

1 Hepatoprotective Effect of *Kalmegha* (*Andrographis paniculata*): Insights 2 from an Animal Experimental Study

3

4 Abstract-

Background: Liver diseases are a global health burden. *Kalmegha* (*Andrographis paniculata*), a traditional medicinal plant, has been used for liver ailments, but scientific validation in experimental models is essential. **Objective:** To evaluate the hepatoprotective potential of *Kalmegha* in experimentally induced hepatic injury in animal models. **Methods:** [Briefly mention model used, e.g., carbon tetrachloride/paracetamol-induced hepatotoxicity, animal group division, dose of extract, duration, biochemical & histopathological assessment. **Results:** *Kalmegha* significantly improved biochemical parameters (ALT, AST, Bilirubin) and restored antioxidant levels compared to toxicant control. Histopathological examination supported biochemical findings. **Conclusion:** Findings suggest *Kalmegha* possesses promising hepatoprotective activity and may serve as a potential natural hepatoprotective agent.

15 **Key Words-***Kalmegha, Andrographis paniculata*, hepatoprotective, liver injury, animal study,
16 herbal medicine.

17

18 INTRODUCTION

19 Liver diseases are a major cause of morbidity and mortality worldwide, accounting for
20 nearly two million deaths annually ¹. Current pharmacological therapies are limited and
21 often associated with side effects, which has increased interest in natural hepatoprotective
22 agents².

23

dkyes?k HkwfuEcks ;okdkjQyLrFkk A lqfrDr% y?kq:{kks".k%
dQfIkRrfouk'kuAA nhiu% Losnuks Ks;% d`fe?u%
fiRRklkjD% A ;d`njkxsxs fdzeh dq"Bs Tojs PkklkSiz'kL;rsAA

27

fiz0 fu0 136 ¼'kriq "ikfn oxZ½

28

20

29

Acharya Priyavrat Sharma states in *Priye Nighantu* that *Kalmegha* possesses Deepana and Pittasaraka properties and is used in *Yakrit Roga*, highlighting its hepatoprotective potential³

31 *Kalmegha* is cited for liver disorders in *Dravyaguna Hastamalak*⁴, *Vanoshadhi Nidarsika*⁵,
32 and Vaidya V.M. Gagte's *Ayurvedic Pharmacology*⁶.
33 .

34 *Kalmegha* (*Andrographis paniculata*, family: Acanthaceae), known as "King of Bitters,"
35 is widely used in Ayurveda, Siddha, and traditional Chinese medicine for treating fever,
36 jaundice, and liver disorders⁷. Its bioactive compound, andrographolide, has been
37 reported to possess antioxidant, anti-inflammatory, and hepatoprotective properties⁸.
38 However, experimental validation of its hepatoprotective efficacy in animal models
39 remains crucial.

40 The present study was designed to evaluate the hepatoprotective activity of *Kalmegha*
41 against paracetamol induced hepatotoxicity in Wistar rats.

42

43 AIM AND OBJECTIVES

44

Aim-

45 To study the effect of *Kalmegha* on hepatic disorders.

46

Objective-

47 To study about *Yakrit Roga* (liver disorder) and hepatotoxicity and determine the role of
48 hepatoprotective property of *Kalmegha* in *Yakrit Roga*.

49 To serve humanity by providing safe, economical and effective hepatoprotective drug and by
50 treating liver diseases without producing toxicity.

51 To prove that Ayurveda cures diseases in natural way without disturbing equilibrium of the
52 body, and is superior therapy than other modern therapies.

53

54 MATERIALS AND METHODS

55

56 Plant Material

57 *Kalmegha* leaves were collected, shade-dried, and authenticated by a botanist. To
58 investigate anti-hepatotoxic substances, it is customary to subject animal experimentation
59 to a range of standard protocols of hepatoprotective activity by merging certain *in vivo*

60 and *in vitro* models. In these models certain toxic substances or toxicant have been used
61 to produce hepatic injury resembling the different diseases and then anti hepatotoxic
62 activity is evaluated.

63 The hepatoprotective activity is assessed by noting the effect of test drug on toxicants
64 induced changes in different parameters like weight, volume and cytoarchitecture of
65 liver, viability of hepatocytes after perfusion with test drug, chemical constituents and
66 enzyme activity in liver and serum, especially those that are related to secretory
67 metabolic and excretory functions of liver.

68 **Study design-**

69 **(a) Chemicals**

70 The chemicals used in hematology, biochemistry and histopathology are listed
71 below.

- 72 • Acetone (Make: Molychem, 21040)
- 73 • Alanine amino transferase kit (Cat loguErba Transaia Bio-Medicals)
- 74 • Aspartate amino transferase kit (CatT, Erba ransaia Bio-Medicals)
- 75 • Eosin-Y (Merck, 230251)
- 76 • Geimsa stain (Fisher Scientific, 38723)
- 77 • Hematology reagents (Ark diagnostics)
- 78 • Harris hematoxylin (Hi-Media, SO34)
- 79 • Paraffin wax (Make: Hi-Media, GRM1042)

80 **(b) Equipment**

- 81 • Blood cell analyzer (Make: Abacus junior vet 5)
- 82 • Centrifuge machine (Make: REMI, R-8C)

83 ● Microscope with image capturing facility (Make: Leica)

84 ● Rotary microtome (Make: Yorco, Spencer type)

85 ● Semi-automatic biochemical analyzer (Make: Erba Mannheim)

86 ● Wax incubator (Make: Yorco scientific)

87 **Experimental animals**

88 The experiment was conducted on Wistar rats of either sex weighing 150-200 g.

89 These rats were housed in the Central Laboratory Animal House, College of Veterinary Science

90 & A.H., Jabalpur, as per the guidelines of CPCSEA. Rats were provided with *ad-libitum*

91 commercial pelleted feed (Nutrivet life sciences) and water. Environmental conditions such as

92 $22\pm3^{\circ}\text{C}$ temperature and 12 hours light and dark cycle were given to the rats. The protocol of the

93 study was approved by the IAEC (IAEC protocol no. 09./IAEC/Vety/20)

94 After 05 days of acclimatization, the rats were randomly divided into four groups,

95 consisting of 08 animals each. The treatment protocol is summarized in following Table .

96 **Experimental design**

Group	Treatment	Number of animals
I	Positive Control,	08
II	Negative Control	08
III	2 ml decoction of <i>Kalmegha</i>	08
IV	2 ml dilution of <i>Kalmegha</i>	08

97

98 ● Hepatic damage in rats from group I, III, IV, were produced by administration of single

99 dose of Paracetamol @1500mg/kg orally.

100 ● Rats of group I served as Positive control of hepatic damage.

101 ● Rats of group III, and IV, also administered with treatment protocol as mentioned in

102 above table.

103 ● Rats of group II were provided with standard feed and water, served as Negative control.

104 **Clinical observation**

105 ● All the rats belonging to various groups were closely observed on a daily basis for the
106 development of any clinical signs during the entire experimental period.

107 **Body weight estimation**

108 ● The body weight of individual rats was recorded from the first to fourth week of the study
109 to assess the weekly body weight gain using the weighing balance (Aczet, CY223C)
110 during the experimental period.

111 **Collection of blood samples**

112 ● Approximately 1.0 ml of blood was collected aseptically from retro orbital sinus of rats
113 on 30th day of study. Then, the blood was transferred into two sterilized Eppendorf tubes,
114 one coated with heparin as anticoagulant was used for hematological examination, while
115 the other without anticoagulant was used for serum separation (stored at -20°C).

116 **Serum Biochemistry**

117 ● Serum samples were analyzed for biochemical parameters namely, ALT, AST and total
118 bilirubin using semi-automatic biochemical analyzer (Erba mannheim) by using
119 commercially available kits (Erba- Transaia Bio-Medicals LTD).

120 **Collection of tissue samples**

121 ● Rats belonging to different groups were humanely sacrificed at end of study period. All
122 the rats were subjected for detailed post mortem examination. Liver from different groups
123 were collected. A portion of liver is collected for histopathological study.

124 **Gross Pathological Examination**

125 ● Rats belonging to various experimental groups were subjected to detail pathological
126 examination. Gross pathological lesions were closely observed and recorded in various
127 organs especially liver of rats.

128 **Histopathology**

129 ● Representative tissue samples of liver from rats of different groups were collected and
130 fixed in 10% formalin for a minimum period of 24 hours and processed for
131 histopathological examination. Tissue pieces of approximately 0.5×0.5 cm in size were
132 dehydrated in three changes of acetone and cleared in three changes of benzene, followed
133 by impregnation was done in four chambers of wax. The paraffin tissue blocks were made
134 by embedding tissue in wax using L-molds or cassettes as per the method described by
135 Gridley (1960) with slight modification.

136 **Section cutting**

137 ● Approximately 4-5 mm thin sections were cut by rotary microtome and ribbon section
138 was placed in water bath. Floating sections were taken on clean glass slides smeared with
139 egg albumin as adhesive for histopathology.

140

141 **Staining of tissues**

142 ● **Hematoxylin & Eosin (H&E)**

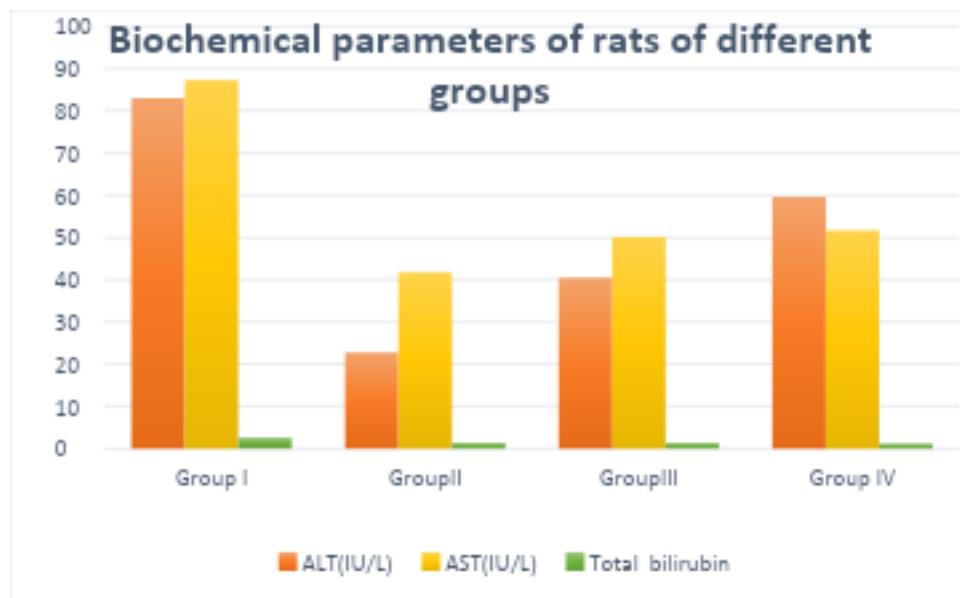
143 Hematoxylin & Eosin staining was performed as per the method described by
144 Gridley (1960) with slight modification. The sectioned slides were stained with
145 hematoxylin and eosin, mounted with DPX (Distyrene plasticizer xylene) and covered
146 with coverslips for further histopathological examination.

147 **Duration of study-** The study was conducted for the period of six months.

148 **RESULTS-**

149 In the present study, serum samples of rats were subjected to biochemical
150 examination including, ALT, AST and Total bilirubin (TB). Results are presented in following
151 table:

152 **Biochemical parameters of rats of different groups**


Groups/ Parameters	ALT (IU/L)	AST (U/L)	Total Bilirubin(mg/dL)
-------------------------------	-------------------	------------------	-----------------------------------

Group I	82.97 ^a ±0.63	87.33. ^a ±1.07	02.60 ^a ±0..22
Group II	22.76 ^f ±0.32	41.66 ^d ±0.33	01.36 ^b ±0.05
Group III	40.46 ^d ±2.00	50.17 ^b ±1.61	01.35 ^b ±0.03
Group IV	59.64 ^b ±0.31	51.64. ^b ±0.28	01.21 ^b ±0.03

153

154

155

156

157 Mean value with different superscript differs significantly($P<0.05$) in row

158 Biochemical examination showed, significant increase in value of liver enzymes like
 159 ALT, AST and total bilirubin rats of positive control as compared to negative control and other
 160 groups. There was significant difference in the values between the groups.

161 There was significant improvement recorded on ALT and AST and total bilirubin
 162 in all treated rats who were received decoction of *Kalmegha* (group III) and dilution of
 163 *Kalmegha* (group IV).

164 **DISCUSSION**

165 **Serum biochemistry**

166 Biochemical examination showed, significant increase in value of liver enzymes like ALT, AST
167 and total bilirubin in rats of positive control as compared to negative control and other groups.

168 There was significant difference in the values between the groups. There was significant
169 improvement recorded on level of ALT and AST and total bilirubin in all treated rats who
170 received decoction of *Kalmegha* and dilution of *Kalmegha* · Though this improvement was more
171 pronounced in group group III, then group V, with statistical difference at level of both the liver
172 enzymes.

173 The above result aligns with Gupta et al. (2022)⁹ and Thomas et al. (2023)¹⁰ with improved level
174 of ALT, AST and total bilirubin with use of *Kalmegha* due to its antioxidant, anti-inflammatory
175 and hepatoprotective actions · However, Verma et al. (2013)¹¹ compared the hepatoprotective
176 action of *Kalmegha* and *Chirayata*, in which extract of *A. Paniculata* showed significant better
177 hepatoprotective as compare to *S. chirayita* . Shrivastava and Gilhotra. (2017) also evaluated the
178 hepatoprotective activity in Kalmegha in CCl4 treated rats induced liver damage and found
179 significant reduction in ALT value¹² .

180

181 **Gross and HistoPathology**

182 At the end of study, post mortem examination of rats pointed that dark coloured congestion and
183 whitish-yellowish discolored foci in few rats of positive control group.

184 Histopathological examination of liver of rats of positive control, who received single dose of
185 Paracetamol showed moderate necrosis and vacuolation of hepatocytes pointing towards hepatic
186 damage, as also evident by the increased liver enzymes (ALT and AST) in group I rats. Rats
187 who received the decoction of *Kalmegha* after hepatic damage (paracetamol administration)
188 showed normal histology and hepatocytes pointing towards improvement in liver
189 histoarchitecture on administration of the drugs. Where as this improvement on liver histology
190 was milder in rats who received dilution of *Kalmegha* after hepatic damage.

191 The findings of our research work aligns with work done Verma et al. (2013), paracetamol
192 group shows severe centrilobular necrosis characterized by nuclear pyknosis, karyolysis, and
193 eosinophilic infiltration, confirming extensive hepatocellular damage and found hepatoprotective

194 effects demonstrated by both the plants (*Kalmegha* and *Chirayata*) . Similarly, in present study
195 we observed improvement on hepatic damage on administration of *Kalmegha* with better
196 preserved histology in decoction of *Kalmegha* than dilution of *Kalmegha* . As *Kalmegha*
197 prevents the lipid peroxidation of hepatocytes additionally anti-inflammatory effects protects the
198 hepatocytes from necrosis and vacuolation.

199 **Overall Effect Of Therapy**

200 The study demonstrated that paracetamol administration at 1500 mg/kg produced significant
201 biochemical disturbances, histopathological alterations, and pronounced hepatic injury in rats.
202 *Kalmegha* exhibited clear hepatoprotective effects against this induced liver damage. Notably,
203 the decoction form provided greater therapeutic benefit compared to dilution, indicating superior
204 efficacy in restoring liver function and mitigating tissue injury.

205 The results demonstrate that *Kalmegha* possesses potent hepatoprotective activity against
206 paracetamol induced hepatotoxicity. Restoration of liver function markers and antioxidant
207 enzymes suggests its protective mechanism involves free radical scavenging and stabilization of
208 hepatocyte membranes.

209 Andrographolide, the major active compound of *Kalmegha*, has been previously shown to
210 modulate cytochrome P450 enzymes, suppress lipid peroxidation, and enhance antioxidant
211 defence. Our findings align with earlier studies reporting hepatoprotective effects of
212 *Andrographis paniculata* extracts in animal models .

213

214 Its *Ushna virya* supports *Agnivardhana*, facilitating detoxification and regeneration of *Yakrit*
215 *dhatu*.

216 **Guna–Karma Relationship**

- 217 • *Tikta rasa* → Detoxifies liver, enhances bile flow, and clears *Ama*.
- 218 • *Laghu-Rukshaguna* → Reduces *Medodushti* and *Kleda* accumulation in hepatic tissue.
- 219 • *Ushna virya* → Stimulates metabolism (*Agni*).
- 220 • *Katu vipaka* → Ensures clearance of metabolic wastes (*Mala nissarana*).

221 Hence, the hepatoprotective effect observed experimentally is a physiological manifestation of
222 these *gunas* acting in synergy.

223

224 The experimental findings scientifically validate traditional Ayurvedic reputation of Kalmegha'
225 as a potent hepatoprotective agent, demonstrating its ability to effectively prevent and reverse
226 paracetamol-induced liver injury in Wistar rats. Notably, the decoction form outperformed the
227 diluted powder suspension, likely due to enhanced solubility and bioavailability of key
228 phytoconstituents like andrographolide.

229 **Conclusion**

230 • Paracetamol successfully induced hepatotoxicity, evidenced by elevated ALT, AST,
231 bilirubin, and histopathological damage.

232 • Kalmegha treatment significantly normalized biochemical markers and restored liver
233 architecture.

234 • Decoction exhibited superior efficacy compared to diluted powder form.

235 **Clinical Implications**

236 These results affirm Ayurveda's *Samadosha Samagnischa Samadhatu Mala Kriya* principle,
237 wherein Kalmegha restores doshic equilibrium and physiological homeostasis. As a safe,
238 economical, and effective natural remedy, Kalmegha decoction holds substantial promise for
239 integration into modern hepatology protocols for both prevention and management of drug-
240 induced liver injury.

241

242 **REFERENCES**

243

- 244 1. GBD 2019 Diseases and Injuries Collaborators. Global burden of 632 diseases and
245 injuries in 204 countries and territories, 1990-2019. *Lancet.* 2020;396(10258):1204-22.
- 246 2. Trivedi KP, Rawal BK. *Introduction to hepatology*. Ahmedabad: NB Patel; 1999.
- 247 3. Priyavrat Sharma A. *Priye Nighantu*. Varanasi: Chaukhamba Orientalia; 2001. p. 136
248 (Priyanguvarga).
- 249 4. Sharma PC, Yelne MB, Dennis TJ. *Dravyaguna Vijnana*. Varanasi: Chaukhamba
250 Bharati Academy; 2005.
- 251 5. Ambike VN, Bhide MB. *Vanoushadhi Nidarsika*. Pune: Saptarishi Prakashan; 1970.

252 6. Garge VM. *Ayurvedic Pharmacology*. Mumbai: Vaidyasagar Prakashan; 1995.

253 7. Hossain MS, Urbi Z, Sule A, Hafizur Rahman KM. *Andrographis paniculata* (Burm.f.)
254 Wall. ex Nees: a review of its ethnopharmacology, phytochemistry, and pharmacological
255 activities. *J Pharm Pharmacol.* 2014;66(12):1371-95.

256 8. Jayakumar T, Hsieh CY, Lee JJ, Sheu JR. Experimental and Clinical Pharmacology of
257 *Andrographis paniculata* and Its Major Bioactive Constituent Andrographolide. *Front
258 Pharmacol.* 2013;4:125.

259 9. Gupta P, Yadav D, Bisen PS. Evaluation of hepatoprotective activity of *Andrographis
260 paniculata* against paracetamol-induced hepatotoxicity. *J Pharmacogn Phytochem.*
261 2022;11(11S):467-72.

262 10. Thomas T, Sabu MC, Kuttan R. Hepatoprotective and anti-inflammatory activities
263 of *Andrographis paniculata*. *Pharm J.* 2023;1(1):295-300.

264 11. Verma VK, Saraf SK, Tripathi P. Comparison of hepatoprotective activity of *Swertia
265 chirayita* and *Andrographis paniculata* against CCl induced hepatotoxicity in
266 rats. *Pharmacologyonline.* 2013;3:104-13.

267 12. Shrivastava S, Gilhotra R. Hepatoprotective activity of *Andrographis paniculata* in
268 CCl induced liver damage in Wistar rats. *Int J Pharm Sci Res.* 2017;8(10):4321-7.

269