. The
plot shows consistently high correlation values (around 0.8 to 1) across most lags, suggesting a strong positive
relationship between Malaria and Typhoid Fever over time when the two series are shifted. Figure 6 displays the
rolling correlation plot over the studied period. The window size is 6, representing the two series' minimum
Autocorrelation function (ACF). There are periods where the correlation coefficient approximates 1, suggesting a
strong positive relationship. According to the plot, the relationship is generally positive.

The cross-covariance, time lag cross-covariance, and rolling covariance functions yield the diagrams of Figures7, 8
and 9. Similarly, the curves are symmetric for both series, so calculating one is sufficient to perform the analyses.
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Figure 7: Cross-covariance
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Figure 9: Rolling covariance

Figure 7 illustrates how the covariance between Malaria and Typhoid Fever changes over various lags. Lags range
from -100 to 100, indicating the time lags at which the cross-covariance is calculated. Negative lags represent past
values of Typhoid Fever affecting current values of Malaria, while positive lags indicate the opposite. The cross-
covariance values are either positive, associated with peaks, or negative, characterised by troughs. At lag zero, the
series strongly vary together. Figure 8 is related to the time lag cross-covariance plot ranging from -100 to 100.
Negative lags show the effect of past values of Typhoid Fever on current values of Malaria, while positive lags show
the effect of past Malaria values on Typhoid Fever. The plot reveals a relatively flat region with high positive
covariance values (from about -50 to +50), unveiling that fluctuations in one disease are consistently associated with
fluctuations in the other over this range. The cross-covariance remains well above zero for most lags. Finally, Figure
9 presents the rolling covariance plot between Malaria and Typhoid Fever over time, covering the studied period,
with a window size of 6. Overall, the two diseases tend to occur together. Peaks in covariance are explicitly
observed in mid-2023 and the beginning of 2024.

4. Discussion

This work first involved a stationarity test. As the malaria series was identified as non-stationary, it has been
differentiated. The plot of the curves showed similar trends over several periods, confirming interdependence. The
scatter diagram indicates that points trend upwards from left to right, mainly around the regression line, leading to
the conclusion of a positive relationship between the series. The coefficients of correlation confirmed this notorious
relationship, as they are well above the positive mean (0.5). The cross-correlation shows a highest peak at lag zero
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between the two series, revealing an immediate relation. For the joint lag, the cross-correlations remain between 0.8
and 1. The sliding correlation analysis for a window of size 6 reveals a correlation almost always above the positive
mean (0.5). Thus, incorporating time dynamics in the analysis confirms a significant relationship. The two series
vary similarly together, with concomitant peaks. Following the combined lag, this peak remains constant and high
between -50 and 50. Finally, the rolling covariance stays above zero most of the time, with many infections
observed in mid-2023 and early 2024. Overall, this analysis, based primarily on correlation and covariance, reveals a
substantial relationship between Malaria and Typhoid Fever with a notable contemporaneous correlation. The
relation is strong and stable across the examined lags.
The work presented in this paper used statistical approaches to understand some common epidemiological
phenomena. When compared to others, the work of [8] is based in the same geographical area as the present study
but focuses solely on one disease for the statistical analysis. [4] on his side, carried out a study in Ngaoundere, the
Adamawa Region Capital, focusing only on prevalence assessment. Papers [4], [10] also tackle Malaria and Typhoid
Fever coinfections. Most of the work combined correlation assessment with another method: regression analysis in
[14], wavelet analysis in [15], random forest in [16] and detrended fluctuation analysis in [19]. All the researchers
limited their study to cross-correlation, leaving out time lag and rolling analysis. None of them focused on both
correlation and covariance approaches.
The work carried out in this study is distinctive because it considers a wide range of statistical tools to assess the
correlation and covariance between two diseases, unlike other studies, which use only one or two tools. In addition
to correlation, covariance is used to understand the joint variation of both diseases better. In this geographical area,
no studies have focused on statistically explaining the correlation and covariance of these two diseases.
The limitation of this work mainly lies in the availability of data. Only weekly cases from the last 5 years were
available. Furthermore, obtaining data on gender, age, climate, environment, and socio-economic considerations
should provide more insightful information on causalities and facilitate a multivariate analysis. Clinical cases may
also be considered.
Awareness of this valuable statistical information makes it impactful and worthwhile to:

e Help understand the dynamics of the diseases and inform interventions.

e Monitor the trend of one disease and provide insights on the trend of the other, valuable for resource

allocations.
e  Monitor diseases in tandem to help predict trends and inform outbreak management strategies.

5. Conclusion

The main objective of this work was to assess the degree and direction of malaria and typhoid fever, two diseases
classified as potentially epidemiological and for which coinfection cases are often reported in Health facilities. To
that end, correlation and covariance approaches were applied to time series data of the Adamawa Region of
Cameroon, spanning from January 2021 to December 2024. The results revealed a strong and constant relationship
between these two diseases over time, which may help in the joint implementation of surveillance and response
policies. The outlook includes obtaining more data for casualty analysis and multivariate analysis.

Author Statements:

o Ethical approval: The conducted research is not related to either human or animal use.

e Conflict of interest: The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper

¢ Acknowledgement:We acknowledge the Health Information Unit of the Ministry of Public Health of Cameroon,
and the Adamawa Regional Delegation of the same Ministry for providing us with data and relevant information
for this work.

¢ Author contributions: The authors declare that they have equal right on this paper.

e Funding information: The authors declare that there is no funding to be acknowledged.

o Data availability statement: The data that support the findings of this study are available on request from the
corresponding author.

References

[1] J. Moskolai Ngossaha, A. Ynsufu, A. BatoureBamana, R. Djeumen, S. Bowong Tsakou, and A. Ayissi
Eteme, 'Towards a Flexible Urbanisation Based Approach for Integration and Interoperability in Heterogeneous
Health Information Systems: Case of Cameroon', in Safe, Secure, Ethical, Responsible Technologies and Emerging



297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

Applications, vol. 566, F. Tchakounte, M. Atemkeng, and R. P. Rajagopalan, Eds., in Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 566. , Cham: Springer Nature
Switzerland, 2024, pp. 258-275. doi: 10.1007/978-3-031-56396-6_16.

[2] K. K. S. Garcia et al., ‘Malaria time series in the extra-Amazon region of Brazil: epidemiological scenario
and a two-year prediction model’, Malar. J., vol. 21, no. 1, p. 157, Dec. 2022, doi: 10.1186/512936-022-04162-1.

[3] C. L. Kim et al., ‘The Burden of Typhoid Fever in Sub-Saharan Africa: A Perspective’, Res. Rep. Trop.
Med., vol. Volume 13, pp. 1-9, Mar. 2022, doi: 10.2147/RRTM.S282461.

[4] F. S. Sohanang Nodem, D. Ymele, M. Fadimatou, and S.-P. C. Fodouop, ‘Malaria and Typhoid Fever
Coinfection among Febrile Patients in Ngaoundere (Adamawa, Cameroon): A Cross-Sectional Study', J. Parasitol.
Res., vol. 2023, p. 5334813, 2023, doi: 10.1155/2023/5334813.

[5] A. BatoureBamana, Y. Sokdou Bila Lamou, and A. Abdoulaye, ‘Benchmark Analysis of Time Series
Models for Malaria Trends in the Adamawa Region (Cameroon)’, in Research in Computer Science, vol. 2462, D.
Aissani, K. Barkaoui, and M. Roche, Eds., in Communications in Computer and Information Science, vol. 2462. ,
Cham: Springer Nature Switzerland, 2025, pp. 61-79. doi: 10.1007/978-3-031-88226-5 5.

[6] A. BatoureBamana, M. Shafiee Kamalabad, and D. L. Oberski, ‘A systematic literature review of time
series methods applied to epidemic prediction’, Inform. Med. Unlocked, vol. 50, p. 101571, 2024, doi:
10.1016/j.imu.2024.101571.

[7] R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and practice, Third print edition.
Melbourne, Australia: Otexts, Online Open-Access Textbooks, 2021.

[8] A. BatoureBamana, E. Dangbe, H. Abboubakar, and M. Shafiee Kamalabad, ‘A comprehensive statistical
analysis of Malaria dynamics in the Adamawa region of Cameroon, from 2018 to 2022°, Braz. J. Biom., vol. 42, no.
3, pp. 289-306, Aug. 2024, doi: 10.28951/bjb.v42i3.703.

[9] J. Jeong and W. Chang, ‘Analysis of East Asia Wind Vectors Using Space-Time Cross-Covariance
Models’, Remote Sens., vol. 15, no. 11, p. 2860, May 2023, doi: 10.3390/rs15112860.

[10] T. A. Olowolafe, O. F. Agosile, A. O. Akinpelu, N. Aderinto, O. Z. Wada, and D. B. Olawade, 'Malaria and
typhoid fever coinfection: a retrospective analysis of University Hospital records in Nigeria', Malar. J., vol. 23, no.
1, p. 220, Jul. 2024, doi: 10.1186/512936-024-05052-4.

[11] S. Chatterjee, ‘A New Coefficient of Correlation’, J. Am. Stat. Assoc., vol. 116, no. 536, pp. 2009-2022,
Oct. 2021, doi: 10.1080/01621459.2020.1758115.

[12] H. Kato and A. Takizawa, ‘Time series cross-correlation between home range and number of infected
people during the COVID-19 pandemic in a suburban city’, PLOS ONE, vol. 17, no. 9, p. e0267335, Sep. 2022, doi:
10.1371/journal.pone.0267335.

[13] V. U. Monnaka and C. A. C. D. Oliveira, ‘Google Trends correlation and sensitivity for outbreaks of
dengue and yellow fever in the state of Sdo Paulo’, Einstein S&o Paulo, vol. 19, p. eAO5969, Jul. 2021, doi:
10.31744/einstein_journal/2021A05969.

[14] M. Sarmadi, S. Rahimi, D. Evensen, and V. Kazemi Moghaddam, ‘Interaction between meteorological
parameters and COVID-19: an ecological study on 406 authorities of the UK’, Environ. Sci. Pollut. Res., vol. 28, no.
47, pp. 67082-67097, Dec. 2021, doi: 10.1007/s11356-021-15279-2.

[15] B. A. Rivieccio et al., ‘CoViD-19, learning from the past: A wavelet and cross-correlation analysis of the
epidemic dynamics looking to emergency calls and Twitter trends in Italian Lombardy region’, PLOS ONE, vol. 16,
no. 2, p. 0247854, Feb. 2021, doi: 10.1371/journal.pone.0247854.

[16] Y. Chen et al., ‘Epidemiology and prediction of multidrug-resistant bacteria based on hospital level’, J.
Glob. Antimicrob. Resist., vol. 29, pp. 155-162, Jun. 2022, doi: 10.1016/j.jgar.2022.03.003.

[17] M. Anwer and F. Jahan, ‘Interdependency and cross-dependencies of COVID-19 time-series parameters
using autocorrelation and cross-correlation’, in 2023 8th International Conference on Smart and Sustainable
Technologies (SpliTech), Split/Bol, Croatia: IEEE, Jun. 2023, pp. 1-6. doi:
10.23919/SpliTech58164.2023.10193321.

[18] D. C. Lévano, S. E. Lopez, A. Gherasim, J. O. Dominguez, M. T. D. Rico, and M. G. Gémez, ‘The
Temporary Incapacity (TI) register as a complementary system to traditional epidemiological surveillance during the
COVID-19 pandemic in Spain’, PLOS ONE, vol. 19, no. 5, p. e0301344, May 2024, doi:
10.1371/journal.pone.0301344.

[19] S. J. A. D. Jesus, E. M. D. Aradjo, and A. M. D. Silva Filho, 'Autocorrelation and Cross-Correlation of
Hospitalisations for Syphilis and HIV/AIDS in the State of Bahia’, Rev. Gest. Soc. E Ambient., vol. 18, no. 11, p.
€09853, Nov. 2024, doi: 10.24857/rgsa.v18n11-147.

10



351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

[20] B. Leouro Mbaiossoum, A. lbrahim Doutoum, A. BatoureBamana, N. Batouma, L. Dionlar, and D.
Noudjibarem, ‘Self-Efficacy Prediction Model Using Bayesian Networks’, J. Inf. Syst. Eng. Manag., vol. 10, no.
37s, pp. 530-536, Apr. 2025, doi: 10.52783/jisem.v10i375.6447.

[21] A. B. Bamana, Y. S. B. Lamou, D. J. Fotsa-Mbogne, and M. S. Kamalabad, ‘Addressing Non-stationarity
with Stochastic Trend in the Context of Limited Time Series Data: An Experimental Survey’, Mar. 25, 2025. doi:
10.21203/rs.3.rs-6289779/v1.

[22] R. Moraffahet al., ‘Causal inference for time series analysis: problems, methods and evaluation’, Knowl.
Inf. Syst., vol. 63, no. 12, pp. 3041-3085, Dec. 2021, doi: 10.1007/s10115-021-01621-0.

[23] A. Aieb, A. Liotta, A. Jacob, and M. A. Yaqub, ‘Short-Term Forecasting of Non-Stationary Time Series’,
in ITISE 2024, MDPI, Jul. 2024, p. 34. doi: 10.3390/engproc2024068034.

[24] D. Batabyal, D. Bandopadhyay, B. Sadhukhan, N. Das, and S. Mukherjee, ‘Exploring Stationarity and
Fractality in Stock Market Time-series’, in 2023 International Conference on Intelligent Systems, Advanced
Computing and Communication (ISACC), Silchar, India: IEEE, Feb. 2023, pp. 1-6. doi:
10.1109/1SACC56298.2023.10084056.

[25] R. Ahsan, R. Neamtu, M. Bashir, E. A. Rundensteiner, and G. Sarkozy, ‘Correlation-Based Analytics of
Time Series Data’, in 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA: IEEE, Dec.
2020, pp. 4482-4491. doi: 10.1109/BigData50022.2020.9378155.

[26] A. Dokumentov and R. J. Hyndman, ‘STR: Seasonal-Trend Decomposition Using Regression’, Inf. J. Data
Sci., vol. 1, no. 1, pp. 50-62, Apr. 2022, doi: 10.1287/ijds.2021.0004.

[27] M. Joseph, S. Moonsammy, H. Davis, D. Warner, A. Adams, and T. D. Timothy Oyedotun, ‘Modelling
climate variabilities and global rice production: A panel regression and time series analysis’, Heliyon, vol. 9, no. 4,
p. 15480, Apr. 2023, doi: 10.1016/j.heliyon.2023.15480.

[28] R. Espinosa, F. Jiménez, and J. Palma, ‘Multi-surrogate assisted multi-objective evolutionary algorithms
for feature selection in regression and classification problems with time series data’, Inf. Sci., vol. 622, pp. 1064—
1091, Apr. 2023, doi: 10.1016/j.ins.2022.12.004.

[29] A. E. Yuan and W. Shou, ‘A rigorous and versatile statistical test for correlations between time series’, Jan.
28, 2022. doi: 10.1101/2022.01.25.477698.

[30] G. Li, A. Zhang, Q. Zhang, D. Wu, and C. Zhan, ‘Pearson Correlation Coefficient-Based Performance
Enhancement of Broad Learning System for Stock Price Prediction’, IEEE Trans. Circuits Syst. 11 Express Briefs,
vol. 69, no. 5, pp. 2413-2417, May 2022, doi: 10.1109/TCSI1.2022.3160266.

[31] K. Ali Abd AlHameed, ‘Spearmans correlation coefficient in statistical analysis’, Int. J. Nonlinear Anal.
Appl., vol. 13, no. 1, Jan. 2022, doi: 10.22075/ijnaa.2022.6079.

[32] H. Rahadian, S. Bandong, A. Widyotriatmo, and E. Joelianto, ‘Image encoding selection based on Pearson
correlation coefficient for time series anomaly detection’, Alex. Eng. J., vol. 82, pp. 304-322, Nov. 2023, doi:
10.1016/j.a€j.2023.09.070.

[33] A. lorio et al., ‘Cross-correlation of virome—bacteriome—host-metabolome to study respiratory health’,
Trends Microbiol., vol. 30, no. 1, pp. 34-46, Jan. 2022, doi: 10.1016/j.tim.2021.04.011.

[34] S. P. Shrestha, W. Chaisowwong, M. Upadhyaya, S. P. Shrestha, and V. Punyapornwithaya, ‘Cross-
correlation and time series analysis of rabies in different animal species in Nepal from 2005 to 2018”, Heliyon, vol.
10, no. 3, p. e25773, Feb. 2024, doi: 10.1016/j.heliyon.2024.e25773.

[35] G. F. Zebende, A. A. Brito, and A. P. Castro, ‘DCCA cross-correlation analysis in time-series with
removed parts’, Phys. Stat. Mech. Its Appl., vol. 545, p. 123472, May 2020, doi: 10.1016/j.physa.2019.123472.

[36] J. M. Polanco-Martinez and J. L. Lopez-Martinez, ‘NonParRolCor: An R package for estimating rolling
correlation for two regular time series’, SoftwareX, vol. 22, p. 101353, May 2023, doi: 10.1016/j.s0ftx.2023.101353.
[37] T. Ferdousi, L. W. Cohnstaedt, and C. M. Scoglio, ‘A Windowed Correlation-Based Feature Selection
Method to Improve Time Series Prediction of Dengue Fever Cases’, IEEE Access, vol. 9, pp. 141210-141222, 2021,
doi: 10.1109/ACCESS.2021.3120309.

[38] Z. Sun and T. J. Fisher, ‘Testing for correlation between two time series using a parametric bootstrap’, J.
Appl. Stat., vol. 48, no. 11, pp. 2042-2063, Aug. 2021, doi: 10.1080/02664763.2020.1783519.

[39] M. Stehlik et al., ‘On asymmetric relations and robustified cross-correlation approach to surveillance based
on detection of SARS-CoV-2 in wastewater in Chile and Peru’, Chemom. Intell. Lab. Syst., vol. 242, p. 104987,
Nov. 2023, doi: 10.1016/j.chemolab.2023.104987.

[40] A. Uryga et al., ‘Exploration of simultaneous transients between cerebral hemodynamics and the
autonomic nervous system using windowed time-lagged cross-correlation matrices: a CENTER-TBI study’, Acta
Neurochir. (Wien), vol. 166, no. 1, p. 504, Dec. 2024, doi: 10.1007/s00701-024-06375-6.

11



406
407
408
409
410

[41] R. Yu et al., ‘Time series cross-correlation network for wind power prediction’, Appl. Intell., vol. 53, no.

10, pp. 11403-11419, May 2023, doi: 10.1007/s10489-022-04004-2.

[42] I. Persson and J. Khojasteh, ‘Python Packages for Exploratory Factor Analysis’, Struct. Equ. Model.

Multidiscip. J., vol. 28, no. 6, pp. 983-988, Nov. 2021, doi: 10.1080/10705511.2021.1910037.

12



