

1 Photobiomodulation in Dentistry: Current Evidence and Future Directions

2

3 Abstract

4 Photobiomodulation (PBM), also known as low-level laser therapy, is a non-invasive therapeutic
5 approach increasingly utilized in dentistry for pain reduction, inflammation control, and tissue healing.
6 Recent advancements in laser technology have broadened its applications across multiple dental
7 specialties, including periodontics, orthodontics, implantology, and oral surgery, with high patient
8 acceptance due to its non-invasive nature. This review synthesizes current evidence on the biological
9 mechanisms and clinical applications of PBM in dental practice. A comprehensive literature review was
10 conducted to examine the cellular and molecular effects of PBM, alongside its clinical outcomes in pain
11 management, bone healing, soft tissue regeneration, and tooth sensitivity management. Findings
12 indicate that PBM effectively alleviates postoperative and procedural pain, modulates inflammatory
13 responses, and promotes wound healing, thereby enhancing patient comfort. At the cellular level, these
14 effects are mediated by mitochondrial activation, increased adenosine triphosphate production, and
15 regulation of inflammatory mediators. PBM also supports bone regeneration and osseointegration by
16 stimulating cellular proliferation, differentiation, and the activation of redox-sensitive transcription factors
17 involved in osteogenesis. Despite its demonstrated clinical benefits, the absence of standardized
18 treatment protocols limits widespread routine implementation. Future well-designed clinical studies are
19 necessary to optimize PBM parameters and confirm its long-term efficacy in dental practice. Overall,
20 photobiomodulation represents a promising adjunctive therapy that complements conventional dental
21 treatments and contributes to improved patient outcomes.

22

23 Keywords

24

25 Photobiomodulation, Low-level laser therapy, Dentistry, Pain management, Inflammation, Tissue
26 healing, Bone regeneration, Soft tissue regeneration, Tooth sensitivity, Mitochondrial activation,
27 Osteogenesis, Clinical outcomes, Osseointegration, Redox signaling, Wound healing

28 1. Introduction

29 The therapeutic use of light has been documented since ancient times and advanced markedly with the
30 development of laser technology. The development of high power lasers transformed multiple medical
31 and surgical fields, while improvements in light-based devices enabled non-surgical treatments using
32 controlled wavelength and doses. One innovative approach is LLT, also known as low-intensity laser
33 therapy, low-power laser therapy, Photobiostimulation and Photobiomodulation. Photobiomodulation is
34 a non-invasive treatment that uses specific light wavelengths between 650 and 1000nm to promote
35 tissue repair, reduce inflammation and relieve pain.¹ In dentistry, photobiomodulation is applied at the
36 cellular level to stimulate differentiation, enhance alveolar bone replication, promote soft tissues
37 regeneration and reduce postoperative pain, thereby improving periodontal treatment efficacy and
38 patient comfort.² Studies also show it can relieve orthodontic pain and accelerate tooth movement,

39 potentially shortening treatment time. It also promotes bone healing around extraction sites and dental
40 implants by enhancing blood flow and stimulating bone formation.^{3,4} In the field of
41 dentistry, Temporomadibular disorders commonly present with pain that affects approximately 10% of
42 adults and impairs quality of life along with physical therapy, numerous studies have provided scientific
43 evidence supporting the use of laser therapy for managing these conditions.⁵ Most research has focused
44 on pain reduction and improvements in the mandibular movement. The analgesic and anti-inflammatory
45 effects of low level laser therapy, can reduce pain and muscle sensitivity while improving muscle
46 performance. When combined with speech-language-hearing therapy, it may enhance mandibular
47 movement, improve chewing function and promote balance within the stomatognathic
48 system.[6] Scientific interest in photobiomodulation in dentistry has increased with advances in laser
49 technology, particularly for promoting oral tissues healing, pain control and adjunctive therapeutic
50 procedures. Clinical outcomes demonstrate high patient acceptance due to its noninvasive, atraumatic
51 nature and lack of adverse effects. These advantages, together with rapid recovery and minimal patient
52 cooperation requirements, have supported its expanding use across dental specialties, including in
53 pediatric and special-needs populations.⁷

54 2. Mechanisms of Action

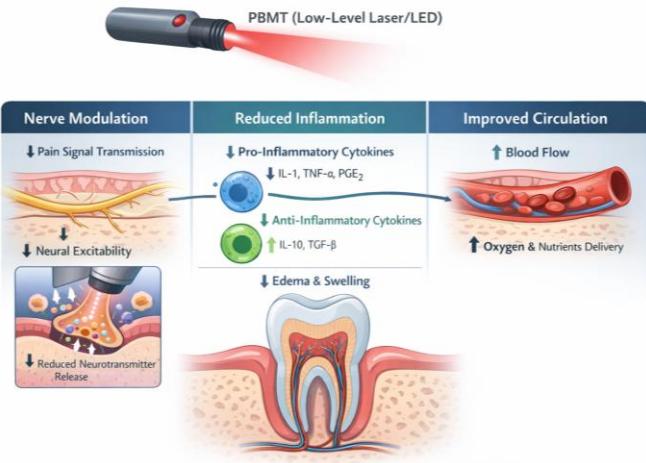
55 Photobiomodulation (PBM) also known as Low Level Laser Therapy (LLLT) is a non-invasive way to
56 reduce inflammation and pain thus contributing to enhanced tissue repair. This is achieved by the
57 modulation of cells and tissues to enhance stem cell differentiation and induce cell proliferation.

58 Photobiomodulation (PBM) uses class III, low-level lasers with 500mW output power. Laser and LED
59 light stimulates the cell membrane and mitochondrial photoreceptors synthesis of ATP.⁸

60 Several theories on mechanisms of action of Photobiomodulation have been proposed:

- 61 1. This theory proposes the photochemical interaction with the target cell, the photons from the
62 PBM are absorbed by the chromophores of the mitochondria. Unit IV of the mitochondrial
63 respiratory chain hosts enzyme cytochrome c oxidase which is the primary chromophore which
64 absorbs red light resulting in activity of different signaling molecules like reactive oxygen species
65 (ROS), adenosine triphosphate (ATP), nitric oxide, calcium ions and many others. The enzyme
66 cytochrome c oxidase carries the electrons from the higher energy orbits to the ultimate electron
67 acceptor. This leads to creation of a proton gradient, which increases production of ATP.⁸
- 68 2. This theory introduces the direct or indirect photon radiation effects on the genome pool and
69 DNA. PBM produces ROS indirectly, by low laser radiation. ROS is a free radical, and is
70 cytotoxic in high levels, but in low levels, it is beneficial in healing tissues and relieving pain. ROS
71 production is regulated by the mitochondrial membrane potential which is kept in check by the
72 Cyclooxygenase enzymes. ROS helps in proliferation and differentiation of stem cells. ROS with
73 cytokines and growth factors helps in healing the damaged tissues after Low level Laser therapy.
74 This is achieved by moving the satellite cells to the site of injury.⁸
- 75 3. This theory is about the light and heat-gated channels. It suggests that there is a heightened
76 activity of the plasma membrane in the red light spectrum (600-810 nm) of laser irradiation,
77 When the wavelength is high and the cytochrome c oxidase is out of range (980-1064 nm).

83 During the low level radiation, the chromophore is activated when NO is displaced and then
84 bound to the chromophore at the copper and heme centers. The activated chromophore might
85 stop the oxygen supply to cytochrome c oxidase which was producing a large number of ATPs
86 due to increased mitochondrial activity, leading to the shift to oxidative phosphorylation from
87 glycolysis. This leads to increased differentiation of stem cells promoting osteogenesis. ROS
88 produced during PBM also contributes to the cell differentiation. The gated ion channels which
89 are sensitive to light allow Ca^{2+} to react with NO, cAMP and ROS resulting in activation of
90 transcription factors.⁸


91 Activation of redox-sensitive transcription factors are triggered by ROS. Factors like NF- κ B influence
92 inflammation and bone remodeling by regulating the associated genes. PBM affects the receptor
93 activator of NF- κ B Ligand (RANKL) and Osteoprotegerin (OPG) ratio influencing osteogenesis. This
94 ratio was seen elevated with 780 nm wavelength of light in cells derived from human alveolar bone.⁹

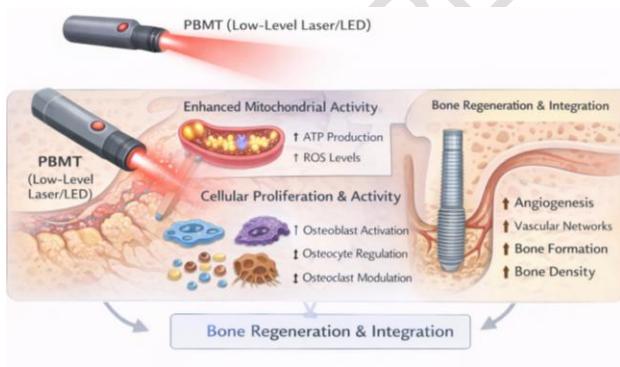
01 **3. Clinical Applications in Dentistry**

02 **a. Pain Reduction and Analgesia**

03 Photobiomodulation therapy (PBMT) is a rapidly growing non-invasive modality for pain management in
04 dentistry. It involves the use of low-level lasers or light-emitting diode (LED) devices to deliver precise
05 wavelengths of light to target tissues. PBMT modulates nerve function, reduces inflammation, and
06 improves local blood flow, thereby decreasing nociceptive signaling and enhancing patient comfort.¹⁰

07 Clinical evidence shows that PBMT effectively reduces pain perception during routine dental procedures
08 such as local anesthetic injections, scaling, and minor oral surgeries. Patients report lower discomfort
09 scores, faster recovery, and reduced need for pharmacologic analgesics. Postoperative pain reduction is
10 attributed to decreased pro-inflammatory cytokines, enhanced ATP production in cells, and improved
11 microcirculation at the surgical site.¹¹ Figure 1.

12


13 *Figure 1. Mechanisms of photobiomodulation-induced analgesia in dental tissues.*

14

15 Furthermore, PBMT has been evaluated for the management of temporomandibular joint (TMJ)
 16 disorders and oral mucositis, showing promising results in reducing chronic pain and inflammation while
 17 promoting tissue repair. Standardization of parameters, including wavelength, dose, and exposure time,
 18 is critical to ensure reproducible analgesic outcomes.^{10,11}

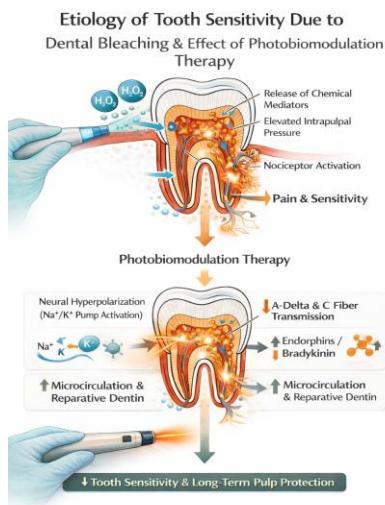
19 **b. Bone Healing and Osseointegration**

20 PBMT significantly contributes to bone regeneration and implant osseointegration by stimulating
 21 osteoblastic proliferation, enhancing angiogenesis, and increasing mitochondrial activity in bone cells.¹²
 22 Clinical studies report accelerated early-stage implant stabilization and improved bone density in peri-
 23 implant regions, indicating faster and more effective osseointegration.¹³ Figure 2.

24

25 *Figure 2. Effect of photobiomodulation on cellular and molecular pathways involved in bone healing and
 26 osseointegration.*

27


28 PBMT also promotes the healing of periapical lesions after endodontic therapy, supporting bone
29 regeneration and reducing inflammatory response.¹⁴ Radiographic studies confirm increased bone fill
30 and improved tissue quality in PBMT-treated sites compared to control groups. When combined with
31 guided bone regeneration (GBR) techniques and biomaterials, PBMT enhances osteoconductive and
32 osteoinductive effects, facilitating graft integration and mineralization.¹⁵ The clinical application of PBMT
33 in regenerative dentistry extends to dental implantology, periodontal therapy, and maxillofacial
34 reconstruction. Optimization of treatment parameters—such as wavelength (typically 600–1000 nm),
35 energy density, irradiation time, and frequency—is essential to maximize therapeutic benefits while
36 avoiding tissue overstimulation.

37 Emerging research explores the synergistic effects of PBMT with stem cell therapy, growth factors, and
38 bioactive scaffolds, opening new avenues in tissue engineering and regenerative dental
39 medicine. Standardized clinical protocols and large-scale randomized controlled trials are required to
40 establish robust evidence for PBMT's efficacy and long-term outcomes in dental pain management and
41 bone regeneration.¹⁵

42 **c. Tooth Sensitivity**

43 Tooth sensitivity refers to short, transient and sharp pain response to various factors such as
44 mechanical factors like attrition and abrasion, chemical factors like erosion and biological factors
45 causing gingival recession classified as non-carious cervical lesions of multifactorial etiology.¹⁶

46 Apart from that, tooth sensitivity is common adverse effect associated with Dental bleaching procedures,
47 primarily linked to diffusion of hydrogen peroxide through enamel and dentin into pulp leading to acute
48 and transient inflammatory responses like nerve irritation and pulpal inflammation due to release of
49 chemical mediators altering the microcirculation, elevate pressure on peripheral nerve fibers and
50 stimulate nociceptors.¹⁷

51

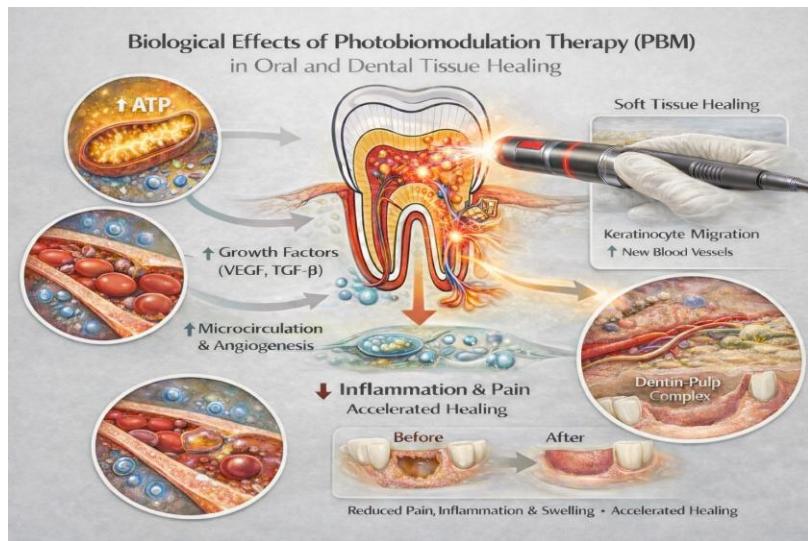
52 *Figure 3. Etiology of Tooth Sensitivity Due to Dental Bleaching & Effect of PBM Therapy*

53 Clinical studies explained different mechanisms of action for treating tooth sensitivity with the use of
54 LLLT such as Neural modulation, Biochemical analgesia, Anti-inflammatory & vascular effects, and
55 Regenerative effectsFigure 3.¹⁶ Clinical application of laser therapy for management of dentin
56 hypersensitivity requires certain parameters to avoid dentin erosion and thermal damage, previous
57 studies have demonstrated power setting above 0.75 W may cause surface charring. However, an
58 ER,CR:YSGG laser operated at 0.25 W ensures safety and efficacy.¹⁸ Beyond its established
59 therapeutic role, PBM has been proposed as prophylactically to minimize sensitivity associated with
60 dental bleaching.

61 **d. Preventive Use of PBM Prior to Bleaching Procedures**

62 While most available studies mostly focused on management of post-bleaching hypersensitivity, the use
63 of PBM as prophylactic before bleaching treatment was proposed as a preventive approach especially
64 with in-office bleaching. The findings suggest that PBM-induced pulp biostimulation is characterized by
65 increased odontoblastic activity and decreased A δ and C nerve fibers excitability. This approach
66 highlights PBM's potential to improve patient comfort during aesthetic dental treatments.¹⁹

67 Although many studies illustrate the positive role of PBM in reducing dentin sensitivity, treatment efficacy
68 depends on various parameters such as site, wavelength, power density, absorption rate and exposure
69 time.


70 Despite these encouraging findings, inconsistencies in laser parameters and treatment protocols across
71 studies require further high-quality randomized clinical trials to establish clinical guidelines.

72 **e. Tissue regeneration and Healing**

73 Photobiomodulation (PBM), also known as low-level laser therapy (LLLT), is a non-invasive therapeutic
74 approach that enhances tissue regeneration and wound healing regulating cellular and molecular
75 processes rather than producing thermal effects [Figure 4]. When delivered within optimal therapeutic
76 wavelengths, PBM initiates photochemical reactions that activate biological processes without causing
77 structural damage to tissues which leads to regulated inflammation control, enhanced extracellular
78 matrix formation, and improved cellular survival during wound healing.^{20,22}

79 **f. PBM in soft tissue healing and Stem cell modulation**

80 Furthermore, the use of PBM in periodontal and mucogingival therapy is supported by its ability to
81 promote soft tissue healing, reflecting clinical outcomes including reduced postoperative inflammation,
82 decreasing pain level and improving esthetic outcomes.^{22,23} [Figure 4]. Beyond soft tissue healing, PBM
83 has also attracted significant interest in regenerative endodontics, PBM has demonstrated great
84 potential in stem cells modulation and intracellular signaling in regeneration of pulp-dentin complexes.
85 Lower doses of low-level laser therapy are associated with more efficacy in enhancing stem cell
86 proliferation .²¹ Figure 4.

88 *Figure 4. Biological Actions of PBM in Dental Tissues*

90 **g. Management of Alveolar Osteitis using LLLT**

91 PBM also showed great results in management of alveolar osteitis. Alveolar osteitis, also known as Dry
 92 socket, is a post-operative complication marked by intense pain, dislodgement of blood clot and delayed
 93 wound healing of the socket. LLLT enhances wound healing by promoting immune cell migration,
 94 stimulating soft tissue repair and increasing blood flow. PBM shows greater outcomes compared to
 95 conventional treatments such as Alveogyl during follow-up.²⁴[Figure 2].

96 Despite substantial evidence supporting the regenerative benefits of PBM in dental application, its
 97 clinical implementation remains restricted due to various challenges. The most critical limitation is the
 98 absence of standardized treatment protocols and guidelines along with variability in laser wavelength
 99 and parameters, which compromises outcome reliability and results comparability.

200 Future research is needed to establish evidence-based protocols and parameters conducting high-
 201 quality randomized controlled trials to confirm long term safety and efficacy.

206 **4. Upcoming Trends and Future Directions**

208 **a. Home-Based Photobiomodulation Devices**

209 Many photobiomodulation (PBM) devices are currently available on the market for home use,
 210 particularly for the treatment of inflammation, pain relief, recurrent herpetic infections, and as
 211 supportive therapy following clinical procedures. The availability of these devices may add value

212 to conventional clinical tools by extending therapy beyond the dental office. However, further
213 research is still required to establish robust evidence-based databases that address dosimetric
214 accuracy, patient compliance, and safety monitoring, as variability in wavelength, irradiance, and
215 exposure time remains a significant concern.²⁵

216

217 **b. PBM Combined with Platelet Concentrates (PRP/PRF)**

218 Platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) provide concentrated growth factors that
219 enhance tissue healing. The use of PBM in combination with platelet concentrates may further
220 stimulate growth factor activity, cellular proliferation, and tissue remodeling when applied
221 alongside autologous biologics. Future research is expected to focus on optimizing combined
222 treatment protocols and identifying clinical scenarios in which this synergistic approach offers the
223 greatest therapeutic benefit.²⁶

224

225 **c. PBM and Dental Pulp Mesenchymal Stem Cells**

226 Emerging evidence indicates that PBM can modulate the proliferation and differentiation of
227 dental pulp mesenchymal stem cells, promoting osteogenic and odontogenic pathways. This
228 interaction suggests a potential role for PBM in regenerative endodontics and tissue engineering.
229 Future investigations will likely explore dose-dependent effects and translational applications
230 related to pulp regeneration and dentin repair.²⁷

231

232 **d. PBM in Orthodontics, Temporomandibular Disorders, and Oral Surgery**

233 PBM has demonstrated consistent benefits in postoperative pain control and enhancement of
234 healing following oral surgical procedures. However, evidence supporting its role in accelerating
235 orthodontic tooth movement remains variable. Ongoing and future research aims to clarify its
236 effectiveness in orthodontics and to establish standardized protocols for tooth movement
237 acceleration and temporomandibular disorder management.²⁸

238

239 **e. Inflammation Control and Soft Tissue Healing**

240 One of the most established applications of PBM is its ability to modulate inflammation and
241 promote soft tissue healing. Through immunomodulatory and bioenergetic mechanisms, PBM
242 supports wound repair and reduces postoperative morbidity. Future clinical integration may
243 expand the use of PBM as a host-modulating adjunct in periodontal therapy and implant-related
244 procedures.²⁹

245

246 **f. PBM in Oral Oncology and Supportive Cancer Care**

247 PBM has gained strong clinical support for the prevention and management of
248 oncotherapy-associated oral mucositis. Its inclusion in international clinical guidelines highlights
249 its growing role in supportive cancer care. Future research is expected to refine dosing protocols,
250 explore additional supportive oncologic applications, and facilitate broader clinical adoption.³⁰

251

252 **g. PBM in Implant Dentistry and Peri-Implant Disease**

253 PBM is increasingly explored as an adjunctive therapy in implant dentistry to enhance soft tissue

256 healing and modulating peri-implant inflammation. Its non-thermal and non-destructive nature
257 makes it particularly attractive for managing peri-implant conditions. Future studies may further
258 clarify its role in supporting osseointegration and in antibiotic-sparing management of
259 peri-implantitis.³¹

260
261 Overall, photobiomodulation remains an actively evolving field in dentistry, with ongoing
262 preclinical and clinical research continuously expanding its therapeutic indications and refining
263 its clinical protocols.

264 5. Conclusion

265 In the Conclusion, Photobiomodulation is emerging as a promising alternative to conventional pain
266 management in dentistry, with both lasers and light-emitting diodes showing potential for pain relief in
267 dentistry and the other physical therapy but variability in study methods and treatment parameters limit
268 its routine clinical use. Furthermore, we observe that more studies are needed before introducing the
269 photobiomodulation in the clinical practise even in the routine dental extraction procedure.

272 273 Abbreviations:

274 **PBM** – Photobiomodulation

275 **PBMT** – Photobiomodulation Therapy

276 **LLLT** – Low-Level Laser Therapy

277 **LED** – Light-Emitting Diode

278 **ATP** – Adenosine Triphosphate

279 **ROS** – Reactive Oxygen Species

280 **NF-κB** – Nuclear Factor Kappa B

281 **AP-1** – Activator Protein-1

282 **VEGF** – Vascular Endothelial Growth Factor

283 **HIF-1α** – Hypoxia-Inducible Factor-1 Alpha

284 **TGF-β** – Transforming Growth Factor Beta

285 **NO** – Nitric Oxide

286 **Ca²⁺** – Calcium Ion

287 **cAMP** – Cyclic Adenosine Monophosphate
288 **RANKL** – Receptor Activator of Nuclear Factor Kappa B Ligand
289 **OPG** – Osteoprotegerin
290 **TMJ** – Temporomandibular Joint
291 **GBR** – Guided Bone Regeneration
292 **PRP** – Platelet-Rich Plasma
293 **PRF** – Platelet-Rich Fibrin
294 **VAS** – Visual Analog Scale
295 **GaAlAs** – Gallium–Aluminum–Arsenide Laser
296 **ER,Cr:YSGG** – Erbium, Chromium-doped Yttrium Scandium Gallium Garnet Laser
297 **MASCC/ISOO** – Multinational Association of Supportive Care in Cancer / International Society of Oral
298 Oncology

299
300
301
302
303 **REFERENCES**
304

305 1)Bahrami R, Pourhajibagher M, Gharibpour F, Hosseini S, Bahador A. The impact of low-level laser
306 therapy (photobiomodulation) on the complications associated with conventional dental treatments and
307 oral disorders: A literature review. *J Dent Sci.* 2025 Apr;20(2):901-910.
308
309 2)Rodriguez Salazar DY, Málaga Rivera JA, Laynes Effio JE, Valencia-Arias A. A systematic review of
310 trends in photobiomodulation in dentistry between 2018 and 2022: advances and investigative agenda.
311 *F1000Res.* 2023 Dec 28;12:1415.
312
313 3)Sfondrini MF, Vitale M, Pinheiro ALB, et al. Photobiomodulation and pain reduction in patients
314 requiring orthodontic band application: randomized clinical trial. *Biomed Res Int.* 2020;2020:7460938.
315
316 4)Daigo Y, Daigo E, Hasegawa A, Fukuoka H, Ishikawa M, Takahashi K. Utility of High-intensity laser
317 therapy combined with photobiomodulation therapy for socket preservation after tooth extraction.
318 *Photobiomodul Photomed Laser Surg.* 2020;38:75-83.
319

320 5)Carvalho VA, Martins AA, Desiderá AC, Nascimento GC, Magri LV, Leite-Panissi CRA. Preclinical
321 evaluation of dose-dependent effects of photobiomodulation therapy on persistent inflammation in the
322 temporomandibular joint. *J Oral Facial Pain Headache*. 2025 Jun;39(2):183-192.

323 6)Gomes FC, Schapochnik A. The therapeutic use of low intensity laser (LLLT) in some diseases and
324 itJohn, S.S.;Mohanty, S.; Chaudhary, Z.; Sharma, P.; Kumari, S.;Verma, A. Comparative Evaluation of
325 Low Level LaserTherapy and Cryotherapy in Pain Control and Wound Healing Following Orthodontic
326 Tooth Extraction: A Double Blind Study. *J. Cranio-Maxillofac. Surg.* 2020, 48, 251–260.

327 7)John, S.S.; Mohanty, S.; Chaudhary, Z.; Sharma, P.;Kumari, S.; Verma, A. Comparative Evaluation of
328 Low Level Laser Therapy and Cryotherapy in Pain Control and Wound Healing Following Orthodontic
329 Tooth Extraction: A Double Blind Study. *J. Cranio-Maxillofac. Surg.* 2020, 48,251–260.

330 8)Dompe C, Moncrieff L, Matys J, Grzech-Leśniak K, Kocherova I, Bryja A, Bruska M, Dominiak M,
331 Mozdziak P, Skiba THI, et al. Photobiomodulation—Underlying Mechanism and Clinical Applications.
332 *Journal of Clinical Medicine*. 2020; 9(6):1724.

333 9) Yosra Ayed, MSc, PhD, Afaf Al-Haddad, BDS, MDSc, PhD and Shadia Abdelhameed Elsayed, BDS,
334 MSc, PhD, FDS RCSEd, From Biological Mechanisms to Clinical Applications: A Review of
335 Photobiomodulation in Dental Practice, a Mary Ann Liebert, Inc., Volume 43, Number 10, 2025 Pp. 457–
336 467

341 10)San Martin-Lopez AL, Garrigos-Esparza LD, Torre-Delgadillo G, et al. The efficacy of
342 photobiomodulation on dental injection pain: systematic review of randomized clinical trials. *J Dent*
343 Anesth Pain Med. 2024.

344 11)Collado-Murcia Y, Parra-Pérez F, López-Jornet P. Efficacy of photobiomodulation in the
345 management of postoperative pain and inflammation after dental implants. *J Clin Med*.
346 2024;13(19):5709.

347 12)Singh R, Kanji M, Okshah A, et al. Comparative efficacy of photobiomodulation on osseointegration
348 in dental implants: systematic review and meta-analysis. *Photodiagn Photodyn Ther*. 2024.

349 13)Author withheld. The effect of photobiomodulation therapy on implant stability: systematic review and
350 meta-analysis. *Photobiology*. 2024.

351 14)Author withheld. Efficiency of single-session photobiomodulation on periapical bone healing: a
352 randomized clinical trial. *Lasers Med Sci*. 2025;40:1547–1556.

353 15)Moscatel MBM, Pagani BT, de Moraes Trazzi BF, et al. Effects of photobiomodulation with
354 biomaterials on guided bone regeneration: integrative review. *Ceramics*. 2025;8(3):94.

355 16)Giannakopoulou P, Neophytou C, Karakostas P, Papadimitriou K, Dionysopoulos D, Tolidis K, et al.
356 Low-Level Laser Therapy for Tooth Sensitivity after Tooth Bleaching: A Systematic Review. *Applied*
357 *Sciences*. 2024 Sep 9;14(17):8068.

58 17)Vochikovski L, Favoreto MW, Rezende M, Terra RMO, da Silva KL, Farago PV, Loguercio AD, Reis
59 A. Effect of an experimental desensitizing gel on bleaching-induced tooth sensitivity after in-office
60 bleaching-a double-blind, randomized controlled trial. *Clin Oral Investig.* 2023 Apr;27(4):1567-1576.

61 18) Papazisi N, Dionysopoulos D, Naka O, Strakas D, Davidopoulou S, Tolidis K. Efficiency of Various
62 Tubular Occlusion Agents in Human Dentin after In-Office Tooth Bleaching. *J Funct Biomater.* 2023 Aug
63 17;14(8):430.

64 19)Femiano F, Femiano R, Scotti N, Nucci L, Antonino Lo Giudice, Grassia V. The Use of Diode Low-
65 Power Laser Therapy before In-Office Bleaching to Prevent Bleaching-Induced Tooth Sensitivity: A
66 Clinical Double-Blind Randomized Study. *Dentistry journal.* 2023 Jul 18;11(7):176-6.

67 20)Berni M, Alice Maria Brancato, Torriani C, Bina V, Annunziata S, Cornella E, et al. The Role of Low-
68 Level Laser Therapy in Bone Healing: Systematic Review. 2023 Apr 12;24(8):7094-4

69 21)Karkehabadi H, Zafari J, Khoshbin E, Abbasi R, Esmailnasab S, Doosti-Irani A. Effect of Low-Level
70 Laser Therapy on Differentiation and Proliferation of Human Dental Pulp Stem Cells: A Systematic
71 Review. *J Lasers Med Sci.* 2023 Oct 17;14:e47.

72 22)Mahmoud ES, El-Baky AMA, Gouda OM, Hussein HG. Low intensity pulsed ultrasound versus low-
73 level laser therapy on peri-implant marginal bone preservation and soft tissue healing following dental
74 implant surgery: a randomized controlled trial. *Head Face Med.* 2025 Apr 23;21(1):29.

75 23)Zou Q, Zhang S, Jiang C, Xiao S, Wang Y, Wen B. Low-level laser therapy on soft tissue healing
76 after implantation: a randomized controlled trial. *BMC Oral Health.* 2024 Dec 5;24(1):1477.

77 24)Morshedzadeh G, Aslroosta H, Vafaei M. Effect of GaAlAs 940 nm Photobiomodulation on palatal
78 wound healing after free gingival graft surgery: a split mouth randomized controlled clinical trial. *BMC*
79 *Oral Health.* 2022 May 24;22(1):202.

80 25)Cronshaw M, Parker S, Hamadah O, Arnabat-Dominguez J, Grootveld M. Photobiomodulation LED
81 devices for home use: design, function and potential. *Dent J.* 2025;13(2):76..

82 26)Dipalma G, Inchingolo AM, Patano A, Palumbo I, Guglielmo M, Trilli I, et al. Photobiomodulation and
83 growth factors in dentistry: a systematic review. *Photonics.* 2023;10(10):1095.

84 27)Fernandes MRU, Teti G, Gatta V, Longhin A, Aranha ACC, Falconi M. Impact of photobiomodulation
85 on the pro-osteogenic activity of dental pulp mesenchymal stem/stromal cells. *Int J Mol Sci.*
86 2025;26(17):8174.

87 28)Parker S, Cronshaw M, Anagnostaki E, Mylona V, Lynch E, Grootveld M. Effect of
88 photobiomodulation therapy dosage on orthodontic movement,temporomandibular dysfunction and third
89 molar surgery outcomes: a five-year systematic review. *Appl Sci.* 2024;14(7):3049.

90
91
92
93

394 29)Camolesi GCV, Somoza-Martín JM, Reboiras-López MD, Camacho-Alonso F,Blanco-Carrión A,
395 Pérez-Sayáns M. Photobiomodulation in dental implant stability and post-surgical healing and
396 inflammation: a randomized double-blind study. *Clin Oral Implants Res.* 2023;34(2):137-147.
397
398 30)Miranda-Silva W, et al. MASCC/ISOO clinical practice guidelines for the management of
399 mucositis: sub-analysis of current interventions. *Support Care Cancer.* 2021;29:3539–3562.
400
401
402 31)Foletti JM, Remy F, Chevenement L, Sterba M, Tavitian P, Badih L, Kenck-Veran O. Effect of LED
403 photobiomodulation on dental implant osseointegration: an in vivo study. *J Dent Res Dent Clin Dent*
404 *Prospects.* 2023;17(1):28-34.
405 32)Zachar JJ, Reher P, Zafar S, Walsh LJ. Challenges in evaluating the analgesic effects of
406 photobiomodulation in dentistry: A narrative review. *J Dent.* 2025 Nov;162:106077. doi:
407 10.1016/j.jdent.2025.106077. Epub 2025 Sep 5.
408
409 33)Sourvanos D, Lander B, Sarmiento H, Carroll J, Hall RD, Zhu TC, Fiorellini JP. Photobiomodulation
410 in dental extraction therapy: Postsurgical pain reduction and wound healing. *J Am Dent Assoc.* 2023
411 Jul;154(7):567-579.