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Malaria and Typhoid Fever are two diseases classified as potentially 

epidemiological in Cameroon, and where cases of coinfection are often 

reported in Health Facilities. To assess the degree and direction of this 

interdependence, correlation and covariance are specifically used in this 

work. A set of statistical approaches is applied using the Python 

programming language to a dataset of weekly cases for both diseases in the 

Adamawa Region of Cameroon, spanning from January 2021 to December 

2024 (four years). The proposed analytical framework encompasses graphs 

and algebraic approaches to correlation, including cross-correlation, cross-

covariance, and their corresponding time lags, as well as rolling window 

functions. First and foremost, the stationarity of each series is examined. The 

values obtained for the correlation coefficients are 0.73 for Pearson and 0.63 

for Spearman, both of which exceed 0.5, indicating strong correlations. 

There is a strong peak at lag 0 for cross-correlation, suggesting a significant 

contemporaneous relationship. The time lag cross-correlation consistently 

shows high values (between 0.8 and 1) for all lags. At lag zero, the series vary 

together and the time lag cross-covariance remains above zero. Overall, the 

two diseases exhibit the same directionality with an immediate correlation, 

and peaks are explicitly observed in mid-2023 and the beginning of 2024. 

This work provides statistical knowledge for both the population and 

stakeholders, helps predict disease trends, and informs strategies for the joint 

management of the diseases. It opens up ways for examining causalities and 

multivariate analysis. 
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Introduction:- 2 

In Cameroon, around twenty diseases are classified as potentially epidemiological, requiring close monitoring to 3 

anticipate any large-scale contamination [1]. Among them, malaria [2] and typhoid fever [3] appear to be two 4 

predominant infectious diseases that substantially affect population health, and where cases of coinfection are 5 

regularly encountered in Health facilities [4]. Various measures are then undertaken, including weekly data 6 

collection on occurring cases, for disease monitoring. 7 

To carry out this statistical assessment, the paper focuses on health data considered as a time series [5]. Time series 8 

refers to a sequence of events observed and recorded over a period of time [6], [7]. The Adamawa Region is one of 9 

the ten regions in Cameroon, located at the crossroads between the South and the North of the country. With a 10 

population of about 1.18 million and an area of 63,701 km2, the Region is bordered on the West by Nigeria and on 11 

the East by the Central African Republic. The climate is temperate, and its savannah vegetation is situated in a hilly 12 

area, making the Region a suitable sample for these experiments [4], [8]. 13 

The primary motivation for this paper is, firstly, to pursue works undertaken on epidemiological prevention using 14 

time series data and methods. The second motivation stems from the observation that several cases of coinfections 15 

are frequently reported, which requires a better understanding of some factors, including the degree of correlation 16 

and covariance, the co-evolution, the causality and so forth [9]. Lastly, research has revealed several studies based 17 

on the analysis of malaria and typhoid fever coinfections [4], [10], but very few on their interdependence. The 18 

challenge is to fill this gap and provide the various stakeholders with more statistical data on which to base decisions 19 

and actions. 20 

The primary purpose of this work is therefore to carry out an exhaustive and comprehensible statistical analysis of 21 

both malaria and typhoid fever in the Adamawa Region of Cameroon, based on an approach involving correlation 22 
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and covariance [11], [12]. This objective involves collecting data over a significant period for experiments, followed 23 

by statistical analysis using the selected approaches, and ultimately providing valuable insights and 24 

recommendations for stakeholders and decision-makers. 25 

Various studies focused on statistical analysis of disease-related time series data. The subsequent paragraph presents 26 

some relevant ones. 27 

To assess Google Trends' accuracy for epidemiological surveillance of dengue and yellow fever and compare their 28 

incidence on the population of São Paulo state, the work in [13] was carried out. The correlation was calculated 29 

using Pearson's coefficient and the cross-correlation function. The study in [14] investigated the transmissibility and 30 

death distribution of COVID-19 and its association with meteorological parameters to study the propagation pattern 31 

of COVID-19 in UK regions. The correlation and regression analysis between COVID-19 variables and 32 

meteorological parameters was performed. To identify potential predictors of new health system overloads, [15] 33 

analysed Twitter and emergency services data, comparing it to daily infected time series through wavelet and cross-34 

correlation analysis. Using real-world data and machine learning models, [16] conducted a retrospective study from 35 

2010 to 2020 to analyse the trends and characteristics of Multidrug-resistant bacteria (MDRB) infections. 36 

Combining 39 hospital indicators, the authors used a random forest model and cross-correlation analysis. The 37 

study's aim in [4] was to determine the prevalence of malaria and typhoid fever, as well as their coinfection among 38 

febrile patients at Ngaoundere Regional Hospital, Adamawa, Cameroon. A cross-sectional and descriptive study was 39 

conducted on 208 febrile patients suspected of Malaria and/or typhoid fever from September to November 2019. A 40 

similar work was conducted in a University Hospital in Nigeria by different authors in [10]. In [17], correlation tools 41 

were applied to open-source COVID-19 data from different countries. A longitudinal time series study was carried 42 

out with a cross-correlation analysis of Temporary Incapacity (TI) and COVID-19 cases, as reported by the work of 43 

[18]. [8] used weekly collected surveillance data from health facilities in the Adamawa Region from January 2018 to 44 

December 2022 and applied key statistical metrics for central tendency, data spread, distribution shape, and variable 45 

dependence. The objective in [19] was to identify and estimate the autocorrelation and cross-correlation of time 46 

series of hospitalisation rates for syphilis and HIV/AIDS in the State of Bahia from 2000 to 2020 by using 47 

Detrended Fluctuation Analysis (DFA) and cross-correlation coefficient. 48 

The main contribution of this work is a comprehensive description of the correlation and covariance of the diseases, 49 

based on a relevant set of applied statistical approaches [5], [20]. This work introduces others on causalities and 50 

multivariate analysis. 51 

 52 

2. Materials and methods 53 

The present work aims to analyse two disease-related time series. Stationarity is a key property to check before 54 

starting a statistical assessment of a time series. 55 

 56 

2.1 Stationarity of time series 57 
For significance correlation analysis, the time series should be stationary, meaning that their statistical properties 58 

(mean, variance, autocovariance) are constant over time [21]. Non-stationary series can produce misleading 59 

correlation results and poor forecasts [22]. Several statistical tests assess stationarity in a time series. Among them, 60 

the Augmented Dickey-Fuller (ADF) test tests the null hypothesis that a unit root is present in the time series, and 61 

the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test assesses the null hypothesis that the time series is stationary 62 

around a deterministic trend. If a non-stationarity is found in a time series, some techniques can be employed to 63 

transform it. These techniques include differencing (subtracting the previous observation from the current 64 

observation) and detrending (removing trends from the data) [23], [24]. 65 

 66 

2.2 Correlation and cross-correlation 67 
Correlation of time series refers to the statistical relationship between two or more time series, indicating how 68 

changes in one series relate to changes in another over time [25]. Understanding this correlation is crucial for 69 

analysing and predicting the behaviour of interrelated time series.  70 

There are two ways to assess time series correlation: graphs and algebraic approaches. The graphs approach includes 71 

time series plots and scatter diagrams. Meanwhile, algebraic approaches are based on coefficients of correlation 72 

[12].  73 

The first step in testing for correlation between time series is to plot them in a common plan or referential and 74 

inspect their appearance and aspect [25]. The scatter diagram is a graphical representation of the relationship 75 

between two quantitative variables [26], [27]. For a positive correlation, points trend upwards from left to right, 76 

indicating that as one variable increases, the other also increases. A negative correlation shows a downward trend in 77 

points from left to right, indicating that as one variable increases, the other decreases. No correlation is when the 78 
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points are scattered randomly, revealing no discernible relationship between the variables. A trend line (or line of 79 

best fit) is added to summarise the relationship between variables. This line helps to visualise the general direction 80 

of the data and is considered a regression line [28]. 81 

Besides, algebraic approaches include coefficients of correlation, statistical measures that quantify the strength and 82 

direction of the linear relationship between two series [29]. The most common measure is Pearson's correlation 83 

coefficient, which ranges from -1 (perfect negative correlation) to 1 (perfect positive correlation) [30]. A value close 84 

to zero indicates no correlation, showing that the series do not move together. The Pearson correlation coefficient is 85 

calculated using the formula: 86 

 87 

𝑟𝑥𝑦 =
𝑛( 𝑥𝑦 )−( 𝑥)( 𝑦)

  𝑛  𝑥2−( 𝑥)2  𝑛  𝑦2−( 𝑦)2 
 (1) 88 

 89 

where 𝑛 is the number of pairs, 𝑥 and 𝑦 are correlated variables. 90 

The other correlation measure used is Spearman's rank coefficient, a non-parametric measure that assesses how well 91 

a monotonic function can describe the relationship between two variables [31]. It also ranges from -1 (perfect 92 

negative correlation) to 1 (perfect positive correlation). A value around 0 exhibits no predictable relationship 93 

between the variables [32]. The coefficient is obtained via the formula: 94 

 95 

𝜌 = 1 −
6  𝑑𝑖

2

𝑛(𝑛2−1)
 (2) 96 

 97 

where 𝑑𝑖  is the difference between the ranks of each pair of observations, and 𝑛 is the number of observations.  98 

The Cross-correlation function (CCF) measures the correlation between two series as a function of the time lag 99 

applied to one of them [33]. The cross-correlation at lag 𝑘 is mathematically expressed as: 100 

 101 

𝐶 𝑘 =
 (𝑋𝑡−𝑋 )(𝑌𝑡+𝑘−𝑌 )𝑛−𝑘

𝑡=1

  (𝑋𝑡−𝑋 )2𝑛−𝑘
𝑡=1  (𝑌𝑡+𝑘−𝑌 )2𝑛−𝑘

𝑡=1

 (3) 102 

 103 

𝑋  and 𝑌  are the means of the series 𝑋 and 𝑌, respectively, and 𝑛 is the number of observations. A positive value of 104 

CCF indicates that as one time series increases, the other tends to increase after the specified lag. A negative CCF 105 

suggests that as one series increases, the other decreases after the specified lag [34], [35].  106 

The time lagged cross correlation (TLCC) function measures the correlation between two series at different time 107 

lags [36]. This technique helps identify how one time series may influence or relate to another over time, accounting 108 

for potential relationship delays.  109 

The rolling windowed correlation (RWC) function computes the correlation coefficient over a moving window, 110 

providing insights into how the relationship between the series evolves [37], [38]. 111 

 112 

2.3 Covariance and cross-covariance 113 
The covariance of the two series measures how much they change together [9]. It can take any value and is 114 

calculated using the following formula: 115 

 116 

𝐶𝑜𝑣 𝑋, 𝑌 =
1

𝑛
 (𝑋𝑖 − 𝑋 )(𝑌𝑖 − 𝑌 )𝑛

𝑖=1  (4) 117 

 118 

where 𝑛 is the total number of observations in the time series, 𝑋  and 𝑌  are the means of 𝑋 and 𝑌, respectively [39]. 119 

A positive covariance indicates that the two series tend to increase or decrease together, while a negative covariance 120 

suggests that when one time series increases, the other tends to decrease. A covariance close to zero implies no 121 

relationship between the series' movements. 122 

Cross-covariance extends the concept of covariance and measures the relationship between two series at different 123 

time lags applied to one of them [9]. Itis a statistical measure that assesses the degree to which two series change 124 

together over time.  125 

Time lag cross-covariance measures the joint variability of two series at different lags [40], [41]. It helps to identify 126 

how one time series may influence or relate to another over various time delays.  127 

Rolling cross-covariance is used to analyse the time-varying relationship between two series over a specified 128 

window. 129 

 130 
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2.4 Data and programming environment 131 
The dataset used encompasses weekly cases of malaria and typhoid fever from Health Districts of the Region, stored 132 

via an online platform
1
 and managed by the Health Information Unit of the Ministry of Public Health. The data, 133 

aggregated at the region level from January 2021 to December 2024, comprise 208 records used for experiments. 134 

To perform experimentations, the scientific programming language Python
2
 is used via Google Colaboratory. It is 135 

adapted for statistics, through several specialised libraries including Statistics for descriptive statistics; Pandas for 136 

numerical computing; Matplotlib combined with Seaborn for graphics and data visualisation[42]. 137 

 138 

2.5 Methodology 139 
 140 

The methodological approach defined involves six main stages: 141 

1. Data collection and data set construction; 142 

2. Stationarity tests; 143 

3. Statistical description of the data set; 144 

4. Correlation analysis: 145 

 Graphs approach (time series and scatter diagrams plot); 146 

 Algebraic approach (Pearson and Spearman coefficients); 147 

5. Cross-correlation, time lag cross-correlation and rolling correlation analysis; 148 

6. Cross-covariance, time lag cross-covariance, and rolling covariance analysis. 149 

 150 

3. Results  151 

We assume that the dataset is already built. 152 

 153 

3.1 Stationarity tests of time series 154 
The stationarity test for the malaria series reveals a non-stationary with a stochastic trend, giving a p-value of 0.20 155 

for ADF. However, the series is stationary in a deterministic trend with a p-value of KPSS = 0.10. In order to 156 

preserve memory as much as possible and render the series stationary, fractional differentiation is used instead of 157 

integer one [21]. The following values are obtained: 158 

Differentiation order: 0.20, ADF p-value: 4.70 %, Correlation with original series: 0.93. 159 

For the typhoid fever series, the tests indicate full stationarity: ADF p-value = 0.00, KPSS p-value = 0.10. 160 

 161 

3.2 Data description 162 
Table 1 contains the basic statistical properties of the series. 163 

 164 

Table 1: Descriptive statistics of series 165 

Indicator Malaria Typhoid fever 

Mean 1813.55 736.21 

Standard deviation 609.87 193.28 

Minimum 11.98 513.00 

1
st
 quartile 1407.39 622.75 

2
nd

 quartile 1697.08 677.50 

3
rd

 quartile 2069.42 760.25 

Maximum 3941.31 1609.00 

Kurtosis 1.51 4.35 

Skewness 0.97 2.08 

 166 

3.3 Correlation and covariance analysis 167 
The first assessment of the correlation is the graph approach. Figure 1 depicts the joint curves for Malaria and 168 

Typhoid Fever, and the fractionally differentiated version of the malaria series. 169 

 170 

                                                           
1
https://dhis-minsante-cm.org/ 

2
www.python.org 
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 171 
Figure 1: Malaria and Typhoid Fever graphs 172 

 173 

Figures 2 and represent a scatter plot of the variables, associated with their regression line. 174 

 175 

 176 
Figure 2: Regression of Malaria over Typhoid Fever 177 

 178 

 179 
Figure 3: Regression of Typhoid Fever over Malaria 180 
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 181 

For Figure 2, the slope of the curve is 0.23, and the intercept is 316.30. The equation for the regression curve is 182 

therefore:  183 

Typhoid Fever cases = 0.23*(Malaria cases) + 316.30. 184 

The slope of the curve for Figure 3 is 2.30, and the intercept is 116.46. Thus, the equation of the regression curve 185 

obtained is:  186 

Malaria cases = 2.30*(Typhoid Fever cases) + 116.46. 187 

The coefficient of determination R
2
 for predicting Malaria cases from linear regression is R

2 
= 0.53, slightly higher 188 

than the one from the AutoRegressive Moving Average (ARIMA) prediction: R
2
 = 0.27. This result suggests that 189 

linear regression can be a viable option for estimating future cases. 190 

Concerning the algebraic approach for the two series taken together, the values of the correlation coefficients are 191 

0.73 for Pearson and 0.63 for Spearman. They are all above 0.5, unveiling strong correlations between series. 192 

The cross-correlation, time lag cross-correlation, and rolling correlation functions produce the diagrams in Figures4, 193 

5 and 6. The curves are symmetric for both series, so calculating one is sufficient for analysis. 194 

 195 

 196 

Figure 4: Cross-correlation 197 

 198 

 199 

Figure 5: Time lag cross-correlation 200 
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 201 

Figure 6: Rolling correlation 202 

Figure 4 shows the cross-correlation between Malaria and Typhoid Fever. The lag values of Typhoid Fever range 203 

from -200 to 200, indicating how the correlation changes over time, both before and after the current observation of 204 

Malaria. The larger lags have been chosen to appreciate the changes over the period better. The strength of the 205 

correlation at each lag is sometimes above zero, showing a positive correlation at this specific lag, or under zero, 206 

revealing a negative correlation. The strong peak at lag 0 suggests a significant contemporaneous correlation 207 

between Malaria and Typhoid Fever, meaning that when cases of one disease are high, the other cases are also 208 

simultaneously high. The time lag cross-correlation is presented in Figure 4, with values ranging from 0 to 100. The 209 

plot shows consistently high correlation values (around 0.8 to 1) across most lags, suggesting a strong positive 210 

relationship between Malaria and Typhoid Fever over time when the two series are shifted. Figure 6 displays the 211 

rolling correlation plot over the studied period. The window size is 6, representing the two series' minimum 212 

Autocorrelation function (ACF). There are periods where the correlation coefficient approximates 1, suggesting a 213 

strong positive relationship. According to the plot, the relationship is generally positive.  214 

The cross-covariance, time lag cross-covariance, and rolling covariance functions yield the diagrams of Figures7, 8 215 

and 9. Similarly, the curves are symmetric for both series, so calculating one is sufficient to perform the analyses. 216 

 217 

 218 

Figure 7: Cross-covariance 219 
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 220 

Figure 8: Time lag cross-covariance 221 

 222 

Figure 9: Rolling covariance 223 

Figure 7 illustrates how the covariance between Malaria and Typhoid Fever changes over various lags. Lags range 224 

from -100 to 100, indicating the time lags at which the cross-covariance is calculated. Negative lags represent past 225 

values of Typhoid Fever affecting current values of Malaria, while positive lags indicate the opposite. The cross-226 

covariance values are either positive, associated with peaks, or negative, characterised by troughs. At lag zero, the 227 

series strongly vary together. Figure 8 is related to the time lag cross-covariance plot ranging from -100 to 100. 228 

Negative lags show the effect of past values of Typhoid Fever on current values of Malaria, while positive lags show 229 

the effect of past Malaria values on Typhoid Fever. The plot reveals a relatively flat region with high positive 230 

covariance values (from about -50 to +50), unveiling that fluctuations in one disease are consistently associated with 231 

fluctuations in the other over this range. The cross-covariance remains well above zero for most lags. Finally, Figure 232 

9 presents the rolling covariance plot between Malaria and Typhoid Fever over time, covering the studied period, 233 

with a window size of 6. Overall, the two diseases tend to occur together. Peaks in covariance are explicitly 234 

observed in mid-2023 and the beginning of 2024. 235 

 236 

4. Discussion  237 

This work first involved a stationarity test. As the malaria series was identified as non-stationary, it has been 238 

differentiated. The plot of the curves showed similar trends over several periods, confirming interdependence. The 239 

scatter diagram indicates that points trend upwards from left to right, mainly around the regression line, leading to 240 

the conclusion of a positive relationship between the series. The coefficients of correlation confirmed this notorious 241 

relationship, as they are well above the positive mean (0.5). The cross-correlation shows a highest peak at lag zero 242 



 

9 

 

between the two series, revealing an immediate relation. For the joint lag, the cross-correlations remain between 0.8 243 

and 1. The sliding correlation analysis for a window of size 6 reveals a correlation almost always above the positive 244 

mean (0.5). Thus, incorporating time dynamics in the analysis confirms a significant relationship. The two series 245 

vary similarly together, with concomitant peaks. Following the combined lag, this peak remains constant and high 246 

between -50 and 50. Finally, the rolling covariance stays above zero most of the time, with many infections 247 

observed in mid-2023 and early 2024. Overall, this analysis, based primarily on correlation and covariance, reveals a 248 

substantial relationship between Malaria and Typhoid Fever with a notable contemporaneous correlation. The 249 

relation is strong and stable across the examined lags. 250 

The work presented in this paper used statistical approaches to understand some common epidemiological 251 

phenomena. When compared to others, the work of [8] is based in the same geographical area as the present study 252 

but focuses solely on one disease for the statistical analysis. [4] on his side, carried out a study in Ngaoundere, the 253 

Adamawa Region Capital, focusing only on prevalence assessment. Papers [4], [10] also tackle Malaria and Typhoid 254 

Fever coinfections. Most of the work combined correlation assessment with another method: regression analysis in 255 

[14], wavelet analysis in [15], random forest in [16] and detrended fluctuation analysis in [19]. All the researchers 256 

limited their study to cross-correlation, leaving out time lag and rolling analysis. None of them focused on both 257 

correlation and covariance approaches. 258 

The work carried out in this study is distinctive because it considers a wide range of statistical tools to assess the 259 

correlation and covariance between two diseases, unlike other studies, which use only one or two tools. In addition 260 

to correlation, covariance is used to understand the joint variation of both diseases better. In this geographical area, 261 

no studies have focused on statistically explaining the correlation and covariance of these two diseases. 262 

The limitation of this work mainly lies in the availability of data. Only weekly cases from the last 5 years were 263 

available. Furthermore, obtaining data on gender, age, climate, environment, and socio-economic considerations 264 

should provide more insightful information on causalities and facilitate a multivariate analysis. Clinical cases may 265 

also be considered. 266 

Awareness of this valuable statistical information makes it impactful and worthwhile to: 267 

 Help understand the dynamics of the diseases and inform interventions. 268 

 Monitor the trend of one disease and provide insights on the trend of the other, valuable for resource 269 

allocations. 270 

 Monitor diseases in tandem to help predict trends and inform outbreak management strategies. 271 

 272 

5. Conclusion  273 

The main objective of this work was to assess the degree and direction of malaria and typhoid fever, two diseases 274 

classified as potentially epidemiological and for which coinfection cases are often reported in Health facilities. To 275 

that end, correlation and covariance approaches were applied to time series data of the Adamawa Region of 276 

Cameroon, spanning from January 2021 to December 2024. The results revealed a strong and constant relationship 277 

between these two diseases over time, which may help in the joint implementation of surveillance and response 278 

policies. The outlook includes obtaining more data for casualty analysis and multivariate analysis. 279 

 280 
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