
 

 

Assessment of Half-decadal variability of Mangrove health cover over the Indian 1 

Sundarban region using Remote Sensing and GIS technique. 2 

Abstract:  3 

The present study aims to assess changes of mangrove vegetation with their cause and impact 4 

over a period of 30 years, from 1990 to 2019. The density of mangrove variability in half decadal 5 

level was calculated based on Normalized Differential Vegetation Index (NDVI) composites 6 

derived using 30m spatial resolution temporal Landsat Thematic Mapper (TM) & Operational 7 

Land Imager (OLI) data pertaining to Indian part of Sundarban Mangrove Forest. Further, 8 

variability of Half Decadal Change of Mangrove Density (HDCMD) was calculated using the 9 

consecutive NDVI composites.  The results of HDCMD have shown large spatio-temporal 10 

variability, maximum HDCMD recorded during 1995, 2000 & 2014 with strong positive 11 

correlation (0.85) with Net Rainfall Change (NRC) and negative correlation (-0.82) with bio-12 

carbon flux. The dense and healthy mangroves contribute in sinking bio-carbon from 13 

atmosphere, acting as good source sink. A net change in the HDCMD reveals overall 14 

improvement in the mangrove cover during 1989-2019. However, the threat of coastal erosion on 15 

mangrove environ along the southern sea fronts persists. Besides, the mangrove cover increased 16 

in prevailing depositional environments of islands and banks of creeks. The outcomes of such 17 

study are useful in sustainable coastal zone management, planning, environment and climate 18 

change.   19 
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Introduction 23 

Mangroves are highly productive coastal wetlands supporting rich biodiversity and occurring 24 

mainly in tropical and subtropical regions under specific salinity and temperature conditions. The 25 

Sundarbans, the world’s largest continuous mangrove forest shared by India and Bangladesh, lie 26 

on the delta of the Ganges, Hooghly, Padma, and Brahmaputra rivers and are internationally 27 

recognized as both a UNESCO World Heritage Site (1987) and a Ramsar wetland (2019), yet 28 



 

 

remain increasingly threatened by human activities and climate change. Currently, mangrove 29 

covers 4921 km
2,

 which has shown a modest increment in the cover from 1987(4,046 km
2
) to the 30 

current status. Giri et. al., (2011) state that the mangroves that once extended along the 7516.6 31 

km long coastline of the Indian counterpart have been constantly reducing. Data from the Forest 32 

Survey of India indicate that mangrove area in the Indian Sundarbans increased between 1987 33 

and 2017 based on satellite observations. In the past 3 decades, marginally 0.061% per year has 34 

increased in the Sundarbans. However, the spatio-temporal variability of mangrove is changing 35 

year by year due to sea level rise [1] and changes in the fresh water flows from Himalayan rivers 36 

which are among the major disturbances threatening these coastal areas. Variation in precipitation 37 

will have an impact on the mangrove density and health. It has been demonstrated in earlier studies that 38 

increased precipitation helps expand mangrove cover [2] and improve species richness and diversity due 39 

to decreased salinity [3].  It is quite obvious that the dynamic coastal environ such as Sundarban, will 40 

have an impact on mangrove cover due to erosion and accretion [4,5].   41 

The increase in atmospheric CO₂ is a key driver of climate change, with concentrations rising by 42 

nearly 40% since pre-industrial times. This rise, primarily caused by fossil fuel use and bio-flux 43 

processes such as deforestation and drought, underscores the importance of studying year-to-year 44 

variability in mangrove carbon sources and sinks [6–8]. 45 

Forests act as carbon sinks or sources by absorbing CO₂ through photosynthesis and releasing it 46 

during respiration, with carbon stored in biomass and soils. Mangroves are exceptional carbon 47 

reservoirs, storing 956 Mg C ha⁻¹far exceeding most terrestrial forests and their high productivity 48 

aids climate change mitigation, with carbon fluxes commonly assessed using field measurements 49 

and remote sensing approaches [9,10]. 50 

 51 

Variations in mangrove vegetation across space and time play a crucial role in carbon cycle 52 

studies, with NDVI widely applied to quantify green biomass and canopy photosynthetic 53 

activity. Besides, NDVI is also most widely used in the context of ecosystem studies because it 54 

was shown to be closely related to biomass and intensity of photosynthesis, respiration, net 55 

primary productivity, net CO2 exchange, etc [11,12].  56 



 

 

The red and near-infrared bands of Landsat imagery were employed to compute NDVI.This is 57 

well established technique to extract the vegetation classes. Healthy vegetation will absorb most 58 

of the lights in visible red spectrum reflecting a large portion of the near-infrared light [13-17]. 59 

Contrary to this, unhealthy or sparse vegetation reflect more in red light and less in near-infrared 60 

spectrum which can distinguish degree of sparse/dense mangrove vegetation with high accuracy 61 

[18]. 62 

Few studies have attempted on the carbon estimation using the in situ observations in the 63 

Sundarban Mangrove Forest area. Hence current study is an attempt to use the remote sensing 64 

technique to assess the long-term spatio-temporal NDVI changes to decipher the health of 65 

mangrove and further inter-relate with the bio-carbon flux in the Sundarban Mangrove Forest 66 

environment [19-22]. The study aims to quantify half-decadal variability in mangrove density 67 

using NDVI data from 1990–2019 and to estimate mangrove cover changes driven by rainfall 68 

intensity and shoreline dynamics affecting bio-carbon flux. 69 

Study Area 70 

The Indian Sundarbans, situated on the Gangetic delta along the West Bengal coast, represent the 71 

world’s largest mangrove wetland with high sedimentation rates. Located between 21°33′–22°12′ 72 

N and 88°16′–89°05′ E, the area experiences a subtropical monsoon climate with heavy rainfall 73 

and recurrent cyclonic activity. 74 



 

 

 75 

Figure 1: Showing the Study Area 76 

Data and Methods 77 

This study employed multi-date Landsat data from USGS, including TM and OLI sensors (Table 78 

1). Images were carefully selected to ensure comparable seasonal and tidal conditions [23,24]. 79 

Mangrove areas were identified using tone and colour contrast in FCC (5–4–3) images, and DN 80 

values were transformed into reflectance after atmospheric correction. 81 

Pλ = MλQcal + Aλ
-----------1 82 

where, Pλ = Planetary reflectance without correction for sun angle, Mλ = Reflectance multi band, 83 

Aλ = Reflectance add band, Qcal = Digital number. 84 

 85 

 86 



 

 

Table1: Landsat datasets used in the present study 87 

 88 

Satellite data Sensor Date of acquisition Spatial Resolution in 

m 

Path/Row 

LANDSAT 5 TM 1990-01-14 30 138/45 

LANDSAT 5 TM 1995-01-28 30 138/45 

LANDSAT 5 TM 2000-01-26 30 138/45 

LANDSAT 5 TM 2005-01-07 30 138/45 

LANDSAT 5 TM 2010-01-21 30 138/45 

LANDSAT 8 OLI TIRS 2014-12-18 30 138/45 

LANDSAT 8 OLI TIRS 2019-01-30 30 138/45 

 89 

The atmospheric correction (AC) has been applied to all the datasets using ACOLITE is coded in 90 

Python 3. It includes "Dark Spectrum Fitting" (DSF) algorithm for atmospheric correction.  91 

The Dark Spectrum Fitting (DSF) algorithm estimates atmospheric path reflectance (ρpath) by 92 

assuming spatially uniform atmospheric conditions and the presence of dark pixels with near-93 

zero surface reflectance within the scene. A dark spectrum is derived from minimum observed 94 

top-of-atmosphere reflectance values, and radiative transfer modeling is used to simulate ρpath 95 

for multiple aerosol types and aerosol optical thickness (τa) values. The lowest non-zero τa is 96 

selected to avoid negative surface reflectance, and the optimal aerosol model is identified by 97 

minimizing the root mean squared difference between observed and modeled reflectance. 98 

Atmospheric correction separates atmospheric and surface signals, after which red and near-99 

infrared surface reflectance bands from Landsat-5 TM and Landsat-8 OLI were used to compute 100 

NDVI. 101 

The surface reflectance of Red & Infra-Red bands were used for  NDVI classification using band 102 

ratio (IR-R) with (IR+R) in equation (1) on each images pertaining all bi-decadal data set. These 103 

NDVI indices values have range between -1 to 1 and positive values obtained represent 104 



 

 

mangroves with different density levels (since the image fed into NDVI calculation consist only 105 

mangrove area).  106 

 107 

                                                       NDVI = 108 

 109 

The running HDCMD was calculated by subtracting from later image to earlier image. Example, 110 

the HDCMD in between 1995 to 2000 was calculate by subtracting 1995 NDVI (later) from 111 

2000 NDVI (earlier) imagery. Hence positive values in HDCMD indicate increase in mangrove 112 

density and negative value indicate decrease. Similarly, the running HDCMD was calculated for 113 

every five year intervals during 1990-2019 i.e., 1990-95, 1995-2000, 2000-2005, 2005-2010, 114 

2010-2014 and 2014-2019.  Besides, the HDCMD was also calculated for net period during 115 

1990-2019. Level of improvement, degradation and no change was estimated based on the 116 

HDCMD values defined in the Table 2. 117 

Table 2. Criteria for the classification of different mangrove change classes based on HDCMD 118 

values and their indexes 119 

Mangrove Change 
HDCMD  

Values Range Index 

Loss <  -1 -5 

Densely Loss -0.5 to -1 -4 

Sparsely Loss <0 to -0.5 -2 

No Change 0 0 

Sparsely Gain > 0 to 0.5 2 

Densely Gain 0.5 to 1 4 

Gain >  1 5 

 120 

Finally the area of HDCMD at each period were calculated  and classified into 5 classes index 121 

applying different conditions: (1) if NDVI value of 2
nd

 (later) image is greater than 0 but 1
st
 122 

(earlier) image is less than 0 then it is assigned as -5 (Mangrove/Erosions Lost completely), (2) if 123 

difference value is >= -2.785 & < -0.027  then assigned as -4 (Degradation Mangrove); (3) if 124 



 

 

difference value is >= -0.027   & < 0.039 then assigned as 0 (small change/No change 125 

Mangrove);(4) if difference value is >= 0.039 and <= 2.75 as 4 (Improve Mangrove); (5) if 2
nd

 126 

image is greater than 0 but 1
st
 image is less than 0 is assigned to +5 (new mangrove/Accretion ). 127 

The further maps and statistics for each period were generated based on above HDCMD 128 

classification. 129 

In this study the monthly 0.25 X 0.25 degree gridded TRMM rainfall data during 1997 to 2017 130 

pertaining to study area was used to estimate the variation and their impact on Mangrove density. 131 

The average rainfall of preceding season (6 months) from the month of each Landsat data was 132 

used. This is one among other parameters which helps in maintaining the health of mangroves. 133 

The change in the average rainfall between two consecutive periods were estimated to correlate 134 

with mangrove changes. The average rainfall of preceding season pertaining to two consecutive 135 

period was subtracted (earlier minus later) to calculate Net Rainfall Change (NRC). Further, 136 

relation between NRC and HDCMD were established at each period. 137 

Bio-carbon flux corresponding to each HDCMD phase was derived from monthly 138 

CarbonTracker data at one-degree resolution for 2000–2018. NBCF was estimated by subtracting 139 

earlier flux values from later ones, where negative NBCF denotes carbon sequestration linked to 140 

mangrove expansion and positive NBCF indicates mangrove decline. The relationship between 141 

NBCF and HDCMD was evaluated to understand mangrove carbon dynamics. Shoreline change 142 

rates were calculated from multi-temporal Landsat imagery using digitized shorelines and 143 

DSAS-based EPR statistics to identify zones of erosion and accretion affecting mangrove cover. 144 

Monthly bio-carbon flux with respect to each HDCMD period (month of Landsat data acquired) 145 

were extracted from one-degree monthly NOAA carbon flux tracker data 146 

(ftp://aftp.cmdl.noaa.gov/products/carbontracker/co2/fluxes/monthly/) during 2000 to 2018 147 

period based on availability. The Net Bio-Carbon Flux (NBCF) pertaining to the consecutive 148 

period was estimated by subtracting bio-carbon flux of earlier with later periods. The negative 149 

value of NBCF indicates the sink of carbon by biosphere (mangrove) due to an increase in the 150 

mangrove density. In contrast, positive value of NBCF indicates a decrease in mangrove density. 151 

The current study is an effort to establish a relation between NBCF and HDCMD to understand 152 

the role (source/sink) of mangrove density on bio-carbon flux [25-28].  153 



 

 

Results and Discussions 154 

The Figure 2 shows composites of HDCMD calculated during period 1990 & 1995 (a), 1995 155 

&2000 (b), 2000 & 2005 (c), 2005 & 2010 (d), 2010 & 2014 (e) and 2014 & 2019 (f). Notable 156 

increase in the HDCMD was observed from 1995 to 2000 by densely gaining 2201.3 km
2
 157 

whereas, 63.9 km
2
 area has been sparsely lost in the south western parts and 15.4 km

2
 of the 158 

mangroves completely lost (red color shown on legend) along the seaward side of the islands. 159 

But an increase (newly grown mangroves) of 71.8 km
2 

area could be seen on several parts of the 160 

islands in the estuaries/creeks. This may be due to change in the marine-fluvial process that favor 161 

mangrove growth in these small island environs.  On the other hand, NRC increase up to 25.11 162 

mm/day was recorded during 1995-2000 (Figure 4), which is significantly higher than an 163 

average. This increase in rainfall was attributed to the dense growth of mangrove trees during 164 

1995-2000.  165 

The HDCMD between 2000 and 2005 decreased considerably as shown in Figure 2c. A total of 166 

2163.8 km
2
 area shown marginal loss in the mangrove vegetation, whereas for 44.3 km

2
 area  the 167 

mangrove cover was completely lost. During the same period on the other hand, 129.1 km
2 

area 168 

shown significant gain in the mangrove density while only for 6.3 km
2 

area the new mangrove 169 

cover was recorded. The complete loss of mangroves on the seaward side continued further in 170 

this period as well. We infer that the decrease in the NRC (16.34 mm/days (Figure 4)) during this 171 

period could have hurt mangroves, resulting in the observed degradation. 172 

The HDCMD shows increment in the mangroves in between 2005 & 2010 shown in Figure 2d . 173 

A total area of 1316.5 km
2
 mangroves has been densely gained in the central and western parts of 174 

the study area and 27.9 km
2 

area has been completely gained.  On the other hand, 957.1 km
2
 area 175 

of mangroves were sparsely lost in the eastern parts and 21.2 km
2 

area of mangroves were 176 

completely lost.  The NRC has slightly increased by 2.12 mm/day (Figure 4) during this period 177 

might have resulted in the moderate increase in the mangrove cover. Besides, rate of bio-carbon 178 

sink was 0.5179 gm/m
2
/day (Figure 5) which indicates moderately healthy vegetation in this 179 

period. 180 

The HDCMD has further increased from 2010 to 2014 with a significant growth of mangroves as 181 

shown in Figure 2e. An area of 2245 km
2
 shows densely gained and 14.60 km

2
 area of 182 



 

 

mangroves. Whereas, 29.4 km
2
 areas show sparsely loss and 21 km

2
 area of mangroves have 183 

been completely lost in the seaward side of islands. NRC further increased by 2.1 mm/days 184 

(Figure 4) leads to increase the mangrove cover with a supporting indication of the rate bio-185 

carbon sinking was 0.9047 gm/m
2
/day (Figure 5).    186 

The HDCMD shows a decreasing pattern during 2014 to 2019 as shown in Figure 2f. Total area 187 

of 1705.47 km
2
 show sparsely loss of mangroves and 9.2 km

2
 mangrove areas were continued to 188 

lose completely along the seaward side coasts of islands whereas, 568.9 km
2
 area shows densely 189 

gain and 45.5 km
2
 show completely gained mangroves. The NRC has decreased by 9.86 mm/day 190 

(Figure 4) resulting in decrease of mangrove cover. This was indicated by increase in the bio-191 

carbon flux 0.1365 gm/m
2
/day (Figure 5) from terrestrial biosphere to atmosphere during this 192 

period.  193 

Figure 2 Composites of half decadal spatial distribution of Mangrove during 1990 to 2019 194 

Net shoreline change rate is overlaid on HDCMD of pertaining to period 1989-2019 as shown in 195 

Figure 3. It was observed that the mangroves were continuously lost completely throughout the 196 

study period due to coastal erosion along the seaward side of the islands. It was observed that the 197 

rate of erosion was more than 20 m/y. It was also observed that, the HDCMD increased 198 

significantly during this period by the increase of 2174 km
2
 in densely gain class and a total 199 

106.8 km
2
 area was completely gained. These areas are the islands and banks of the 200 

creeks/estuary.   201 



 

 

 202 

Figure 2: Map showing the composite of HDCMD of 1989-2019 is overlaid with net shoreline 203 

change rate 204 

Box-and-whisker plots were used to summarize NDVI variability and inter-period changes 205 

throughout the study (Figure 3a, b). The plots present vegetation health along a 0–1 NDVI scale, 206 

with quartiles enclosed in the box, whiskers marking data extremes, and outliers shown as 207 

individual points beyond the whiskers. 208 

The average NDVI value 0.53+-0.14 (Mean+-SD) with half decadal increasing trend NDVI 209 

value 0.03 was observed during study period. The overall period of NDVI value 0.5 to 0.4 under 210 

1st quantile, 0.4 to 0.6 under 2nd quantile, 0.6 to 0.7 under 3rd quantile and 0.7 to 0.95 under 4th 211 

quntile. In figure 3b showing the box (2nd to 3rd quantile) bellow '0' said to be degreded period 212 

of mangrove and above '0' is said to be improve period of the mangrove. In histogram plot in 213 

figure 4 also showing the positive and negative value at the each running half decadal net change 214 

of NDVI. From figure 3b & 4 depicting health of Mangroves (vegetation biomass) improved 215 



 

 

during 1995, 2000 and 2014. whereas 2005 showing the degraded and  2010 & 2019 showing the 216 

no change/small change of mangrove comparative previous half decadal period. This clearly 217 

indicating the 2005 and 2010 are the El nino period which effect on the green biomass of the 218 

mangrove.  219 

 220 

Figure 3: whiskers chart shows interquartile range and the mean of the (a) NDVI and (b) 221 

difference of preceding and succeeding NDVI at individual and overall  study period  222 

 223 



 

 

Figure-4: Half decade change of NDVI (Later-Earlier) Histogram during 1990 to 2019 224 

The Figure 5 depicts the relationship between net spatial change of HDCMD and NRC to assess 225 

the impact of lead period of rainfall on health of mangrove. It is observed the significant 226 

agreement between increase of healthily vegetation by rising NRC with highly positive 227 

correlation coefficient of 0.85. In addition to this the variability of sink and source of bio-carbon 228 

flux from/to atmosphere was assessed with variation of mangrove cover density. The Figure 6 229 

shows the inter relation between bio-carbon flux with net spatial change of HDCMD. It is 230 

observed that, there is significantly agreement of bio-carbon flux with negative correlation (-231 

0.82). It means the net increase of mangrove vegetation contribute to sink carbon from 232 

atmosphere or vice versa.  233 

 234 

 235 

Figure 5 Plot showing the relation between net rainfall change and net spatial change in 236 

HDCMD 237 

 238 



 

 

Figure 6 Plot showing the relation between bio-carbon flux and net spatial change in HDCMD 239 

Conclusion 240 

The current study aims at estimating the spatio-temporal changes in the mangrove cover in 241 

Indian part of the Sundarbans. It can be inferred that the delineation of mangrove and non-242 

mangrove areas and also classification of HDCMD based on NDVI values is best achieved with 243 

help of temporal Landsat imageries. The results also reveal that there is a significant correlation 244 

(coefficient 0.85) between HDCMD and NRC. In addition to this, variations in the sink and 245 

source of bio-carbon flux at different periods is triggered by health of mangrove vegetation. The 246 

study reflects that; there is significant agreement of bio-carbon flux with negative correlation (-247 

0.82) with HDCMD. It indicates the net increase of mangrove density contributes in sinking bio-248 

carbon from atmosphere or vice versa. Good dense mangrove cover (healthy) was observed 249 

during 1995, 2000 and 2014 with an increased NRC and good bio-carbon sink. The study 250 

concludes the overall improvement in the mangrove cover during 1989-2019. However, the 251 

mangroves continue to reduce in the seaward side (southern parts) of eroding islands. On the 252 

other hand, the mangroves were picked up in the accretional islands and banks situated inside the 253 

estuary/creeks.This knowledge can be used to facilitate suitable planning, management, and 254 

regulation of mangrove ecosystems which can be further associated with anthropology and 255 

biodiversity to monitor/quantify bio-carbon flux and their consequence on socio-economics of 256 

the country.  257 
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