

1 **Peripartum Hysterectomy: A life-saving procedure with high maternal risk -**
2 **A retrospective observational study from a tertiary institute in central India.**

3 Abstract

4 Background: Peripartum hysterectomy (PH) is among the most challenging and life-saving
5 obstetric procedures, conducted as a last resort in catastrophic obstetric emergencies, primarily
6 involving severe postpartum hemorrhage and placenta accreta spectrum (PAS). With the
7 increasing rates of cesarean sections, the incidence of PAS-related complications and emergency
8 hysterectomy is concurrently rising. It is imperative to assess its burden, indications, and
9 outcomes to enhance obstetric care and inform preventive strategies in resource-constrained
10 settings.

11 Aim: To evaluate the incidence, clinical presentation, indications, risk factors, maternal and
12 neonatal outcomes, and associated factors among women who underwent peripartum
13 hysterectomy at a tertiary care obstetric centre of central India.

14 Materials and Methods: A retrospective observational study was conducted that included all
15 women who underwent peripartum hysterectomy at our tertiary care centre between January
16 2025 and December 2025. Demographic characteristics, obstetric history, indications for
17 hysterectomy, transfusion requirements, intraoperative findings, maternal, and neonatal outcomes
18 were analysed descriptively

19 Results: Out of 9,857 deliveries, 31 women underwent peripartum hysterectomy, giving an
20 incidence of 3.14 per 1,000 deliveries. Most cases followed cesarean delivery (83.9%). The
21 leading indication was placenta accreta spectrum (64.5%), followed by postpartum haemorrhage
22 (25.8%) and uterine rupture (9.7%). Most women were multiparous (93.5%), and 6.5% were
23 primigravidae. Antenatal presentation was documented in 87.1% of cases, while 12.9% of
24 women required intervention in the postpartum period. All patients required ICU care. Maternal
25 mortality occurred in 22.6%, while 77.4% recovered and were discharged. Perinatal outcomes
26 showed intrauterine fetal demise in 29.0%; among live-borns, 19.3% required NICU admission
27 while the remaining were stable.

28 Conclusion: Peripartum hysterectomy remains a critical, life-saving intervention predominantly
29 associated with PAS and prior cesarean section. Despite tertiary care support, maternal and
30 neonatal morbidity and mortality remain substantial. Early antenatal risk identification,
31 multidisciplinary planning, adequate blood bank support, and judicious cesarean practices are
32 vital to reduce its incidence and improve outcomes.

33 Keywords: Peripartum hysterectomy, obstetric hysterectomy, placenta accreta spectrum.

34

35 INTRODUCTION

36 Peripartum Hysterectomy (PH), or Obstetric Hysterectomy (OH), is a relatively uncommon
37 surgery that is conducted in emergencies, typically due to substantial obstetric haemorrhage. [1]
38 Emergency Peripartum hysterectomy (EPH) is defined as the surgical removal of the uterus
39 either at the time of vaginal or caesarean delivery or within 24 hours of delivery.[2] This
40 operation is performed after all other attempts to preserve the mother's life have failed, rendering
41 maternal mortality unavoidable.[3]

42 According to the World Health Organisation (WHO), PH is classified as a maternal near-miss
43 criterion used to evaluate obstetric outcomes. The worldwide incidence of PH was documented
44 as 0.9 per 1,000 deliveries. Yet, the rates may vary between nations. The incidence of
45 hysterectomy is significantly higher in low- and middle-income regions than in high-income
46 regions: 10.1 per 1000 deliveries in India, compared with 0.2 per 1000 deliveries in Northern
47 European countries.[4]

48 Postpartum haemorrhage (PPH) is one of the most common indications for hysterectomy in
49 obstetric practice and a leading cause of maternal mortality and severe morbidity. On the other
50 hand, increasing rates of cesarean delivery were associated with a higher incidence of abnormal
51 placental development (placenta accreta, increta, percreta) and subsequent hysterectomy.[4]

52 In the case of severe haemorrhage and hemodynamic instability, obstetricians often face an
53 ethical quandary, whether to perform a hysterectomy as a life-saving surgery or delay trying to
54 apply other methods. It is well known that a delay in peripartum hysterectomy leads to severe
55 morbidity or maternal death.[4]

56 Our study aims to analyse the various clinicodemographic profile of patients who underwent PH,
57 intraoperative and postoperative complications, maternal and perinatal outcomes, and any other
58 significant outcomes. The findings will provide valuable evidence to inform health care
59 planning, emergency obstetric care training, and quality improvement initiatives aimed at
60 reducing preventable maternal morbidity and mortality at our institute.

61 MATERIAL AND METHODS

62 We conducted a retrospective observational study from January 2025 to December 2025. All
63 patients who underwent PH during the aforementioned period at the Department of Obstetrics
64 and Gynecology, at a tertiary institute in central India, were included.

65 Cases were identified by reviewing hospital records, including OT records, case sheets,
66 admission registers, and labour ward registers. Every case record was subjected to detailed
67 analysis, with special attention to indications, demographic details, risk factors, delivery details,
68 indications for EPH, intraoperative complications, transfusion of blood and blood products, and
69 perinatal outcome.

70 Inclusion criteria

71 This study included all women who delivered at our institution and underwent EPH secondary to
72 severe obstetric complications or were referred from outside to our institution with severe
73 obstetric complications requiring EPH.

74 Exclusion Criteria

75 The hysterectomies performed for gynecological reasons and referral cases of women who
76 underwent PH in another hospital were excluded

77 RESULTS

78 During the study period, 9,857 deliveries were conducted at the institute, including 4,953
79 caesarean sections (50.2%) and 4,904 vaginal deliveries (49.8%). A total of 31 peripartum
80 hysterectomies (PH) were performed, giving an overall incidence of 0.314% (3.14 per 1,000
81 deliveries). Of these, 25 PH followed caesarean deliveries performed at the study centre (one
82 elective and 24 emergency procedures), four followed vaginal deliveries, and one case was
83 referred after a caesarean section performed elsewhere for uncontrolled postpartum
84 haemorrhage. Excluding the referred case, the incidence of PH was significantly higher
85 following caesarean delivery (0.50%, 5.0 per 1,000 caesarean sections) compared with vaginal
86 delivery (0.08%, 0.8 per 1,000 vaginal births) ($\chi^2 = 14.6$, $p < 0.001$), with a six-fold increased
87 risk associated with caesarean section.

88 The majority of women undergoing PH were aged 25–29 years (41.9%), were multiparous
89 (93.5%), and were booked elsewhere or referred (93.5%). 51.6% undergoing PH had a previous
90 caesarean section, predominantly with a history of one prior caesarean delivery. Placenta accreta
91 spectrum was the most common indication for PH (64.5%), followed by postpartum
92 haemorrhage (25.8%) and uterine rupture (9.7%); only two cases of PAS were diagnosed
93 antenatally, while the remainder were identified intraoperatively. 100% of patients required a
94 blood transfusion, and the majority also required blood products, including platelets and fresh-
95 frozen plasma. 58% patients necessitated 3-4 units of blood to achieve hemodynamic stability.
96 Maternal survival was achieved in 77.4% of cases, while maternal mortality occurred in 22.6%.
97 The primary cause of death was hemorrhagic shock with disseminated intravascular coagulation
98 and multiple organ dysfunction syndrome contributing to mortality. Neonatal outcomes were
99 poor, with 29% intrauterine fetal demise, frequent prematurity and low birth weight, and 27.3%
100 of live-born neonates requiring NICU admission.

101 Discussion

102 The incidence of peripartum hysterectomy (PH) in the present study was 3.14 per 1,000
103 deliveries, which is comparable to rates reported from tertiary referral centres in India but higher
104 than those reported from high-income countries. Tertiary care facilities in central and northern
105 India have described PH rates ranging from approximately 2.7 to 3.5 per 1,000 deliveries.[5,6]
106 Knight et al. highlighted that PH remains a marker of severe maternal morbidity and is

107 disproportionately concentrated in referral centres managing high-risk pregnancies and obstetric
108 emergencies.[4] The higher incidence observed in the present study likely reflects the tertiary
109 care setting, high referral load, and delayed presentation of complicated obstetric cases.
110 A statistically significant association was demonstrated between caesarean delivery and PH, with
111 a six-fold increased risk compared with vaginal delivery. Similar findings have been reported by
112 Machado et al, who identified caesarean section as one of the strongest risk factors for
113 emergency peripartum hysterectomy.[7] The relationship between caesarean delivery and severe
114 obstetric morbidity becomes more pronounced with increasing numbers of repeat caesarean
115 sections, as demonstrated by Silver et al., who reported a progressive rise in abnormal
116 placentation and hysterectomy rates with each additional caesarean delivery.[8] In the present
117 study, more than half of the women undergoing PH had a history of previous caesarean section,
118 reinforcing this association.

119 Placenta accreta spectrum (PAS) was the leading indication for PH (64.5%), representing a clear
120 shift in the etiological profile of obstetric hysterectomy. This finding is consistent with the
121 systematic review and meta-analysis by Jauniaux et al., which documented a global rise in PAS
122 prevalence parallel to increasing caesarean section rates.[9] Indian studies, including those by
123 Kaur and Kaur, similarly report PAS as the predominant indication for PH in recent years,
124 replacing uterine atony and rupture as the most common causes. [10] Despite this, antenatal
125 diagnosis of PAS remains suboptimal in low- and middle-income settings. In the present study,
126 only two cases were diagnosed antenatally, highlighting gaps in risk stratification and imaging
127 protocols. The American College of Obstetricians and Gynaecologists (ACOG) emphasises that
128 antenatal diagnosis and planned delivery in a multidisciplinary setting are critical for improving
129 maternal outcomes in PAS.[11]

130 Postpartum haemorrhage without accreta accounted for approximately one-quarter of PH cases.
131 Uterine atony was the predominant cause in 87.5%, while traumatic PPH accounted for
132 12.5%.Placenta previa was present in 55% of patients with PAS. A systemic review and meta-
133 analysis by Jauniaux E et al. also reported a significantly elevated incidence of PAS in women
134 with placenta previa (around 11.1% in previa pregnancies), clearly demonstrating the
135 epidemiological link between these conditions.[12] Although contemporary guidelines advocate
136 stepwise, uterus-preserving interventions for PPH, Sentilhes et al. and Rani and Begum
137 underscore that hysterectomy remains a life-saving procedure when conservative measures fail

138 or when bleeding is torrential and unresponsive. [13,14] The persistence of PPH as a significant
139 indication for PH in the present study likely reflects late presentation, limited time for escalation,
140 and the severity of haemorrhage at the time of intervention, as 16.1% patients presented in shock
141 at the time of admission, emphasising the importance of timely referral.

142 Maternal mortality in the present series was 22.6%, which is considerably higher than rates
143 reported from developed countries but comparable to those documented in other low-resource
144 tertiary referral settings in a 7-year retrospective review by Desalegn H et al., which reported a
145 maternal mortality rate of 23.5% among women undergoing peripartum hysterectomy.[15] In our
146 study, out of seven patients who succumbed to mortality, two deaths occurred within 24 hours
147 due to hemorrhagic shock, while five deaths occurred beyond 24 hours of surgery. Wright et al.
148 demonstrated that PH is linked to significant morbidity and mortality, especially when addressed
149 as an emergency in haemodynamically unstable patients.[16] Similarly, Onwudiegwu and
150 Okonofua documented high maternal mortality subsequent to emergency PH in Nigeria,
151 attributing adverse outcomes to delayed referral, massive blood loss, and limited critical care
152 resources.[17] The Global Maternal Near-Miss Network further emphasises that severe maternal
153 morbidity and mortality remain concentrated in settings where access to timely, high-quality
154 obstetric care is uneven.[18]

155 Neonatal outcomes in the present study were also poor; however, this appeared to be primarily
156 related to the underlying obstetric indications necessitating PH rather than to the procedure itself.
157 The proportion of intrauterine fetal demise, prematurity, and low birth weight was high. These
158 findings are consistent with those of Machado and Kaur et al., who reported adverse perinatal
159 outcomes associated with PH, largely due to placental pathology, preterm delivery, and maternal
160 hemodynamic instability.[7,10]

161

162 The outcomes of this study highlight the changing epidemiology of peripartum hysterectomy,
163 with placenta accreta spectrum and caesarean delivery identified as primary factors. Enhancing
164 antenatal identification of placenta accreta spectrum, optimising caesarean section practices,
165 facilitating prompt referrals, and executing multidisciplinary management protocols are critical
166 measures to mitigate maternal and neonatal morbidity and mortality linked to peripartum
167 hysterectomy.

168

169 CONCLUSION:

170

171 EPH remains a formidable procedure with high maternal (22.6%) and neonatal (29%) mortality.

172 To improve outcomes in 2026, efforts must focus on:

173 • Rationalising primary Caesarean sections.

174 • Improving antenatal ultrasound diagnosis of PAS.

175 • Ensuring rapid access to large volumes of blood and blood products in tertiary units.

176

177 REFERENCES

178

- 179 1. Kumar HA, Naik M, Fatima SA. Emergency Peripartum Hysterectomy (EPH): A
180 Retrospective Study of Indications, Maternal and Perinatal Outcome in a Tertiary Care
181 Hospital. J South Asian Feder Obs Gynae. 2024;16(4):393-6.
- 182 2. Rossi AC, Lee RH, Chmait RH. Emergency peripartum hysterectomy for abnormal
183 placental implantation: a systematic review and meta-analysis. Arch Gynecol Obstet.
184 2010;281(4):569-76.
- 185 3. Knight M, Tuffnell D, Kenyon S, Shakespeare J, Grey R, Kurinczuk JJ, editors. Saving
186 Lives, Improving Mothers' Care - Lessons learned to inform maternity care from the UK
187 Maternal Neonatal and Infant Clinical Outcome Review Programme. Oxford: National
188 Perinatal Epidemiology Unit, University of Oxford; 2023.
- 189 4. Say L, Chou D, Gemmill A, Tunçalp Ö, Moller AB, Daniels J, et al. Global causes of
190 maternal death: a WHO systematic analysis. Lancet Glob Health. 2014;2(6):e323-33.
191 (Note: Data updated in the WHO Maternal Near-Miss Case Identification Strategy).
- 192 5. Gadre S, Chaudhary G. Audit of peripartum hysterectomies at an indian tertiary care
193 centre:a 12-year review.Int J Reprod contracept obstet gynecol.2023;12(5):1438-1443.

194 6. Rizvi MS, Shah ZU, Farooq S. Peripartum hysterectomy: prospective observational study
195 in a tertiary care centre of north india. *Int J Reprod Contracept obstet*
196 *Gynecol.*2024;13(2):339-343.

197 7. Machado LS. Emergency peripartum hysterectomy: Incidence, indications, risk factors
198 and outcome. *North Am J Med Sci.* 2011;3(8):358-61.

199 8. Silver RM, Landon MB, Rouse DJ, Leveno KJ, Spong CY, Thom EA, et al. Maternal
200 morbidity associated with multiple repeat cesarean deliveries. *Obstet Gynecol.*
201 2006;107(6):1226-32.

202 9. Jauniaux E, Bhide A. Prenatal ultrasound diagnosis and outcome of placenta previa
203 accreta after cesarean delivery: a systemic review and meta-analysis. *Am J obstet
204 Gynecol.* 2017;217(1):27-36.

205 10. Kaur J, Kaur K. Emergency peripartum hysterectomy: A 5-year study in a tertiary care
206 hospital of north India. *Indian J Health Sci Care.* 2023;10(1):45-50.

207 11. American College of Obstetricians and Gynaecologists (ACOG). *Obstetric Care
208 Consensus No. 7: Placenta Accreta Spectrum.* *Obstet Gynecol.* 2018 (Reaffirmed
209 2024);132:e259-75.

210 12. Jauniaux E, Gronbeck L, Bunce C, Langhoff-Roos J, Collins SL. Epidemiology of
211 placenta previa accreta: a systemic review and meta-analysis. *BMJ
212 open.*2019;9(11):e031193.

213 13. Sentilhes L, Vayssi  re C, Deneux-Tharaux C, Aya AG, Bayoumeu F, Bonnet MP, et al.
214 Postpartum haemorrhage: guidelines for clinical practice from the French College of
215 Gynaecologists and Obstetricians (CNGOF). *Eur J ObstetGynecolReprod Biol.*
216 2016;198:12-21.

217 14. Rani PR, Begum J. Recent Trends in the Management of Postpartum Haemorrhage. *J
218 ObstetGynaecol India.* 2024;74(1):12-21.

219 15. Desalegn H, Geta A, Nane D. Peripartum hysterectomy: prevalence, indications, maternal
220 outcomes, and associated factors in a 7-year retrospective review at Wolaita Sodo

221 University Comprehensive Specialized Hospital, Southern Ethiopia. BMC Pregnancy
 222 Childbirth. 2025;25(1):489.

223 16. Wright JD, Devine P, Shah M, Gaddipati S, Lewin SN, Simpson LL, et al. Morbidity and
 224 mortality of peripartum hysterectomy. Obstet Gynecol. 2010;115(6):1187-93.

225 17. Onwudiegwu C, Okonofua FE. Emergency peripartum hysterectomy in a tertiary care
 226 centre in Nigeria: A 10-year review. J ObstetGynaecol. 2023;43(1):216-22.

227 18. Global Maternal Near-Miss Network. Trends in maternal mortality and severe morbidity:
 228 2025 global report. Lancet Glob Health. 2025;13(2):e112-24.

229

230 **Table 1: Demographic characteristics**

S.No.	Variables	Range	Number of Patients(n=31)	Percentage (%)
1	Maternal Age (years)	20-24 25-29 30-34 35-39 40-44	04 13 11 02 01	12.9 41.9 35.4 6.45 3.2
2	Parity	1 2 3 4 5	02 13 09 06 01	6.45 41.9 29 19.3 3.2
3	Booking status	Booked locally Booked elsewhere/referred	02 29	6.5 93.5
4.	Previous caesarean section	1 previous LSCS	09	29
		2 previous LSCS	06	19.4

		3 previous LSCS	01	3.2
5.	Gestational age(weeks)	<28 weeks	04	12.9%
		28–31+6 weeks	04	12.9%
		32–33+6 weeks	03	9.7%
		34–36+6 weeks	09	29%
		37–41+6 weeks	05	16.1%
		>42 weeks	01	3.2%

Table 2: Intraoperative and postoperative Data

S. No.	Variable	Range	Frequency	Percentage (%)
1.	Mode of Delivery	Caesarean Section	27	87.1
		Vaginal Delivery	04	12.9
2.	PlacentaPrevia	Yes	11	35.4
		No	20	64.5
	Abruption	Yes	02	6.4
		No	29	93.5
	Uterinerupture	Yes	03	9.6
		No	28	90.3
3.	Blood Transfusion (units)	1-2	09	29
		3-4	18	58
		>4	04	12.9
4.	Neonatal outcome	Intrauterine demise	09	29
		Live birth	22	71
		NICU admission	06	19.3
		Mother side	16	51.6
5.	Maternal outcome	Discharge	24	77.4
		Death	07	22.6

UNDER PEER REVIEW IN IJAR