

1

Recalibrating the depressed brain 2 through transcranial magnetic 3 stimulation and neuro biofeedback for 4 patients with depressive disorders

5

6 **Abstract**

7 Brain stimulation techniques are the new cutting-edge tools in the ever-changing landscape of
8 neuroscience and psychiatry, heralding the beginning of an arguably new age in therapeutic
9 innovation. These techniques transcend pharmacological modalities, offering sophisticated,
10 non-invasive alternatives for recalibrating the neural circuits to restore cognitive and
11 emotional equilibrium. To open this neurotechnological modality are Transcranial Magnetic
12 Stimulation (TMS) and Neurofeedback-two approaches that are independent of one another
13 yet together aid in redefining the landscape of mental health care. Both having technological
14 as well as therapeutic features combined synergistically. Relevant literature was collected
15 from various database including both online and offline sources namely Google Scholar, Web
16 of Sciences, Psych INFO, PubMed, National Library of Medicine, book related to
17 Transcranial Magnetic Stimulation and quantitative EEG and Neurofeedback journal, journal
18 of Neuro Engineering and Rehabilitation, review included significant relevant researches to
19 the of research from both national and global were included in the review of literature. It was
20 observed that TMS is a promising treatment as compared to neuro biofeedback as TMS offers
21 immediate effective results within 2-3 sessions in a short duration as compared to
22 neurofeedback which require more sessions. TMS is a more potential treatment for treatment
23 resistant depression whereas neurofeedback is more effective for spectrum of depressive
24 disorders, anxiety and mood regulation. So, TMS holds a stronger ground as comparison to

25 neuro feedback for patients suffering from major depression and in future more therapeutic
26 models can be adapted as per the choice of the therapist.

27 *Keywords:* Transcranial Magnetic Stimulation, Neurofeedback, major depression, emotional
28 equilibrium.

29

30 **Introduction**

31 Depression is the common cold of mental illness and as per data population of over
32 280 million is suffering from depressive illness (World Health Organization, 2023). Many
33 psychotherapeutic techniques like cognitive behaviour therapy and found to be effective for
34 treating depressive illness but they are comparatively time taking so new advanced
35 therapeutic techniques are being explored and treatments based on neurobiological basis of
36 depression is being used widely now a days (Gkintoni, Nikolaou & Vassilopoulos, 2025). In
37 order to address this, biopsychology is used and is prominently contributing to the
38 development and advancement of these techniques. It may be better understood as that
39 neuroscience is a team effort and biopsychologist as a part of this team (Pearson Higher
40 Education 2024).

41 A core area of biopsychological research and clinical application involves brain
42 imaging, brain stimulating and neuromodulating methods, which allow researchers to study
43 the structure and function of the brain in both healthy and clinical populations (Langguth et
44 al. 2012). These methods are instrumental in developing and evaluating treatments like
45 Transcranial Magnetic Stimulation (TMS) and neurofeedback (NBF) which are among
46 mostly used treatment procedures in this area. From 1988 to 2017, approximately 17,492
47 peer-reviewed articles on TMS were published worldwide, reflecting growing scientific
48 interest in this technology (McLean 2019). Similarly, the neurofeedback research grew

49 mainly over the last two decades starting with a bibliometric analysis database indicating that
50 the first neurofeedback related publication appeared in 1989 (Wider et al., in 2024). National
51 Library of Medicine reported 3,626 articles from 1989 to 2023 Wider, Mutang et al 2024).

52 Brain Imaging methods- There are some methods which record electrical currents or
53 magnetic fields as a measure of activity in the brain areas just underneath the skull. Other
54 techniques are -

- 55 • Electroencephalography (EEG) records electrical brain activity by the use of
56 electrodes placed on the scalp (Biasiucci, Franceschiello, Murray 2019)
- 57 • Functional neuroimaging - this procedure includes a range of methods that study how
58 the brain is functioning normally, to correlate an alteration in activity within a given
59 region with certain performances of a task, experiences, or behaviours. (Raichle &
60 Min tun, 2006).
- 61 • Positron emission tomography (PET) -The method involves using radiotracers
62 to quantify different metabolic processes within the body, reflecting metabolic
63 activity, blood flow, and chemical composition. (Kapoor, Heston, Kasi 2019).

64 Neuromodulation and Brain Stimulation Techniques -Neuromodulation is a form of
65 therapy in which neurophysiological signals are initiated or influenced with the intention of
66 achieving therapeutic effects by altering the function and performance of the nervous system
67 (Liu, Qian 2021). Neuromodulation can be carried out through a variety of means, including
68 non-invasive modalities such as (TMS), (tDCS), and transcranial ultrasound stimulation
69 (TUS), as well as invasive modalities such as deep brain stimulation (DBS), spinal cord
70 stimulation (SCS), and VNS (Davidson, Bhattacharya et al 2024).

71 Brain stimulation methods are one of the categories of the neuromodulation therapies
72 designed to alter neural activity to manage different neurological and psychiatric conditions

73 (Conde, Bermudez, Rey, Khan 2022). Non-Invasive Neuromodulation (NINM) methods alter
74 neural activity from outside the body without the need for surgery (Tyler, Sanguinetti, Fini,
75 Hool 2017). These techniques modulate brain function by means of magnetic or electrical
76 stimulation which are listed below:

77 Non-invasive Brain Stimulation Methods to regulate the brain's excitability are Transcranial
78 magnetic stimulation (TMS) employed to produce neural activity by creating a time-varying
79 electric field in the brain, which will cause action potentials to be triggered in cortical
80 neurons, By means of alternating currents, Transcranial Alternating Current Stimulation
81 (tACS) alters the brain activity by enhancing synaptic plasticity and neural oscillations
82 (Elyamany, Leicht, Herrmann, Mulert 2020), Low electrical currents used in Transcranial
83 Direct Current Stimulus (tDCS) either increase or decrease brain activity (Giordano, Bikson
84 et al., 2017).

85 Invasion of the Brain Methods include directly stimulating brain structures with electrodes
86 that are surgically inserted (Kubben 2024) include Deep Brain Stimulation (DBS) is a
87 neurosurgical procedure that involves the implantation of electrodes at specific targets within
88 the brain and the delivery of constant or intermittent electricity from an implanted battery
89 source (Lozano et al., 2019), Vagus nerve stimulation (VNS) is a form of neuromodulation
90 that utilizes a pulse generator within the chest of a patient and runs lead wires up to an
91 electrode cuff wrapped around the cervical bundle of the left vagus nerve (Thompson et al.,
92 2022).

93 Current research is focused to review the literature related to TMS and neurobiofeedback and
94 comparing their effectiveness in treating major depressive disorder.

95 Transcranial Magnetic Stimulation (TMS) is a non-surgical method of stimulating the cells
96 of the nervous system in the brain, particularly psychiatric illnesses such as MDD (George &

97 Post 2011). It was invented by Dr. Anthony Barker in 1985 at the University of Sheffield, UK
98 and initially was meant to map motor cortex excitability (Noohi, Amirsalari 2016).
99 Pharmacological and animal research has shown that rTMS affects the neural mechanisms of
100 synaptic plasticity, such as gene and protein expression changes affecting the N-methyl-D-
101 aspartate (NMDA) receptor function, which is a key component of long-term potentiation
102 (LTP) and long-term depression (LTD) (Uzair et al., 2023). The stimulus induced
103 magnetically by rTMS also impacts the direction of neural fibers within the area of the cortex
104 that is targeted. Its effects are mainly on the axons in the superficial cortical gyri and the
105 adjacent white matter, and its effectiveness is dependent on the geometry of the axon,
106 myelination, location, and physiological condition. Moreover, The Food and Drug
107 Administration (FDA) agency of the United States approved rTMS as a treatment for major
108 depression in 2008 for patients who resist medication. It was definite that rTMS had anti-
109 depressive effects with well tolerated and only minor adverse effects have been reported
110 (Peng, Zhou 2018).

111 As TMS is based on the electromagnetic induction principle, as stated in Fara-day's Law
112 (Eldaief, Press, Leone 2013). One of the most commonly used non-invasive methods for
113 stimulating neural activity within the human brain is TMS and it works by creating a
114 changing magnetic field which is strongest in the most superficial layers of the cortex,
115 especially in the crowns and lips of cortical gyri; it may also reach into the juxtacortical white
116 matter. TMS seems to influence both excitatory and inhibitory axons, especially at terminal
117 ends of the axons and at turns along the myelinated fibers. There is further excitation of local
118 neural circuits and remote brain areas through cortico-cortical and cortico-subcortical
119 connections.

120 TMS and major depression are related as TMS is a form of treatment for major depression
121 that uses magnetic pulses to stimulate underactive sections of the brain like the left

122 dorsolateral prefrontal cortex (Rizvi & Khan, 2019). TMS is aimed at brain areas linked with
123 mood control and enhances the functional connectivity between the DLPFC and limbic
124 system, such as the subgenual anterior cingulate cortex, a region that is commonly
125 hyperactive in MDD (Holma 2013).

126 Research indicates that TMS is as effective as antidepressants, with less side effect.
127 For those patients who are poorly aided by medication, TMS is a reasonable option (Perera,
128 Georg2016e). Response rates in responders to the induction course were examined at 3
129 months, 6 months or 12 months post-induction (Senova, Cotovio, Leone, Maia 2018).
130 Treatment-resistant depression has response rates of 50–60% and remission rates of 30–40%,
131 according to meta-analyses and large trials (Cuijpers, Karyotaki et al., 2021).

132 Biofeedback is a general technique that amplifies sensory feedback, allowing individuals to
133 take charge of normally physiologic functions. It is achieved through electronic sensors or
134 devices to detect these physiologic functions and giving immediate feedback in the form of
135 visual, auditory, or tactile forms (Malik, Dua 2025). By monitoring these signals, people can
136 learn to voluntarily control their body functions by way of relaxation techniques, breathing
137 exercises, or cognitive methods (Schwartz & Andrasik, 2005). One of the greatest benefits of
138 biofeedback is that it is non-invasive, being a safe, drug-
139 free treatment for many prevalent disorders (Vázquez, 2025). The only limitation
140 of biofeedback which persists is that it needs repeated sessions so that it can be effective for
141 adequate long-term benefits (Saidi, 2025). But technological advancements in the field of
142 biofeedback are increasing day by day, making it more easily accessible and to provide
143 affective results in patients suffering from neurological disorders (Bowman, 2021).

144 Neuro Biofeedback is a form of biofeedback known as neurofeedback uses brain wave
145 measurements and feedback signal presentation to teach subjects how to self-regulate their

146 brain activity (Marzbani, Marateb, Mansourian, 2016). Research also suggests that
147 neurofeedback provides aid in depression by acting as an augmentation treatment, not only
148 for depressive symptoms, but also for functional recovery, in patients with TRD (Lee et al.,
149 2019).

150 Neurofeedback has a big plus: it's safe and doesn't invade the body. But to get results
151 that last, patients need many training sessions which can be very time consuming and are
152 costly (Marzbani, Marateb, Mansourian, 2016). Although neurofeedback has proven
153 beneficial, further research across different populations is required to determine its overall
154 efficacy (Marzbani, 2016).

155 During a neurofeedback therapy session, sensors are put on the scalp in order
156 to record brainwave activity (Baculi 2020). The data is shown on a monitor in the
157 auditory/visual feedback (Marateb, 2016). When a person is doing mental exercises or
158 relaxation exercises, he/she gets feedback on his/her brain activity, enabling that person to
159 learn how to self-regulate and change his/her brainwaves into more preferable patterns
160 (Thompson & Thompson, 2003).

161 Depression is a negative affective state, ranging from unhappiness and discontent to an
162 extreme feeling of sadness, pessimism, and despondency, that interferes with daily life.
163 (American Psychiatric Association, 2018). It involves various types -

164 • Clinical depression (major depressive disorder): mood disorder characterized by
165 persistent sadness and other symptoms of a major depressive episode but without
166 accompanying episodes of mania or hypomania or mixed episodes of depressive and
167 manic or hypomanic symptoms (APA, 2023).

168

169

170

171 DSM-5-TR diagnostic criteria for a major depressive episode –

172 A) Five (or more) of the following symptoms have been present during the same two-week
173 period and represent a change from previous functioning; at least one of the symptoms is
174 either (1) depressed mood or (2) loss of interest or pleasure.

175 1) Depressed mood most of the day, nearly every day, as indicated by either subjective
176 report (eg, feels sad, empty, hopeless) or observations made by others.

177 2) Markedly diminished interest or pleasure in all, or almost all, activities most of the
178 day, nearly every day.

179 3) Significant weight loss when not dieting or weight gain.

180 4) Insomnia or hypersomnia nearly every day.

181 5) Psychomotor agitation or retardation nearly every day.

182 6) Fatigue or loss of energy nearly every day.

183 7) Feelings of worthlessness or excessive or inappropriate guilt (which may be
184 delusional) nearly every day.

185 8) Diminished ability to think or concentrate, or indecisiveness, nearly every day.

186 9) Recurrent thoughts of death, recurrent suicidal ideation without a specific plan, or a
187 suicide attempt or a specific plan for committing suicide.

188 B) The symptoms cause clinically significant distress or impairment in social, occupational,
189 or other important areas of functioning.

190 C) The episode is not attributable to the direct physiological effects of a substance or to
191 another medical condition.

192 D) The occurrence of the major depressive episode is not better explained by schizoaffective
193 disorder, schizophrenia, schizophreniform disorder, delusional disorder, or other specified
194 and unspecified schizophrenia spectrum and other psychotic disorders.

195 E) There has never been a manic or hypomanic episode.

196 The diagnostic criteria for MDD according to ICD-11 Mortality and Morbidity Statistics
197 (MMS)

198 1. The presentation is characterized by mood symptoms that share primary clinical
199 features with other depressive disorders.

200 2. The symptoms do not fulfil the diagnostic requirements for any other disorder in the
201 depressive disorders grouping.

202 3. The symptoms are not better accounted for by another mental, behavioural or
203 neurodevelopmental disorder.

204 Other types of depressive disorders are

- 205 • Persistent depressive disorder (PDD): This condition is marked by a depressed mood
206 lasting most of the day, for more days than not, over at least 2 years in adults or 1 year
207 in children and adolescents (DSM-5, 2013)

- 208 • Disruptive mood dysregulation disorder (DMDD): DMDD causes chronic, intense
209 irritability and frequent anger outbursts in children. Symptoms usually begin by the
210 age of 10 (National Institute of Mental Health, 2024).

- 211 • Premenstrual dysphoric disorder (PMDD): With PMDD, an individual
212 has premenstrual syndrome (PMS) symptoms along with mood symptoms, such as
213 extreme irritability, anxiety or depression. (National Library of Medicine, 2023).

214 Treatment Resistant Depression—as depression is a negative affective state, ranging from
215 unhappiness and discontent to an extreme feeling of sadness, pessimism, and despondency,
216 that interferes with daily life. (American Psychiatric Association, 2018). It can be caused due
217 to imbalance in parts of the brain that manage mood, thoughts, hormone levels, family history
218 (Nestler, Barrot, DiLeone, Eisch, Gold & Monteggia, 2002). Major depressive
219 disorder (MDD) is the more severe form of depression (Aadi, 2023). Treatment-resistant
220 depression is major depressive disorder in which an affected person does not respond
221 adequately to at least two different antidepressant medications at an adequate dose and for an
222 adequate duration (Gaynes 2020). TRD affects approximately 30% of individuals diagnosed
223 with major depressive disorder (MDD), making it a significant clinical challenge (McIntyre
224 et al., 2023). The exact cause of TRD is not fully understood, but it is believed to involve a
225 combination of genetic, neurobiological, and environmental factors (Draganov, 2020).

226 The most frequently implemented TRD treatments involve several combinations of
227 treatments with antidepressants, with mood stabilizers, or with atypical antipsychotics
228 (Shelton 2006). It has been shown that TMS combined with psychotherapy may be used to
229 treat depression (Wang, Luo, Schülke, Geng, Sahakian & Wang 2021). Neurofeedback, a
230 completely non-invasive method in which patients become trained to control their brain
231 activity, has revealed promising treatment in reducing depressive symptoms in TRD
232 (Chaudhary, 2025).

233 Neuro-biofeedback helps in Major Depression through Electroencephalographic (EEG)
234 biofeedback that has been studied to assess the depressive symptoms as it targets the
235 brainwave abnormalities which are commonly observed in MDD, such as increase in the
236 alpha asymmetry in the frontal cortex (Hammond, 2005). Biofeedback techniques that focus
237 on reducing the muscle tension in various areas and regulate physiological arousal have been
238 found to develop and enhance the validity of psychotherapy and medication for

239 depression (Siepmann et al., 2008). However, its efficacy largely depends on patient
240 adherence and continued practice, as improvements in depressive symptoms are more
241 profound if long term training is implemented in its practice (Botella, 2021).

242

243

244 **Researches related to Transcranial Magnetic Stimulation and Major Depressive**
245 **Disorder**

246 The meta-analysis conducted by Deng, Li, and Zhang (2023) was to investigate the
247 influence of TMS on brain function in depressed patients. In a study that used Activation
248 Likelihood Estimation (ALE), authors compared neuroimaging data from five studies out of
249 those identified through a systematic literature search until January 5, 2022. The results
250 showed that in specific regions of the brain TMS alters the activity of brain. These results
251 showed that TMS is responsible for consistent changes in the activity of the brain and can act
252 as a potential treatment for depression.

253 Roth, Hanlon, Pell, Zibman, Harmelech, Muir, MacMillan et al., (2022) to evaluate
254 how accelerated TMS designed to shorten treatment duration and speed up response as
255 compared to standard FDA-approved protocols. The study examined existing research
256 involving patients with MDD undergoing accelerated TMS, though the exact population size
257 varied across studies. They highlighted the need to determine which parameters were most
258 effective and safe using tools like neuronavigation, EEG, MRI, and e-field modeling.
259 Although accelerated TMS showed promise in delivering faster symptom relief, the review
260 concludes that more rigorous clinical trials are essential to establish optimal protocols, safety,
261 and long-term effectiveness.

262 The research conducted by Somani, Kar (2019) aimed at testing the effectiveness of
263 rTMS neuromodulation in patients having depression and not responding to standard
264 antidepressant treatments or psychotherapy. Examination of findings indicated that the
265 increase in evidence for efficacy of rTMS has grown, and with use in TRD has been approved
266 by the US Food and Drug Administration for major depressive disorder.

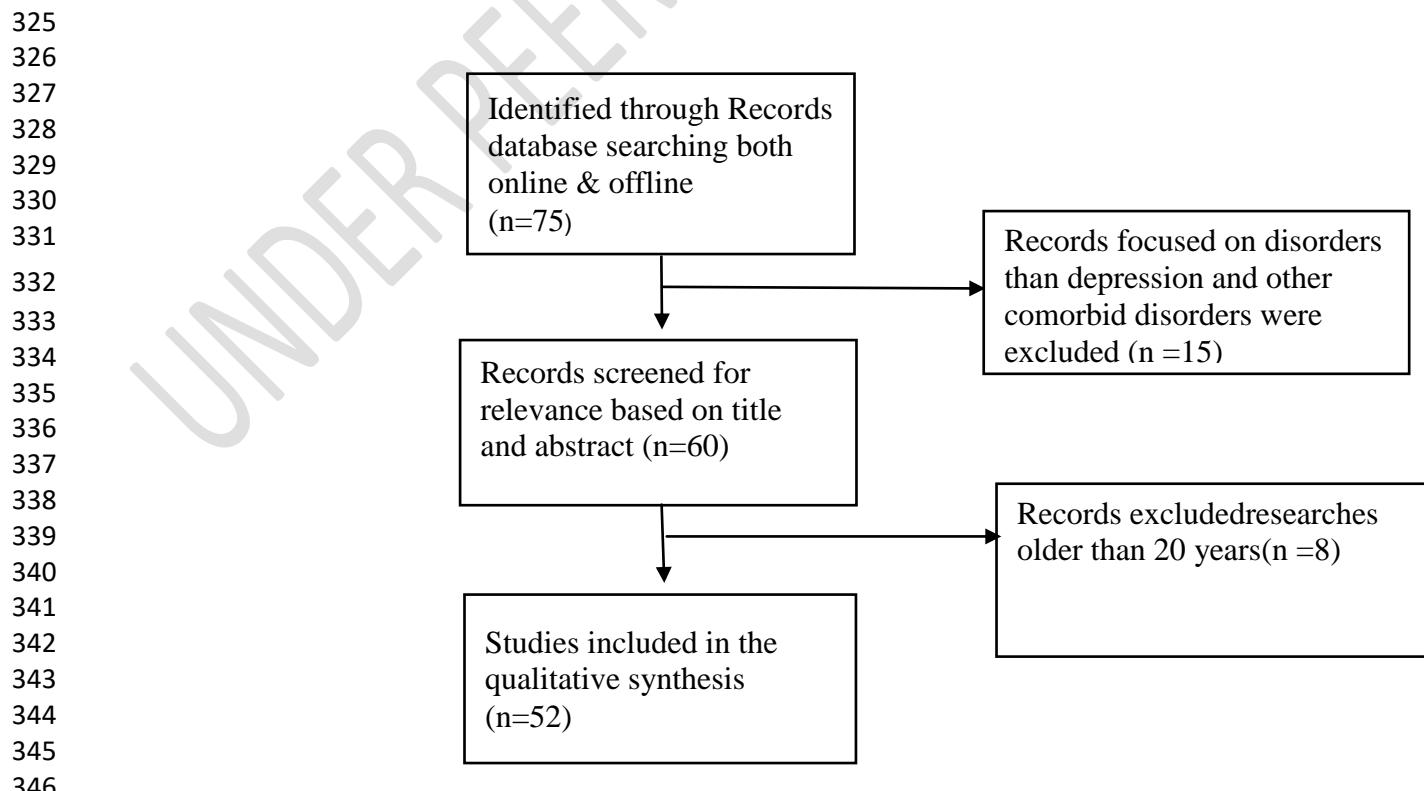
267 Janicak and Dokucu (2015), proposed a systematic review of the development and
268 how the clinical application of transcranial magnetic stimulation (TMS) is used as a treatment
269 for major depression, especially in cases where conventional therapies had proven
270 ineffective. The review evaluated efficacy, safety, and tolerability by analyzing data from
271 controlled and pragmatic clinical trials regarding the use of TMS. The outcome revealed TMS
272 to be a promising neuromodulation technique that offered a safer and better-tolerated option
273 for patients with treatment resistant depression, bridging a huge gap in the management of
274 depression by alleviating symptoms and their related complications.

275 **Researches related to Depressive disorder and Neuro biofeedback**

276 Conroy, Holtzheimer (2021) were interested in reviewing the evolution and
277 application of neuromodulation paradigms for the management of depression from a neural
278 circuit perspective. The review focused mainly on patients with major depressive disorders
279 and addressed treatment-resistant forms of depression. (TMS), (DBS), and other
280 neurostimulation therapies constituted the neuromodulation discussed in the work. In this
281 overview, the authors provide the background and current status of neuromodulation for
282 treating psychiatric illness with a specific focus on such approaches to treating depression,
283 given that this has been the principal indication for the techniques historically.

284 Lee, Lee, Seo, Koo, Kim, Cheon (2019) conducted an open-label pilot study to
285 evaluate the effects of neurofeedback as augmentation treatment for depressive symptoms

286 and functional recovery in TRD. TRD patients aged 20 years to 60 years, n=24, were
287 assigned into a neurofeedback group (n=12) and a medication-only group (n=12) for the
288 study. Neurofeedback group participants received 12-24 sessions within 12 weeks. Measures
289 of key outcome assessments for depressive symptoms and functional recovery were
290 considered by HAM-D, BDI, CGI-S EQ-5D-5L, and Sheehan Disability Scale (SDS), along
291 with evaluation of brain-derived neurotrophic factor (BDNF) levels. Significant improvement
292 was observed in the neurofeedback group, which showed greater response rate of 58.3% and
293 remission rates which were 50% as compared to the medication-only group, indicating that
294 there is significant potential and efficacy in neurofeedback as a treatment in TRD cases.


295 The objective of Zotev, Yuan, Misaki, Phillips, Young, Feldner, and Bodurka's (2016)
296 study was to investigate the relationship between BOLD activity of the amygdala and frontal
297 EEG asymmetry during (rtfMRI-nf) training with MDD patients. Twenty-four patients MDD
298 were involved in this study, with thirteen in the experimental group actually receiving real-
299 time fMRI neurofeedback targeting the left amygdala during a happy emotion induction task,
300 whereas eleven in a control group received sham feedback. The tools used were EEG-fMRI
301 combined recordings and depression severity ratings. The present study showed that rtfMRI-
302 nf applied to the amygdala enhanced EEG and BOLD signal, potentially improving emotion
303 regulation in MDD patients.

304 **Methods**

305 PRISMA research design was used to analyse researches in systematic review. This study
306 aimed to explore and compare the therapeutic effectiveness of two non-invasive brain-based
307 interventions Neuro Biofeedback and Transcranial Magnetic Stimulation (TMS) in treating
308 individuals diagnosed with depressive disorders. The methods were carried out in accordance
309 with the relevant guidelines and regulations and has been approved in the meeting of the
310 departmental research committee which looks into the ethical aspects of the research. It

311 focused on the measures how well each method reduces depressive symptoms, overall
312 satisfaction with each treatment. By comparing these two techniques, the study seeks to
313 provide insights that could guide clinicians in choosing the most effective, personalized
314 treatment for depression. For the primary research, terms related to transcranial magnetic
315 stimulation (TMS) and neurofeedback were combined with keywords associated with
316 depression to identify relevant studies. Relevant literature was collected from various
317 database including both online and offline sources. For online following data resources were
318 referred namely Google Scholar, Web of Sciences, Psych INFO, PubMed, National Library of
319 Medicine, book on Transcranial Magnetic Stimulation, book of Transcranial Magnetic
320 Stimulation (Neuromethods, 89), Introduction to Quantitative EEG and
321 Neurofeedback journal, journal of Neuro Engineering and Rehabilitation, review included
322 52 relevant researches to the of research from both national and global were included in the
323 review of literature of India as well as other countries which were analysed further.

324 **PRISMA analysis of the literature review**

Neuro feedback researches	Transcranial Magnetic Stimulatio researches	Other related researches
N=24	N=28	N=3

350 **sion**

351 Present study focused to compare the effectiveness of neuro biofeedback and
 352 transcranial magnetic stimulation (TMS) as therapeutic interventions among patients with
 353 depressive disorders. To achieve this aim three objectives were formulated and interpreted by
 354 using relevant review of literature. These objectives are discussed one by one as follows:

355 Objective one stated the effect of transcranial magnetic stimulation (TMS) on
 356 depressive disorders and studied the therapeutic outcomes of (TMS) in individuals diagnosed
 357 with depressive disorders. The study explored how TMS, a non-invasive neuromodulation
 358 technique that uses magnetic fields to stimulate nerve cells in the brain, impacted various
 359 aspects of depression and overall symptom reduction. The goal was to assess both short-term
 360 and long-term effects of TMS, evaluate patient response rates, and determine the safety and
 361 potential side effects of this intervention. This objective can be supported and discussed by
 362 Roth, Hanlon, Pell, Zibman, Harmelech, Muir, MacMillan et al (2022) in their study which
 363 evaluated the real-world safety, efficacy, and durability of various accelerated Deep
 364 Transcranial Magnetic Stimulation (TMS) protocols for treating major depressive disorder
 365 (MDD). This objective is consistent with prior researches, such as conducted by Janicak
 366 and Dokucuin 2015 which of critically reviewed the development and clinical application of
 367 transcranial magnetic stimulation (TMS) as a treatment for major depression, particularly in
 368 cases where standard therapies were insufficient and found that TMS is a promising
 369 neuromodulation technique that offers a safer and better alternative for patients with
 370 treatment-resistant depression, helping to address a significant gap in depression management
 371 by reducing symptoms and related complications.

372 Objective two stated the effect of neurofeedback therapy on depressive disorders and
373 focused on analysing the therapeutic impact of neurofeedback, to teach self-regulation of
374 brain function, in individuals suffering from depressive disorders. It also evaluated the degree
375 to which neurofeedback training helped patients develop long term coping contributing to
376 overall mental health improvement as neurofeedback is a method that assists subjects to
377 control their brain waves consciously. Above objective is supported through an open-label
378 pilot study conducted by Lee , Lee , Seo , Koo , Kim , Cheon (2019) where findings showed
379 significant improvements in the neurofeedback group, with higher response (58.3%) and
380 remission rates (50%) compared to the medication-only group, suggesting neurofeedback's
381 effectiveness in TRD. This objective can be further understood by study of Zotev, Yuan,
382 Misaki, Phillips, Young, Feldner, Bodurka (2016) where findings showed a significant
383 positive correlation between changes in frontal EEG asymmetry and depression severity, as
384 well as between EEG asymmetry and amygdala BOLD laterality. The study demonstrated
385 that rtfMRI-nf targeting the amygdala positively influenced both EEG and BOLD signals,
386 suggesting its potential to improve emotion regulation in MDD patients.

387 Objective three stated the effectiveness of neurofeedback and transcranial magnetic
388 stimulation (TMS) as therapeutic interventions in patients with depressive disorders. This
389 objective aimed to perform a comparation between the two non-invasive brain stimulation
390 techniques neurofeedback and TMS in the treatment of depressive disorders. The researches
391 showed that TMS is a more effective treatment of major depression with less side effects. A
392 2012 study published in the Journal of Clinical Psychiatry conducted by
393 Carpenter, Janicak, Aaronson, Boyadjis, Brock, Cook, Dunner found that 58% of patients
394 with treatment-resistant depression showed improvement after TMS treatment, with 37%
395 achieving full remission. Neuro feedback is more effective in a broad spectrum of depressive
396 disorders, anxiety and mood disorders.

397 **Conclusion**

398 The aim of the present study was to recalibrate the depressed brain through
399 neurofeedback and transcranial magnetic stimulation for depressive disorders. In order to
400 achieve these three objectives were devised through some researches after interpretation from
401 review of literature and analysed by Prisma method. Objective one explored the effect of
402 transcranial magnetic stimulation (TMS) on depressive disorders and its efficacy as a
403 therapeutic treatment for patients with these conditions. The objective is supported by the
404 research by Roth, Hanlon, Pell, Zibman, Harmelech, Muir, MacMillan et al. (2022), which
405 evaluated real-world safety, efficacy, and long-term effectiveness of different accelerated
406 deep TMS regimens in the management of MDD. Objective two examined the effect of
407 neurofeedback therapy on depressive disorders, with a focus on evaluating its therapeutic
408 potential in helping individuals learn to self-regulate brain function to alleviate symptoms of
409 depression. This objective is supported by Zotev et al. (2016), whose study found that
410 amygdala-targeted rtfMRI neurofeedback improved both EEG and BOLD signals, indicating
411 its potential to enhance emotion regulation in individuals with MDD. Objective
412 three addressed the efficacy of neurofeedback and transcranial magnetic stimulation (TMS)
413 as therapeutic interventions in the treatment of patients with depressive disorders. To this end,
414 a 2012 study by Carpenter, Janicak, Aaronson, Boyadjis, Brock, Cook, and
415 Dunner, appearing in the Journal of Clinical Psychiatry, stated that the percentage of
416 improvement in patients suffering from depression was 58% and the percentage of patients
417 who were able to attain full remission was 37%.

418 From this conclusion it can be observed that TMS is a promising treatment as
419 compared to neuro biofeedback as TMS offers immediate effective results within few
420 sessions in a short duration as compared to neurofeedback which require more repetitive
421 sessions. TMS is a more potential treatment for treatment resistant depression whereas

422 neurofeedback is more effective for spectrum of depressive disorders, anxiety and mood
423 regulation. So, TMS holds a stronger ground as comparison to neuro feedback for patients
424 suffering from major depression and in future more therapeutic models can be adapted as per
425 the choice of the therapist.

426

427

428

429 **Limitations and suggestions for further researches**

430 1) More researches related to the topic can be explored and added with respect to the
431 continuous advancements in the technology in this area like neuroscience and medical
432 technology, the use of TMS protocols along with the dynamic advances in treating depressive
433 disorders.

434 2) The underlying parameters such as treatment duration, cost-effectiveness can be further
435 studied through the empirical research which will help in making TMS more effective and
436 will help in further analysis and standardize techniques to determine their viability.

437 3) Investigating advanced statistical methods will enhance the reliability and validity of
438 research findings.

439 4) TMS and neurofeedback represent a relatively unexplored area, with TMS emerging since
440 the 1980s and neurofeedback since the late 1950s and '60s; more research is needed in order
441 to build a strong evidence base for these non-invasive treatments.

442

References

444 1) Deng, Y., Li, W., Zhang, B. (2023). Functional activity in the effect of transcranial
445 magnetic stimulation therapy for patients with depression: A meta-analysis. *Journal of*
446 *Personalized Medicine*, 13(3), 405. <https://doi.org/10.3390/jpm13030405>

447 2) Harmelech, T., Pell, G. S., Roth, Y., Tendler, A., Zangen, A., & Zibman, S. (2022).
448 Efficacy of deep TMS with the H1 coil for anxious depression. *Journal of Clinical*
449 *Medicine*, 11(4), 1015. <https://doi.org/10.3390/jcm11041015>

450 3) Kar, S. K., & Somani, A. (2019). Efficacy of repetitive transcranial magnetic stimulation in
451 treatment-resistant depression: The evidence thus far. *General Psychiatry*, 32(4),
452 e100074. <https://doi.org/10.1136/gpsych-2019-100074>

453 4) Janicak, P. G., & Dokucu, M. E. (2015). Transcranial magnetic stimulation for the
454 treatment of major depression. *Neuropsychiatric Disease and Treatment*, 1549–1560.
455 <https://doi.org/10.2147/NDT.S67477>

456 5) Conroy, S. K., & Holtzheimer, P. E. (2021). Neuromodulation strategies for the treatment of
457 depression. *American Journal of Psychiatry*, 178(12), 1082-
458 1088. <https://doi.org/10.1176/appi.ajp.2021.21101034>

459 6) Cheon, E. J., Kim, H. G., Koo, B. H., Lee, G. W., Lee, Y. J., & Seo, W. S. (2019).
460 Neurofeedback treatment on depressive symptoms and functional recovery in
461 treatment-resistant patients with major depressive disorder: An open-label pilot study.
462 *Journal of Korean Medical Science*, 34(42). <https://doi.org/10.3346/jkms.2019.34.e287>

463

464 7) Bodurka, J., Feldner, M. T., Misaki, M., Phillips, R., Young, K. D., Yuan, H., & Zotev, V.
465 (2016). Correlation between amygdala BOLD activity and frontal EEG asymmetry

466 during real-time fMRI neurofeedback training in patients with depression.

467 *NeuroImage: Clinical*, 11, 224–238. <https://doi.org/10.1016/j.nicl.2016.02.003>

468 8) Lew, B. J., Tirrell, E., Fukuda, A. M., Murugan, N., Perez, C., Griffith, W., & Carpenter, L.

469 L. (2025). Identifying patients with non-response for an extension of TMS treatments

470 for depression: A retrospective analysis of clinical response conversion. *Transcranial*

471 *Magnetic Stimulation*, 4, 100092. <https://doi.org/10.1016/j.transm.2025.100092>

472

473

474

475

476

477

478

479

480

481

482

483