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Assessment of Half-decadal variability of Mangrove health cover over the Indian
Sundarban region using Remote Sensing and GIS technique.

Abstract:

The present study aims to assess changes of mangrove vegetation with their cause and impact
over a period of 30 years, from 1990 to 2019. The density of mangrove variability in half decadal
level was calculated based on Normalized Differential Vegetation Index (NDVI) composites
derived using 30m spatial resolution temporal Landsat Thematic Mapper (TM) & Operational
Land Imager (OLI) data pertaining to Indian part of Sundarban Mangrove Forest. Further,
variability of Half Decadal Change of Mangrove Density (HDCMD) was calculated using the
consecutive NDVI composites. The results of HDCMD have shown large spatio-temporal
variability, maximum HDCMD recorded during 1995, 2000 & 2014 with strong positive
correlation (0.85) with Net Rainfall Change (NRC) and negative correlation (-0.82) with bio-
carbon flux. The dense and healthy mangroves contribute in sinking bio-carbon from
atmosphere, acting as good source sink. A net change in the HDCMD reveals overall
improvement in the mangrove cover during 1989-2019. However, the threat of coastal erosion on
mangrove environ along the southern sea fronts persists. Besides, the mangrove cover increased
in prevailing depositional environments of islands and banks of creeks. The outcomes of such
study are useful in sustainable coastal zone management, planning, environment and climate

change.
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Introduction

Mangroves are highly productive coastal wetlands supporting rich biodiversity and occurring
mainly in tropical and subtropical regions under specific salinity and temperature conditions. The
Sundarbans, the world’s largest continuous mangrove forest shared by India and Bangladesh, lie
on the delta of the Ganges, Hooghly, Padma, and Brahmaputra rivers and are internationally
recognized as both a UNESCO World Heritage Site (1987) and a Ramsar wetland (2019), yet
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remain increasingly threatened by human activities and climate change. Currently, mangrove
covers 4921 km* which has shown a modest increment in the cover from 1987(4,046 km?) to the
current status. Giri et. al., (2011) state that the mangroves that once extended along the 7516.6
km long coastline of the Indian counterpart have been constantly reducing. Data from the Forest
Survey of India indicate that mangrove area in the Indian Sundarbans increased between 1987
and 2017 based on satellite observations. In the past 3 decades, marginally 0.061% per year has
increased in the Sundarbans. However, the spatio-temporal variability of mangrove is changing
year by year due to sea level rise [1] and changes in the fresh water flows from Himalayan rivers
which are among the major disturbances threatening these coastal areas. Variation in precipitation
will have an impact on the mangrove density and health. It has been demonstrated in earlier studies that
increased precipitation helps expand mangrove cover [2] and improve species richness and diversity due
to decreased salinity [3]. It is quite obvious that the dynamic coastal environ such as Sundarban, will

have an impact on mangrove cover due to erosion and accretion [4,5].

The increase in atmospheric CO: is a key driver of climate change, with concentrations rising by
nearly 40% since pre-industrial times. This rise, primarily caused by fossil fuel use and bio-flux
processes such as deforestation and drought, underscores the importance of studying year-to-year

variability in mangrove carbon sources and sinks [6-8].

Forests act as carbon sinks or sources by absorbing CO: through photosynthesis and releasing it
during respiration, with carbon stored in biomass and soils. Mangroves are exceptional carbon
reservoirs, storing 956 Mg C ha'far exceeding most terrestrial forests and their high productivity
aids climate change mitigation, with carbon fluxes commonly assessed using field measurements

and remote sensing approaches [9,10].

Variations in mangrove vegetation across space and time play a crucial role in carbon cycle
studies, with NDVI widely applied to quantify green biomass and canopy photosynthetic
activity. Besides, NDVI is also most widely used in the context of ecosystem studies because it
was shown to be closely related to biomass and intensity of photosynthesis, respiration, net

primary productivity, net CO2 exchange, etc [11,12].
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The red and near-infrared bands of Landsat imagery were employed to compute NDVI.This is
well established technique to extract the vegetation classes. Healthy vegetation will absorb most
of the lights in visible red spectrum reflecting a large portion of the near-infrared light [13-17].
Contrary to this, unhealthy or sparse vegetation reflect more in red light and less in near-infrared
spectrum which can distinguish degree of sparse/dense mangrove vegetation with high accuracy
[18].

Few studies have attempted on the carbon estimation using the in situ observations in the
Sundarban Mangrove Forest area. Hence current study is an attempt to use the remote sensing
technique to assess the long-term spatio-temporal NDVI changes to decipher the health of
mangrove and further inter-relate with the bio-carbon flux in the Sundarban Mangrove Forest
environment [19-22]. The study aims to quantify half-decadal variability in mangrove density
using NDVI data from 1990-2019 and to estimate mangrove cover changes driven by rainfall
intensity and shoreline dynamics affecting bio-carbon flux.

Study Area

The Indian Sundarbans, situated on the Gangetic delta along the West Bengal coast, represent the
world’s largest mangrove wetland with high sedimentation rates. Located between 21°33'-22°12’
N and 88°16'-89°05" E, the area experiences a subtropical monsoon climate with heavy rainfall

and recurrent cyclonic activity.
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Figure 1: Showing the Study Area
Data and Methods

This study employed multi-date Landsat data from USGS, including TM and OLI sensors (Table
1). Images were carefully selected to ensure comparable seasonal and tidal conditions [23,24].
Mangrove areas were identified using tone and colour contrast in FCC (5-4-3) images, and DN

values were transformed into reflectance after atmospheric correction.

Py MiQca+ A7 !
where, P, = Planetary reflectance without correction for sun angle, M, = Reflectance multi band,

A, = Reflectance add band, Q. = Digital number.
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Tablel: Landsat datasets used in the present study

Satellite data Sensor Date of acquisition Spatial Resolution in | Path/Row
m
LANDSAT 5 ™ 1990-01-14 30 138/45
LANDSAT 5 ™ 1995-01-28 30 138/45
LANDSAT 5 ™ 2000-01-26 30 138/45
LANDSAT 5 ™ 2005-01-07 30 138/45
LANDSAT 5 ™ 2010-01-21 30 138/45
LANDSAT 8 OLI TIRS 2014-12-18 30 138/45
LANDSAT 8 OLI TIRS 2019-01-30 30 138/45

The atmospheric correction (AC) has been applied to all the datasets using ACOLITE is coded in
Python 3. It includes "Dark Spectrum Fitting™ (DSF) algorithm for atmospheric correction.

The Dark Spectrum Fitting (DSF) algorithm estimates atmospheric path reflectance (ppath) by
assuming spatially uniform atmospheric conditions and the presence of dark pixels with near-
zero surface reflectance within the scene. A dark spectrum is derived from minimum observed
top-of-atmosphere reflectance values, and radiative transfer modeling is used to simulate ppath
for multiple aerosol types and aerosol optical thickness (ta) values. The lowest non-zero ta is
selected to avoid negative surface reflectance, and the optimal aerosol model is identified by
minimizing the root mean squared difference between observed and modeled reflectance.
Atmospheric correction separates atmospheric and surface signals, after which red and near-
infrared surface reflectance bands from Landsat-5 TM and Landsat-8 OLI were used to compute
NDVI.

The surface reflectance of Red & Infra-Red bands were used for NDVI classification using band
ratio (IR-R) with (IR+R) in equation (1) on each images pertaining all bi-decadal data set. These

NDVI indices values have range between -1 to 1 and positive values obtained represent
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mangroves with different density levels (since the image fed into NDVI calculation consist only

mangrove area).

The running HDCMD was calculated by subtracting from later image to earlier image. Example,
the HDCMD in between 1995 to 2000 was calculate by subtracting 1995 NDVI (later) from
2000 NDVI (earlier) imagery. Hence positive values in HDCMD indicate increase in mangrove
density and negative value indicate decrease. Similarly, the running HDCMD was calculated for
every five year intervals during 1990-2019 i.e., 1990-95, 1995-2000, 2000-2005, 2005-2010,
2010-2014 and 2014-2019. Besides, the HDCMD was also calculated for net period during
1990-2019. Level of improvement, degradation and no change was estimated based on the
HDCMD values defined in the Table 2.

Table 2. Criteria for the classification of different mangrove change classes based on HDCMD

values and their indexes

Mangrove Change ADCMD
Values Range | Index

Loss <-1 -5
Densely Loss -05t0-1 4
Sparsely Loss <0t0-0.5 2
No Change 0 0
Sparsely Gain >0t0 0.5 2
Densely Gain 05t01 4
Gain >1 5

Finally the area of HDCMD at each period were calculated and classified into 5 classes index
applying different conditions: (1) if NDVI value of 2" (later) image is greater than 0 but 1°
(earlier) image is less than 0 then it is assigned as -5 (Mangrove/Erosions Lost completely), (2) if

difference value is >= -2.785 & < -0.027 then assigned as -4 (Degradation Mangrove); (3) if
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difference value is >= -0.027 & < 0.039 then assigned as 0 (small change/No change
Mangrove);(4) if difference value is >= 0.039 and <= 2.75 as 4 (Improve Mangrove); (5) if 2"
image is greater than 0 but 1% image is less than 0 is assigned to +5 (new mangrove/Accretion ).
The further maps and statistics for each period were generated based on above HDCMD

classification.

In this study the monthly 0.25 X 0.25 degree gridded TRMM rainfall data during 1997 to 2017
pertaining to study area was used to estimate the variation and their impact on Mangrove density.
The average rainfall of preceding season (6 months) from the month of each Landsat data was
used. This is one among other parameters which helps in maintaining the health of mangroves.
The change in the average rainfall between two consecutive periods were estimated to correlate
with mangrove changes. The average rainfall of preceding season pertaining to two consecutive
period was subtracted (earlier minus later) to calculate Net Rainfall Change (NRC). Further,
relation between NRC and HDCMD were established at each period.

Bio-carbon flux corresponding to each HDCMD phase was derived from monthly
CarbonTracker data at one-degree resolution for 2000—2018. NBCF was estimated by subtracting
earlier flux values from later ones, where negative NBCF denotes carbon sequestration linked to
mangrove expansion and positive NBCF indicates mangrove decline. The relationship between
NBCF and HDCMD was evaluated to understand mangrove carbon dynamics. Shoreline change
rates were calculated from multi-temporal Landsat imagery using digitized shorelines and

DSAS-based EPR statistics to identify zones of erosion and accretion affecting mangrove cover.

Monthly bio-carbon flux with respect to each HDCMD period (month of Landsat data acquired)
were extracted from one-degree monthly NOAA carbon flux tracker data
(ftp://aftp.cmdl.noaa.gov/products/carbontracker/co2/fluxes/monthly/) during 2000 to 2018
period based on availability. The Net Bio-Carbon Flux (NBCF) pertaining to the consecutive
period was estimated by subtracting bio-carbon flux of earlier with later periods. The negative
value of NBCF indicates the sink of carbon by biosphere (mangrove) due to an increase in the
mangrove density. In contrast, positive value of NBCF indicates a decrease in mangrove density.
The current study is an effort to establish a relation between NBCF and HDCMD to understand

the role (source/sink) of mangrove density on bio-carbon flux [25-28].
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Results and Discussions

The Figure 2 shows composites of HDCMD calculated during period 1990 & 1995 (a), 1995
&2000 (b), 2000 & 2005 (c), 2005 & 2010 (d), 2010 & 2014 (e) and 2014 & 2019 (f). Notable
increase in the HDCMD was observed from 1995 to 2000 by densely gaining 2201.3 km?
whereas, 63.9 km? area has been sparsely lost in the south western parts and 15.4 km? of the
mangroves completely lost (red color shown on legend) along the seaward side of the islands.
But an increase (newly grown mangroves) of 71.8 km? area could be seen on several parts of the
islands in the estuaries/creeks. This may be due to change in the marine-fluvial process that favor
mangrove growth in these small island environs. On the other hand, NRC increase up to 25.11
mm/day was recorded during 1995-2000 (Figure 4), which is significantly higher than an
average. This increase in rainfall was attributed to the dense growth of mangrove trees during
1995-2000.

The HDCMD between 2000 and 2005 decreased considerably as shown in Figure 2c. A total of
2163.8 km? area shown marginal loss in the mangrove vegetation, whereas for 44.3 km? area the
mangrove cover was completely lost. During the same period on the other hand, 129.1 km? area
shown significant gain in the mangrove density while only for 6.3 km? area the new mangrove
cover was recorded. The complete loss of mangroves on the seaward side continued further in
this period as well. We infer that the decrease in the NRC (16.34 mm/days (Figure 4)) during this
period could have hurt mangroves, resulting in the observed degradation.

The HDCMD shows increment in the mangroves in between 2005 & 2010 shown in Figure 2d .
A total area of 1316.5 km? mangroves has been densely gained in the central and western parts of
the study area and 27.9 km? area has been completely gained. On the other hand, 957.1 km? area
of mangroves were sparsely lost in the eastern parts and 21.2 km? area of mangroves were
completely lost. The NRC has slightly increased by 2.12 mm/day (Figure 4) during this period
might have resulted in the moderate increase in the mangrove cover. Besides, rate of bio-carbon
sink was 0.5179 gm/m?/day (Figure 5) which indicates moderately healthy vegetation in this

period.

The HDCMD has further increased from 2010 to 2014 with a significant growth of mangroves as

shown in Figure 2e. An area of 2245 km? shows densely gained and 14.60 km? area of
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mangroves. Whereas, 29.4 km? areas show sparsely loss and 21 km? area of mangroves have
been completely lost in the seaward side of islands. NRC further increased by 2.1 mm/days
(Figure 4) leads to increase the mangrove cover with a supporting indication of the rate bio-
carbon sinking was 0.9047 gm/m?/day (Figure 5).

The HDCMD shows a decreasing pattern during 2014 to 2019 as shown in Figure 2f. Total area
of 1705.47 km? show sparsely loss of mangroves and 9.2 km? mangrove areas were continued to
lose completely along the seaward side coasts of islands whereas, 568.9 km? area shows densely
gain and 45.5 km? show completely gained mangroves. The NRC has decreased by 9.86 mm/day
(Figure 4) resulting in decrease of mangrove cover. This was indicated by increase in the bio-
carbon flux 0.1365 gm/m?/day (Figure 5) from terrestrial biosphere to atmosphere during this

period.

Figure 2 Composites of half decadal spatial distribution of Mangrove during 1990 to 2019

Net shoreline change rate is overlaid on HDCMD of pertaining to period 1989-2019 as shown in
Figure 3. It was observed that the mangroves were continuously lost completely throughout the
study period due to coastal erosion along the seaward side of the islands. It was observed that the
rate of erosion was more than 20 m/y. It was also observed that, the HDCMD increased
significantly during this period by the increase of 2174 km? in densely gain class and a total
106.8 km? area was completely gained. These areas are the islands and banks of the

creeks/estuary.
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Figure 2: Map showing the composite of HDCMD of 1989-2019 is overlaid with net shoreline
change rate
Box-and-whisker plots were used to summarize NDVI variability and inter-period changes
throughout the study (Figure 3a, b). The plots present vegetation health along a 0-1 NDVI scale,
with quartiles enclosed in the box, whiskers marking data extremes, and outliers shown as

individual points beyond the whiskers.

The average NDVI value 0.53+-0.14 (Mean+-SD) with half decadal increasing trend NDVI
value 0.03 was observed during study period. The overall period of NDVI value 0.5 to 0.4 under
1st quantile, 0.4 to 0.6 under 2nd quantile, 0.6 to 0.7 under 3rd quantile and 0.7 to 0.95 under 4th
quntile. In figure 3b showing the box (2nd to 3rd quantile) bellow 0" said to be degreded period
of mangrove and above '0' is said to be improve period of the mangrove. In histogram plot in
figure 4 also showing the positive and negative value at the each running half decadal net change
of NDVI. From figure 3b & 4 depicting health of Mangroves (vegetation biomass) improved
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Figure-4: Half decade change of NDVI (Later-Earlier) Histogram during 1990 to 2019

The Figure 5 depicts the relationship between net spatial change of HDCMD and NRC to assess

the impact of lead period of rainfall on health of mangrove. It is observed the significant

agreement between increase of healthily vegetation by rising NRC with highly positive

correlation coefficient of 0.85. In addition to this the variability of sink and source of bio-carbon

flux from/to atmosphere was assessed with variation of mangrove cover density. The Figure 6

shows the inter relation between bio-carbon flux with net spatial change of HDCMD. It is

observed that, there is significantly agreement of bio-carbon flux with negative correlation (-

0.82). It means the net increase of mangrove vegetation contribute to sink carbon from

atmosphere or vice versa.
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Figure 6 Plot showing the relation between bio-carbon flux and net spatial change in HDCMD
Conclusion

The current study aims at estimating the spatio-temporal changes in the mangrove cover in
Indian part of the Sundarbans. It can be inferred that the delineation of mangrove and non-
mangrove areas and also classification of HDCMD based on NDVI values is best achieved with
help of temporal Landsat imageries. The results also reveal that there is a significant correlation
(coefficient 0.85) between HDCMD and NRC. In addition to this, variations in the sink and
source of bio-carbon flux at different periods is triggered by health of mangrove vegetation. The
study reflects that; there is significant agreement of bio-carbon flux with negative correlation (-
0.82) with HDCMD. It indicates the net increase of mangrove density contributes in sinking bio-
carbon from atmosphere or vice versa. Good dense mangrove cover (healthy) was observed
during 1995, 2000 and 2014 with an increased NRC and good bio-carbon sink. The study
concludes the overall improvement in the mangrove cover during 1989-2019. However, the
mangroves continue to reduce in the seaward side (southern parts) of eroding islands. On the
other hand, the mangroves were picked up in the accretional islands and banks situated inside the
estuary/creeks.This knowledge can be used to facilitate suitable planning, management, and
regulation of mangrove ecosystems which can be further associated with anthropology and
biodiversity to monitor/quantify bio-carbon flux and their consequence on socio-economics of

the country.
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