

1 **Rare Cervical Paragangliomas: Diagnostic and Therapeutic Challenges in Three Cases**

2

3 **Introduction**

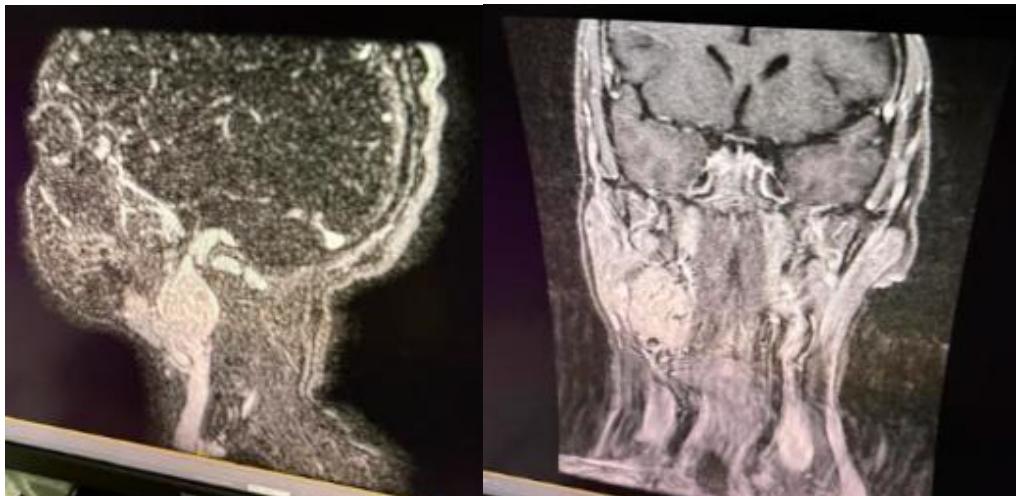
4

5 Paragangliomas are rare neuroendocrine tumors arising from extra adrenal paraganglionic
6 issue derived from neural crest cells. while they may develop anywhere from the skull base
7 to the sacrum base to the sacrum cervical paragangliomas also known as head and neck
8 paragangliomas account approximately 3% of all paragangliomas and primarily involve the
9 carotid body vagal or jugulotympanicregions (1) .These tumors are typically benignbut may
10 exhibit locally aggressive behavior. They are more frequently observed in females in 67 % of
11 cases and most commonly diagnosed between the third and seventh decade of life .(4)
12 Complete surgical resection remains the treatment of choice, however the rich vascular
13 supply and proximity to critical neurovascular supply and proximity to critical neurovascular
14 structure often render surgery high risk.Radiotherapy is a viable alternative, though its
15 efficacy varies. Accurate imaging is essential for diagnosis, and genetic analysis plays a key
16 role in patient monitoring.We present three cases involving female patients with painless
17 cervical masses. Imaging confirmed the diagnosis, and biological assessments were
18 performed. Due to tumor size and invasion, surgical intervention was deemed unsuitable,
19 leading to radiotherapy as the preferred treatment.Our study aims to provide an overview of
20 the clinical presentation diagnostic process and therapeutic strategies for cervical
21 paragangliomas through a series of three illustrative cases .

22

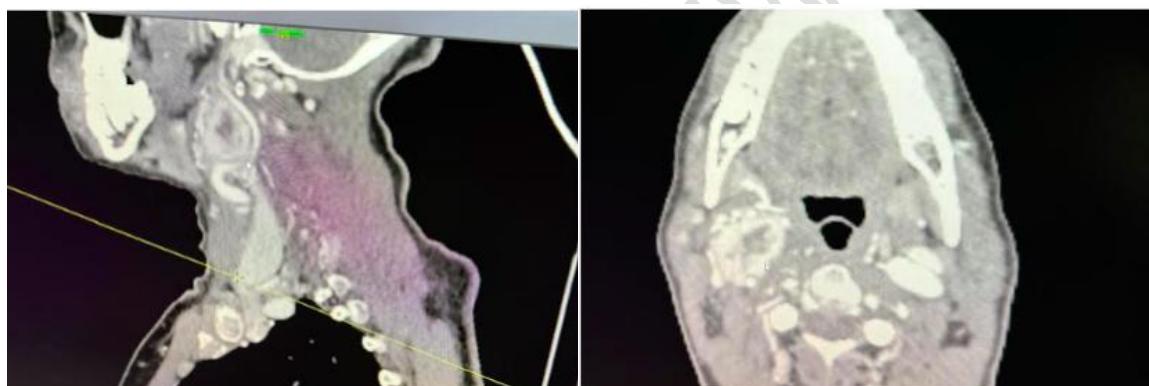
23

24 **Case report**


25

26 **Case 1**

27


28 A 42-year-old female with no comorbidities or significant family history presented with a
29 slowly growing right lateral cervical mass evolving over 8 years. A CT angiography of the
30 supraaortic trunks revealed a highly vascularized lesion at the carotid bifurcation (36 x 34 x
31 66 mm) encasing both the internal and external carotid arteries over more than 180° while
32 maintaining patency and compressing the internal jugular vein .MRI angiography revealed a
33 hyperintense lesion on T1 and T2 with homogeneous enhancement, (41x29x64mm) (Figure
34 1) consistent with a Shamblin III right carotid paraganglioma (Figure 1).Normetanephrines
35 were elevated (6.08 times normal) .Pathogenic mutation in exon 1 of the VHL gene was
36 detectedsuggesting von Hippel-Lindau disease. MIBG scintigraphy showed a soft tissue mass
37 at the carotid bifurcation (39 x29 x 43 mm) without tracer uptake suggesting a non-
38 functional paraganglioma despite biochemical secretion potentially reflecting a false
39 negative MIBG scan . Surgery was contraindicated due to tumor size and vascular
40 involvement as confirmed by multidisciplinary team consensus.The patient receives external
41 beam radiotherapy (IMRT) at 54 Gy in 27 fractions. Follow up CTAP showed tumor
42 regression (34 x 23 x 44 mm) .Plasma metanephrines and pituitary function were monitored
43 .

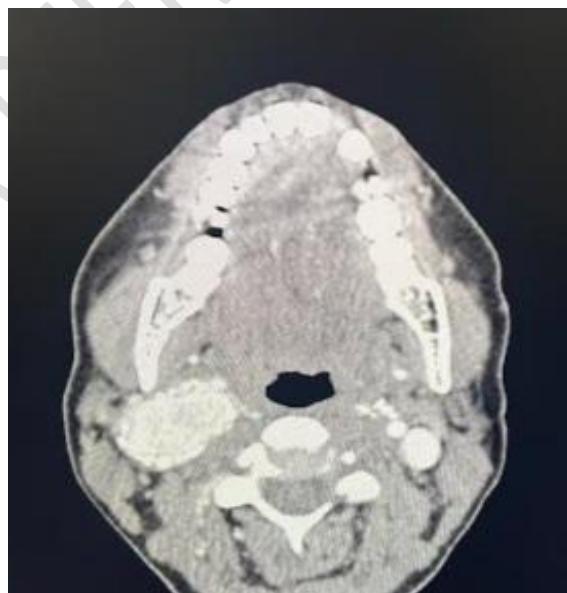
44

45
46 **a b**
47

48 **Figure 1 : sagittal (a)and axial (b) cross section from a CT angiography of the supra aortic**
49 **trunks showing the right carotid paraganglioma measuring 41x29x64 mm in diameter prior**
50 **to radiotherapy**

51
52 **a b**
53

54
55 **Figure 2 : Sagittal (a) and axial (b) cross sections from a post radiotherapy CT angiography**
56 **of the supra aortic trunks showing a reduction in the size of the right carotid**
57 **paraganglioma decreasing from 41x29 to 64 to 34x23x44 mm in diameter**


62 **Case 2**
63

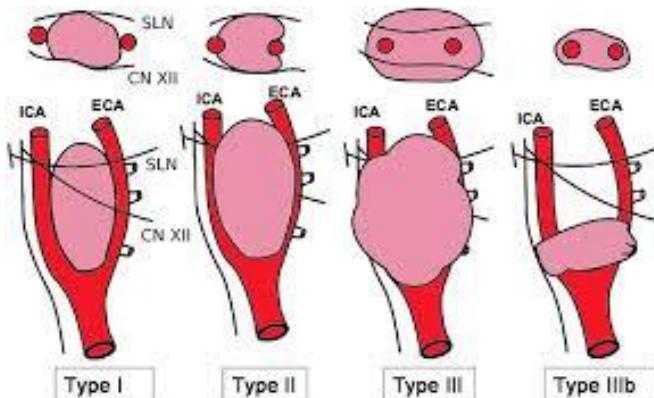
64 A 38-year-old female with no comorbidities or relevant family history presented with a left
65 lateral cervical mass progressing over 2 years. CT angiography revealed a heterogeneous
66 lesion with central necrosis and intense arterial phase enhancement($35 \times 37 \times 55$ mm)
67 encasing the common carotid artery over more than 180° with maintained patency .
68 Normetanp  hrine were considered normal. Testing for NEM, NF1, and VHL was
69 negative.SDHx was not performed due to financial constraints.MIBG scintigraphy showed
70 increased tracer uptake in the cervical region , suggesting a functioning paraganglioma . the
71 discrepancy with normal biochemical markers may indicate a biochemical false negative

72 ,possibly due to low or intermittent catecholamine secretion although rare a false positive
73 MIBG scan cannot be entirely ruled out . Surgery was ruled out due to tumor extension and
74 vascular involvement. The patient underwent IMRT with a total dose of 56 Gy in 28
75 fractions. Control imaging revealed stable disease with a size of 37 x 30 x 57 mm.
76
77

78 Case 3

79
80 A 71-year-old female with no comorbidities or significant family history presented with a
81 right lateral cervical mass evolving over 3 years. Cervical ultrasound identified a
82 hypervascular, multilobulated jugulocarotid formation (44,4 x 25,8 mm) initially suspected
83 to be a cystic lymphangioma . However subsequent MRI angiography confirmed
84 hypervascular lesion consistent with right carotid paraganglioma(35 x 38,5 x 45 mm))
85 encasing the internal and external carotid arteries and compressing the internal jugular vein
86 . CTAP revealed a mass under the mandible (44 x 37 x 60 mm)(Figure 3)with heterogeneous
87 enhancement and involvement of the thyroid larynx and internal jugular vein with loss of fat
88 planes . Plasma metanephhrines were negative while chromogranin A was elevated
89 supporting the neuroendocrine nature of the tumor but the discordance suggests a
90 biochemical false negative for catecholamine possibly due to intermittent or low level
91 secretion.Genetic testing (NEM, VHL, RET) was requested and results were pending at the
92 time of reporting.MIBG scintigraphy showed increased uptake in the right lateral cervical
93 region,confirming a functional right cervical paraganglioma despite negative plasma markers
94 suggesting a biochemical false negative or false positive imaging .Due to tumor's size and
95 anatomical extension surgery was contraindicated by multidisciplinary consensus .External
96 beam radiotherapy using IMRT was indicated and the patient is currently awaiting initiation
97 with a follow up visit scheduled for treatment planning .
98

99
100
101 **Figure 3 :Axial cross section of a contrast enhanced CT angiography showing a right carotid**
102 **paraganglioma measuring 44x37x60 mm in diameter prior to radiotherapy**
103


104 **Discussion**

105

106 Head and neck paragangliomas HNPGLs are the most frequent form of extra-adrenal
107 paragangliomas, representing approximately 70% of all cases. These tumors arise from
108 parasympathetic paraganglia and are typically non-secreting and benign. A strong female
109 predominance is reported in the literature, with a mean age around 47 years (3). Our series
110 matches this finding, as all three patients were women, although one patient was
111 notably older (77 years), likely reflecting a delayed diagnosis. HNPGLs have also been
112 associated with high-altitude residence due to chronic hypoxia, a hypothesis relevant to our
113 geographic context. While the most of HNPGLs are non-functional and benign, their genetic
114 underpinnings are crucial to understand due to a high rate of hereditary transmission. Up to
115 40% of cases involve germline mutations, primarily affecting the SDHx gene complex.
116 Mutations in SDHB are particularly associated with aggressive or metastatic disease,
117 whereas SDHD mutations are more commonly linked to benign presentations. In our study,
118 genetic testing was performed in all three patients, revealing a pathogenic VHL mutation in
119 one case. This aligns with Group 1 mutations in the current classification, involving
120 pseudohypoxic pathway activation. The identification of this mutation led to genetic
121 counseling for the patient and her family. However, SDHB immunohistochemistry and
122 extended gene panel screening were not performed, limiting our genetic characterization.
123 Clinically, cervical PGs often present as painless neck masses. All our patients presented with
124 typical symptoms, with additional pulsatility in two cases, suggestive of carotid body origin.
125 Biochemically, although only 4–5% of HNPGLs are reported to be catecholamine-secreting (3),
126 one of our patients had positive methoxy derivatives, indicating secretory activity, this
127 discrepancy may be explained by the small sample of size of our case series. Radiologically,
128 MRI angiography remains the gold standard, with characteristic “salt-and-pepper”
129 appearance and detailed vascular mapping. This was essential for diagnosis and
130 preoperative planning in our patients. Of note, one case was initially misdiagnosed as a
131 cystic lymphangioma on ultrasound, corrected by MRI. Functional imaging with ¹²³I-MIBG
132 was positive in two patients (2)(6). While MIBG has low sensitivity for non-metastatic
133 HNPGLs according to recent data, our findings suggest variable performance, possibly
134 influenced by tumor functionality or size. Surgical resection is the only curative treatment but
135 carries a significant risk of cranial nerve and vascular complications. The Shamblin
136 classification helps guide surgical risk. All three tumors in our series were Shamblin III,
137 indicating advanced disease and contributing to the challenging resections. This likely
138 reflects delayed diagnosis, with an average of five years from symptom onset to
139 treatment. Due to the high surgical risk and tumor extension, all three patients were
140 managed with intensity-modulated radiotherapy (IMRT). This technique allowed good local
141 control with minimal complications. Tumor regression was observed in one case, stability in
142 the second, and is under evaluation in the third (5). Our experience is consistent with
143 published data showing excellent local control with IMRT or stereotactic radiotherapy,
144 especially for inoperable or high-risk patients. Post-treatment surveillance requires both
145 clinical and imaging assessments. MRI is recommended every 6–12 months initially, then
146 annually. Biochemical monitoring is also important, particularly in functional tumors. In our
147 series, all patients are under regular follow-up, with no evidence of recurrence or
148 progression to date. The prognosis of HNPGLs is generally favorable in non-metastatic cases,
149 with 5-year survival exceeding 90%. However, quality of life can be significantly affected by
150 treatment-related sequelae such as dysphonia, swallowing disorders, and psychological
151 distress (1)(3). Our series illustrates several key points: the female predominance of HNPGLs,

152 the potential for secretory behavior even in classically non-functional tumors, and the
153 diagnostic challenges that can delay treatment. The identification of a VHL mutation
154 underscores the importance of genetic screening. However, the small number of cases,
155 absence of extended genetic analysis (e.g., SDHB staining), and relatively short follow-up
156 limit the generalizability of our conclusions.(4)(6)

157

158

159

160 **Figure 4 : Shamblin classification of cervical paraganglioma**

161

162 Conclusion

163 Cervical paragangliomas are rare but potentially challenging tumors due to their vascularity,
164 anatomical location, and possible hereditary background. Our case series highlights the
165 importance of early diagnosis, thorough imaging, and genetic evaluation. In high-risk or
166 inoperable cases, modern radiotherapy techniques such as IMRT offer an effective, well-
167 tolerated alternative to surgery, with promising local control. Long-term multidisciplinary
168 follow-up remains essential to monitor for recurrence, manage functional syndromes, and
169 provide appropriate genetic counseling when indicated.

170

171 Références

- 172 **1. Paragangliomas of the head and neck: a review of the latest diagnostic and**
173 **treatment methods.**Palade DO, Hainarosie R, Zamfir A, Vrinceanu D, Pertea M,
174 Tusaliu M, et al.Medicina (Kaunas). 2024 May 30;60(6):914.
175 doi:10.3390/medicina60060914. PMID: 38929531; PMCID: PMC11205799.
- 176 **2. Update from the 5th edition of the World Health Organization classification of head**
177 **and neck tumors: overview of the 2022 WHO classification of head and neck**
178 **neuroendocrine neoplasms.**Head Neck Pathol. 2022 Mar;16(1):123-142.
179 doi:10.1007/s12105-022-01435-8. PMID: 35312985; PMCID: PMC9018952.
- 180 **3. Cervical paragangliomas: experience of 114 cases in 14 years.**Basel H, Bozan
181 NOtorhinolaryngol. 2021 Mar-Apr;87(2):127-131. doi:10.1016/j.bjorl.2018.05.001.
182 Epub 2018 Jun 11. PMID: 29936213; PMCID: PMC9422744.
- 183 **4. Traitement des paragangliomes cervicaux.**Ann Fr Oto-Rhino-Laryngol Pathol
184 **Cervico-Faciale.**Makeieff M, Thariat J, Reyt E, Righini CA.Rougier G, Rochand A,
185 Bourdais R, 2012 Dec;129(6):333–339. doi:10.1016/j.aforl.2012.07.424.
- 186 **5. Long-term outcomes in head and neck paragangliomas managed with intensity-**
187 **modulated radiotherapy**Meillan N, Tankere F, Herman P, et al. 2023 Mar;133(3):607-
188 614. doi:10.1002/lary.30226. Epub 202

189