

ISSN NO. 2320-5407

ISSN(O): 2320-5407 | ISSN(P): 3107-4928

International Journal of Advanced Research

Publisher's Name: Jana Publication and Research LLP

www.journalijar.com

REVIEWER'S REPORT

Manuscript No.: **IJAR-55880**

Title: : *Development of a Mobile Solar Air Cooler with a Clay-Based Cool Water Reservoir*

Recommendation:

Accept after major revision.....

Rating	Excel.	Good	Fair	Poor
Originality		✓		
Techn. Quality			✓	
Clarity			✓	
Significance		✓		

Reviewer Name: Dr.K.ARUMUGANAINAR

Date: 24.01.2026

Detailed Reviewer's Report

Review Report

Title: *Development of a Mobile Solar Air Cooler with a Clay-Based Cool Water Reservoir*

1. Summary of the Work

The manuscript presents the **design**, **SolidWorks-based simulation**, and **experimental validation** of a **mobile solar-powered evaporative air cooler** using **porous clay** as the primary cooling medium. The system integrates:

- **A clay water reservoir** for evaporative cooling
- **A misting system**
- **A solar PV panel + battery + fan** for autonomous operation

The goal is to provide a **low-cost, energy-independent cooling solution** for hot regions with limited electricity access. The prototype reportedly achieved a **temperature reduction of ~4–5 °C** (from ~29–30 °C to ~25 °C) with **two-day autonomy**, and total system cost \approx **98,500 FCFA**. Numerical simulations show temperature gradients and airflow patterns supporting evaporative heat transfer through porous clay.

2. Overall Assessment

The topic is **highly relevant** to:

- Sustainable cooling
- Climate adaptation in developing regions
- Low-energy building technologies

The integration of **local clay materials + solar PV + mobility** is socially and environmentally meaningful. However, while the concept is promising, the manuscript in its current form requires **major revision** before being suitable for publication due to methodological gaps, unclear modeling assumptions, and limited experimental rigor.

3. Strengths

3.1 Practical Relevance

The study addresses **real-world thermal comfort challenges** in hot climates with unreliable grid power. The focus on **local materials (clay)** enhances affordability and sustainability.

3.2 System Integration

Good attempt at combining:

- Porous media cooling
- Solar energy system sizing
- CFD-style thermal simulation
- Prototype fabrication

This multidisciplinary approach is commendable.

3.3 Cost Consideration

Including a **cost breakdown** is valuable for applied engineering research and demonstrates socio-economic feasibility.

3.4 Seasonal Performance Discussion

The authors correctly acknowledge **humidity limitations** of evaporative cooling, showing awareness of climatic dependency.

4. Major Technical Concerns

4.1 Inconsistency Between Simulation and Experiment

- Simulation predicts **air ~24 °C**, but experiments stagnate at **25 °C**.
- The explanation (“T-shaped geometry”) is speculative and not validated experimentally.
- No error analysis or uncertainty quantification is provided.

Authors must provide:

- Sensor accuracy
 - Measurement intervals
 - Repeatability of tests
 - Statistical treatment of results
-

4.2 Insufficient Description of Thermal Modeling

The paper states “**multi-physics modelling**” in SolidWorks but does not describe:

- Boundary conditions
- Turbulence model
- Evaporation modeling approach
- Mesh size / grid independence
- Material property assumptions

Without these, the simulation cannot be reproduced or scientifically evaluated.

4.3 Cooling Load Calculation is Oversimplified

Heat load only considers:

- Lamp (16 W)
- Computer (250 W)
- Occupant (67 W)

Missing critical loads:

- Solar heat gains through walls/windows
- Infiltration
- Heat from building envelope
- Latent loads

This leads to **underestimated cooling requirement**.

4.4 Psychrometric Analysis Missing

Evaporative cooling performance depends on:

- Wet-bulb temperature
- Humidity ratio
- Enthalpy change

No psychrometric chart or humidity ratio calculations are presented, which is a major omission for evaporative cooling research.

4.5 Energy System Sizing Issues

Solar radiation value is written as **5 Wh/m²/day**, which is incorrect (likely meant 5 kWh/m²/day). This must be corrected.

Battery autonomy claim (2 days) lacks:

- Depth of discharge assumption
- Efficiency losses
- Actual measured energy consumption profile

4.6 Experimental Methodology Weak

- No airflow rate measurement
- No water consumption measurement validation
- No humidity change measurement in room
- No long-term durability testing

The prototype testing is **qualitative rather than rigorous**.

5. Minor Issues

Issue	Comment
Language	Frequent grammatical errors and formatting inconsistencies
Units	Mixed SI notation (e.g., W _p , W _h , W _c)
Figures	Many figures are low resolution or not referenced properly
Table numbering	Two “Table 2” appear
Section title	“Heat balance in the cooking stove” is incorrect
References	Some DOIs malformed; reference formatting inconsistent

6. Scientific Contribution

Novelty: Moderate

Clay evaporative cooling is known, but **mobility + PV integration** adds applied value.

Technical depth: Currently insufficient for high-impact journal; suitable for applied engineering journal after revision.

7. Recommendations for Improvement

The authors should:

1. Add full CFD modeling details
 2. Include psychrometric analysis
 3. Perform multiple experimental trials
 4. Measure airflow, humidity, and water consumption
 5. Provide uncertainty/error analysis
 6. Correct solar energy calculations
 7. Improve English and formatting
 8. Compare results with theoretical evaporative cooling limits
-

8. Final Recommendation

Decision: MAJOR REVISION REQUIRED

The work has **strong practical potential**, but scientific rigor must be significantly improved before publication.