

1
2
3

4 **Peri-Implantitis Management: Current Therapies and Future Perspectives**

5 **Abstract**

6 Peri-implantitis is a biofilm-associated inflammatory disease characterized by progressive peri-
7 implant bone loss and represents a growing clinical concern as dental implant therapy becomes
8 increasingly prevalent. Despite high implant survival rates, peri-implantitis affects a substantial
9 proportion of implant patients and is associated with complex interactions between microbial
10 biofilms, host immune responses, implant surface characteristics, and patient-related risk
11 factors. This review provides a comprehensive overview of the etiology, diagnosis, and
12 contemporary management strategies for peri-implantitis. Conventional non-surgical therapies,
13 including mechanical debridement and adjunctive antimicrobial approaches, remain first-line
14 interventions but demonstrate limited effectiveness in moderate to advanced disease due to
15 restricted access to contaminated implant surfaces. Surgical therapies, encompassing resective
16 and reconstructive approaches, offer improved infection control and pocket reduction, although
17 long-term predictability remains variable. Regenerative strategies, particularly guided bone
18 regeneration combined with bone grafts and biologic modifiers such as recombinant human
19 platelet-derived growth factor-BB and enamel matrix derivative, show promise in contained
20 defect morphologies but remain technique-sensitive. Emerging adjunctive strategies, including
21 advanced biomaterials, implant surface engineering, probiotics, and host-modulation therapies,
22 aim to enhance antimicrobial efficacy, modulate inflammation, and promote peri-implant tissue
23 regeneration. Current evidence highlights the absence of a universally predictable treatment
24 protocol and underscores the importance of early diagnosis, defect-specific therapy, and
25 structured supportive maintenance. Future advances in biologically responsive implant surfaces,
26 host-modulatory interventions, and personalized treatment planning are expected to improve
27 long-term peri-implant health and implant survival.

28 **Keywords**

29 Peri-implantitis; Peri-implant disease; Implant surface decontamination; Non-surgical therapy;
30 Surgical therapy; Guided bone regeneration; Bone grafts; rhPDGF-BB; Enamel matrix
31 derivative; Biomaterials; Implant surface engineering; Host modulation; Probiotics; Supportive
32 periodontal therapy

33 **Introduction and Disease Overview**

34 Dental implants have achieved remarkable success rates; however, the increasing prevalence
35 of peri-implant complications presents a significant clinical challenge.¹ Peri-implantitis affects
36 approximately 22% of patients within a decade of implant placement, with prevalence rates
37 continuing to rise as implant procedures increase.²

38 Inflammatory diseases around dental implants comprise two distinct entities with differing
39 prognoses.³ Peri-implant disease concepts and classifications have been revisited and refined
40 over time to improve diagnostic clarity and clinical decision-making.⁴ Peri-implant mucositis is a

41 reversible inflammatory condition limited to peri-implant soft tissues, whereas peri-implantitis is
42 an irreversible disease characterized by inflammation with progressive loss of supporting bone.
43 Clinically, peri-implantitis presents with bleeding or suppuration on probing, increased probing
44 depths, and radiographic evidence of bone loss. Diagnosis is based on clinical and radiographic
45 assessment, with emerging protocols incorporating biomarker analysis and advanced three-
46 dimensional imaging modalities.²

47 The pathogenesis of peri-implantitis is multifactorial, involving complex interactions between
48 microbial biofilms, host immune responses, and patient-related risk factors.⁴ Established risk
49 determinants include poor plaque control, smoking, prior periodontal disease, implant surface
50 characteristics, residual cement, and systemic conditions such as diabetes mellitus.⁵ Evidence
51 consistently indicates increased disease susceptibility among patients with a history of
52 periodontitis, inadequate biofilm control, and limited adherence to supportive maintenance care.

53 Treatment approaches typically follow a sequential protocol beginning with non-surgical
54 interventions. Non-surgical therapy includes mechanical debridement, antiseptic therapy, and
55 antibiotics; however, mechanical debridement alone may fail to eliminate causative bacteria and
56 should be combined with adjunctive treatment modalities.⁵ Despite these measures, non-
57 surgical therapy demonstrates limited efficacy, particularly in moderate to severe cases, due to
58 restricted access to contaminated implant surfaces.⁶

59 When non-surgical approaches fail, surgical intervention becomes necessary, with treatment
60 strategies broadly categorized as resective therapy, reconstructive therapy, or combined
61 approaches.⁷ Surgical interventions include resective procedures for pocket elimination and
62 regenerative techniques aimed at restoring lost bone, although current evidence suggests that
63 regenerative approaches remain unpredictable.⁵

64 Future perspectives in peri-implantitis management focus on emerging technologies and
65 innovative therapeutic strategies designed to overcome current treatment limitations. Promising
66 developments include antibacterial implant surface coatings, photodynamic therapy, and
67 artificial intelligence-assisted diagnostic systems with the potential to enhance clinical
68 outcomes.² Advanced diagnostic modalities incorporating matrix metalloproteinase-8 biomarker
69 assays, microbial polymerase chain reaction analysis, and sophisticated imaging techniques are
70 expected to improve early disease detection and treatment planning.² Ongoing research
71 explores novel surface decontamination methods, host-modulation strategies, and regenerative
72 approaches using biologics and growth factors to achieve more predictable outcomes.⁷

73 This review aims to synthesize current evidence on peri-implantitis management strategies,
74 evaluate the effectiveness of contemporary treatment modalities, identify gaps in existing
75 therapeutic approaches, and discuss future directions to support evidence-based clinical
76 decision-making. Long-term implant success depends on structured maintenance protocols,
77 including three-month recall visits, professional biofilm control, and radiographic surveillance,
78 while future advances may revolutionize both preventive and therapeutic strategies.²
79

80 **Conventional Non-Surgical and Surgical Therapies for Peri-Implantitis**

81 The management of peri-implantitis focuses on disrupting microbial biofilm on implant surfaces
82 while achieving shallow peri-implant pockets (≤ 5 mm) that can be effectively maintained during

83 long-term care. Depending on the severity and extent of peri-implant tissue destruction,
84 treatment may be undertaken using either non-surgical or surgical approaches.^{10,11,12}

85 **Conventional Non-Surgical Therapy:**

86 Conventional non-surgical therapy aims to control peri-implant infection by removing subgingival
87 biofilm through mechanical debridement of peri-implant pockets, in combination with appropriate
88 oral hygiene measures to reduce inflammation. Implant surface decontamination during non-
89 surgical therapy typically involves a combination of mechanical, chemical, and adjunctive
90 modalities.¹⁰

- 91 • **Mechanical debridement:** Using titanium instruments, ultrasonic scalers with non-
92 metallic tips, or air-abrasive systems employing glycine or erythritol powders.
- 93 • **Chemical debridement:** Using antimicrobial agents such as chlorhexidine or hydrogen
94 peroxide.
- 95 • **Adjunctive therapies:** Laser treatment or antimicrobial photodynamic therapy to
96 enhance surface decontamination, particularly in the presence of complex implant
97 surface topography.¹⁰

98 Clinical studies have demonstrated improvements in probing depth reduction, bleeding on
99 probing, and implant surface cleanliness when antimicrobial photodynamic therapy combined
100 with hydrogen peroxide (OHLLT) is used as an adjunct to conventional non-surgical
101 treatment.^{12,13} This approach provides an antimicrobial effect while preserving the integrity of the
102 implant surface.¹² Laser therapy may further support mechanical debridement by aiding in the
103 decontamination of both implant surfaces and inflamed peri-implant tissues.¹⁴

104 Although adjunctive systemic or local antibiotics may be used to reduce pathogenic
105 microorganisms; however, their effect on clinical parameters such as bleeding on probing and
106 peri-implant pocket depths remains limited in patients with deeper peri-implant pockets. The
107 major limitation of non-surgical therapy is restricted access to the apical portion of the peri-
108 implant pocket, which can hinder complete biofilm disruption. Consequently, implants presenting
109 with deep pockets or complex surface characteristics often require surgical intervention to
110 achieve effective decontamination.^{9,10} Current EFP clinical guidelines emphasize the importance
111 of initiating treatment with non-surgical interventions to improve peri-implant soft tissue health
112 before surgical options are considered.¹⁰

113 Multiple investigations have assessed a wide range of mechanical, chemical, and adjunctive
114 decontamination strategies, reporting variable levels of success in achieving complete biofilm
115 removal, and to date, no single gold-standard method has been established.¹⁶ Nevertheless,
116 favorable outcomes following non-regenerative surgical procedures have been reported,
117 including reductions in probing depth, absence of bleeding on probing or suppuration, and
118 stability of peri-implant bone levels in a substantial proportion of implants and patients receiving
119 regular supportive periodontal therapy.¹³

120 Early identification of peri-implantitis significantly influences the success of non-surgical therapy.
121 Chang et al. reported higher success rates of non-surgical treatment when peri-implantitis is
122 detected at an early stage. Similarly, Schwarz et al. suggested that non-surgical therapy is more
123 predictable when marginal bone loss is limited to less than 2mm, whereas surgical
124 approaches—such as access flap surgery or apically positioned flaps—are more appropriate
125 when bone loss exceeds this threshold. Timely detection may therefore reduce the need for
126 more invasive surgical interventions.¹²

127

128 **Surgical Therapy:**

129 Surgical therapy allows direct access to the base of the peri-implant pocket, typically through
130 open flap debridement or access flap procedures. Alongside mechanical debridement, the use
131 of laser treatment as an adjunct provides several benefits, including antibacterial and anti-
132 inflammatory effects, reduction of postoperative pain and discomfort, and acceleration of wound
133 healing through stimulation of fibroblasts.¹¹

134 **Access Flap Debridement with Resective Procedures:**

- 135 • **Implantoplasty:** Refers to the mechanical reshaping of exposed implant parts through
136 removal of threads and surface roughness to reduce plaque retention and lowers the risk
137 of reinfection.¹³
- 138 • **Osteoplasty/Osteotomy:** Involves the removal or recontouring of peri-implant bone to
139 facilitate access for plaque control and reduce biofilm accumulation.¹⁷
- 140 • **Apically Repositioned Flap:** Often performed in conjunction with
141 osteoplasty/osteotomy to reduce peri-implant pocket depths, improving long-term
142 cleansability and plaque control.¹⁷

143 Systematic reviews indicate that conventional non-regenerative surgical procedures can
144 effectively reduce peri-implant inflammation in the short term; however, long-term predictability
145 remains variable. Implantoplasty performed as part of non-regenerative surgical therapy has
146 been associated with significant reduction in bleeding on probing and probing depth, with
147 improvements in clinical and radiographic outcomes maintained for up to three years compared
148 with mechanical debridement alone. In contrast, the adjunctive use of systemic antibiotics,
149 chemical agents, or diode laser therapy has not demonstrated consistent long-term clinical or
150 radiographic benefits.¹⁷

151 **Long-Term Outcomes:**

152 Long-term follow-up studies have demonstrated favorable clinical and radiographic outcomes
153 following access flap debridement combined with osseous recontouring, with reported stability
154 extending up to 11 years. Treatment outcomes appear to be influenced by implant surface
155 characteristics, with turned (smooth) surfaces demonstrating more favorable responses
156 compared with roughened surfaces. Evidence suggests that implantoplasty does not exhibit
157 clear superiority over glycine air-polishing. Moreover, implantoplasty poses concerns regarding

158 residual titanium particles in peri-implant tissues, and caution is advised when performing this
159 procedure on narrow-diameter implants.¹⁰ However, adjunctive laser therapy helps to remove
160 residual titanium particles and accelerates tissue healing.¹⁴

161 Moreover, multimodal treatment approaches that combine implantoplasty, apically repositioned
162 flaps, free gingival grafts, and laser-assisted therapy have been associated with favorable
163 microbiological changes at peri-implant sites, characterized by reductions in pathogenic genera
164 such as *Porphyromonas*, *Treponema*, and *Fusobacterium*, along with an increased levels of
165 *Streptococcus*.¹⁴

166 **Supportive Measures for Long-Term Prognosis:**

167 Achieving long-term peri-implant stability requires ongoing supportive measures following both
168 surgical and non-surgical therapy. Insufficient width of keratinized mucosa may compromise
169 effective plaque control, as brushing over non-keratinized, mobile tissue can cause discomfort
170 and limit oral hygiene practices. Additionally, a lack of adequate keratinized mucosa provides a
171 weaker soft-tissue barrier against bacterial penetration, leading to increased plaque
172 accumulation, inflammation, and subsequent peri-implant tissue breakdown and bone loss.
173 Maintaining an adequate width of at least 2mm is therefore considered beneficial for peri-
174 implant health.¹⁴

175 Soft-tissue augmentation procedures, including free gingival grafts, may be indicated to
176 enhance peri-implant tissue stability and facilitate plaque control.¹⁴ Following active treatment,
177 patient education and supportive periodontal therapy play a vital role in maintaining peri-implant
178 health by controlling biofilm accumulation through regular periodontal maintenance visits. In
179 selected cases, adjunctive interventions, such as soft-tissue augmentation may further
180 contribute to the long-term control of peri-implant inflammation.^{14,15}

181 **Regenerative management of peri-implantitis**

182 Advances in bone grafting materials, barrier membranes and biomaterials have expanded the
183 options available for managing complex osseous defects and restoring lost tissues to their
184 original anatomy. The success of regenerative therapy for peri-implantitis depends on the
185 morphology of defect, with four-walled intrabony defects \geq 3mm demonstrating favourable
186 prognosis.¹⁸

187

188 **Guided bone regeneration:**

189 Guided bone regeneration (GBR) is a surgical technique used to stimulate new bone formation
190 at sites of intrabony defects with the help of bone grafts and barrier membranes. Barrier
191 membranes prevent epithelial downgrowth into the defect site and provide stability; they can be
192 resorbable or non resorbable.

193

194 **Bone grafts:**

195 Bone grafts play a key role in periodontal regeneration, acting as a structural framework. They
196 can be categorized into the following types:

- 198 • **Autogenous bone graft:** Autogenous bone graft remains the gold standard for bone
199 regeneration procedures, as it is osteogenic, osteoconductive and osteoinductive.
- 200 • **Allografts:** Allografts such as mineralized dehydrated bone allograft (MDBA) can be
201 utilized in guided bone regeneration for peri-implantitis management.¹⁹
- 202 • **Xenografts:** Bovine derived xenografts are osteoconductive and are widely used for the
203 management of intrabony defects in peri-implantitis.²⁰
- 204 • **Alloplasts:** Synthetic bone grafts composed of calcium phosphate or bioactive glass are
205 primarily osteoconductive, lack osteoinductive properties and are used less frequently in
206 guided bone regeneration.²¹

208 **Growth factor modulation:**

209 Growth factors are proteins that can stimulate mesenchymal and osteoblast proliferation at
210 implant sites by acting as signaling molecules, particularly platelet derived growth factor
211 (PDGF), bone morphogenic proteins (BMPs), transforming growth factor beta (TGF- β), insulin
212 like growth factor (IGF) and vascular endothelial growth factor (VEGF). Although current results
213 look promising, further research is required to address potential long term outcomes and
214 safety.²²

- 216 • **Recombinant human platelet derived growth factor(rhPDGF-BB):**

217 Recombinant human platelet derived growth factor (rhPDGF-BB) is a synthetic form of platelet
218 derived growth factor (PDGF). PDGF is a widely used growth factor due to its ability to stimulate
219 angiogenesis, chemotaxis and mitogenesis. It is delivered using bone grafts or synthetic
220 matrices which help localize its activity while providing support and expediting regeneration.²³

- 222 • **Growth factor enhanced matrix (GEM 21S):**

223 Growth factor enhanced matrix(GEM 21S) is a bone grafting material consisting of FDA
224 approved recombinant human platelet derived growth factor (rhPDGF-BB) and osteoconductive
225 β tricalcium phosphate scaffold. GEM 21S is utilized in the treatment of peri-implantitis as it acts
226 as an osteoconductive matrix promoting angiogenesis and osteogenesis thereby increasing the
227 survival rate of implants.²³

229 **Enamel matrix derivative (EMD):**

230 Enamel matrix derivative (EMD), an amelogenin-rich biologic material derived from porcine
231 enamel matrix plays a key role in bone regeneration. It is delivered using Propylene glycol
232 alginate (PGA) aqueous solution which enhances the precipitation of EMD. EMD restricts
233 epithelial downgrowth and promotes regeneration by growth of mesenchymal cells and
234 angiogenesis. EMD also possess anti-inflammatory and anti-bacterial properties. EMD is
235 typically used in combination with bone grafts to prevent rapid degradation and flap collapse
236 due to its lack of structural rigidity.^{24,25}

238 **Adjunctive and Emerging Strategies in Peri-Implantitis Management**

239 Conventional mechanical and surgical approaches remain the cornerstone of peri-implantitis
240 management; however, their effectiveness is often limited by complex implant surface
241 characteristics, persistent biofilm formation, and a dysregulated host inflammatory response. As
242 a result, adjunctive and emerging therapies have gained increasing attention for their potential
243 to enhance treatment outcomes by targeting microbial colonization, modulating host immune
244 responses, and promoting peri-implant tissue regeneration. Advances in biomaterials, surface
245 engineering, and biological modulation represent a shift toward more comprehensive and
246 biologically driven treatment strategies. These emerging approaches are primarily intended to
247 complement established therapies, improve long-term peri-implant stability, and reduce disease
248 recurrence rather than replace conventional interventions.^{26,27}

249 **1. Biomaterials and Implant Surface Engineering:**

250 Biomaterials and implant surface engineering play a pivotal role in the prevention and
251 management of peri-implantitis by targeting the earliest pathogenic event—bacterial adhesion—
252 while supporting peri-implant bone integration. Since implant surface characteristics directly
253 influence microbial colonization and host tissue responses, surface modification strategies have
254 emerged as both preventive and therapeutic adjuncts.²⁸

255 Anti-adhesive surface modifications aim to inhibit bacterial attachment through physicochemical
256 alterations rather than bactericidal mechanisms. Hydrophilic polymer grafting, nanoscale
257 topographical patterning, and titanium nitride (TiN) coatings have demonstrated reduced
258 bacterial adhesion and biofilm formation without inducing antimicrobial resistance. Clinical and
259 in vivo studies confirm the efficacy of TiN-coated surfaces in limiting oral bacterial colonization.
260 However, excessive anti-fouling properties may also impair osteoblast adhesion, necessitating
261 the incorporation of bioactive molecules to restore osteogenic potential.²⁹

262 Bactericidal surface modifications provide active antimicrobial effects through contact-
263 dependent or release-based mechanisms. Nanopatterned surfaces, antimicrobial peptides,
264 graphene-based materials, and metal or metal oxide nanoparticles disrupt bacterial membranes
265 or generate reactive oxygen species, effectively preventing biofilm maturation. Several in vivo
266 studies demonstrate that these surfaces maintain antibacterial activity while supporting
267 osseointegration. Controlled-release coatings incorporating antimicrobial agents or ions further
268 enhance antibacterial efficacy, although challenges remain regarding sustained release and
269 potential cytotoxicity.²⁹

270 Intrinsic antibacterial alloys, particularly titanium–copper (Ti–Cu) systems, offer drug-
271 independent antimicrobial activity through ion release and contact sterilization. These alloys
272 reduce biofilm stability, suppress bacterial virulence gene expression, and resist infection-
273 induced bone resorption while promoting osseointegration. Externally triggered strategies, such
274 as near-infrared light-activated titanium oxide surfaces, provide on-demand antibacterial effects
275 and have shown promise in reducing peri-implant inflammation without inducing resistance.²⁹

276 Despite the widespread use of moderately rough titanium surfaces to enhance osseointegration,
277 increased surface roughness may predispose implants to microbial accumulation.
278 Contemporary biomaterial strategies therefore aim to balance antibacterial efficacy with
279 biological safety and osteogenic capacity, representing a shift toward biologically responsive
280 implant systems for peri-implantitis prevention and management.

281 **2. Host Modulation and Biological Adjuncts:**

282 Peri-implantitis is not solely a biofilm-induced condition but also the result of an exaggerated
283 host immune response leading to peri-implant soft tissue inflammation and progressive bone
284 loss. Host modulation strategies aim to control this dysregulated inflammatory response and
285 preserve peri-implant tissues.³⁰

286 Biological adjuncts, including probiotics, growth factors, and immunomodulatory agents, have
287 been explored to regulate peri-implant inflammation.³¹

288 Probiotics function by competitively inhibiting peri-implant pathogens, modifying local microbial
289 ecology, and downregulating proinflammatory cytokines and matrix metalloproteinases. Clinical
290 studies suggest that probiotics may reduce bleeding on probing and peri-implant mucosal
291 inflammation when used adjunctively with nonsurgical therapy, particularly in peri-implant
292 mucositis. However, evidence supporting their effectiveness in established peri-implantitis
293 remains limited and inconsistent.³⁰

294 Growth factor-based therapies, such as recombinant platelet-derived growth factor and enamel
295 matrix derivatives, contribute indirectly to host modulation by enhancing wound healing,
296 angiogenesis, and bone regeneration. These agents may improve peri-implant tissue stability
297 when used in regenerative surgical protocols, although their direct anti-inflammatory effects are
298 secondary.³¹

299 Emerging host immune-modulatory approaches include cytokine regulation, oxidative stress
300 modulation, and immune pathway targeting. While preclinical data are promising, clinical
301 translation remains limited due to variability in delivery systems and lack of long-term outcome
302 data.³¹

303 From a clinical perspective, host modulation should be considered an adjunctive strategy
304 integrated with mechanical debridement and surgical therapy rather than a standalone
305 treatment. Future research should focus on implant-specific delivery systems, establishment of
306 standardized treatment protocols, and evaluation of long-term effects on peri-implant bone
307 preservation and implant survival.

308 **Discussion**

309 The management of peri-implantitis remains a significant clinical challenge due to its
310 multifactorial etiology, complex microbial profile, and limited regenerative capacity around
311 implant surfaces. Despite improved implant designs and preventive strategies, peri-implantitis

312 continues to demonstrate unpredictable treatment outcomes, particularly in advanced cases
313 with extensive bone loss and soft tissue inflammation.^{32,33}

314 Non-surgical therapy is widely regarded as a first-line approach, especially in early disease
315 stages; however, its effectiveness in established peri-implantitis is limited. Systematic reviews
316 have consistently reported modest improvements in clinical parameters such as bleeding on
317 probing and probing depth, with negligible radiographic bone gain.^{34,35} The inability to
318 adequately decontaminate rough implant surfaces and deep peri-implant defects remains a
319 critical limitation, often necessitating surgical intervention.³⁵

320 Surgical access therapy allows direct visualization and thorough debridement of contaminated
321 implant surfaces, resulting in improved infection control compared to non-surgical approaches.³⁶
322 Resective surgical techniques, including apically positioned flaps and implantoplasty, aim to
323 reduce pocket depths and facilitate plaque control; however, they primarily achieve disease
324 stabilization rather than true regeneration and may compromise esthetic
325 outcomes.³⁷ Additionally, concerns regarding titanium particle release during implantoplasty and
326 its potential biological effects warrant further investigation.³⁸

327 Regenerative surgical approaches have gained increasing attention due to their potential to
328 restore lost peri-implant bone and improve long-term implant prognosis. Guided bone
329 regeneration (GBR), when combined with particulate bone grafts, has demonstrated favorable
330 outcomes in contained and semi-contained peri-implant defects.³⁹ Xenografts and slowly
331 resorbing biomaterials are commonly preferred due to their superior space-maintaining
332 properties, although clinical outcomes remain highly dependent on defect morphology and
333 surgical technique.⁴⁰

334 The incorporation of biologically active agents has further expanded regenerative possibilities.
335 Recombinant human platelet-derived growth factor-BB (rhPDGF-BB), delivered via GEM21S,
336 promotes angiogenesis, chemotaxis, and proliferation of osteogenic cells. Recent clinical
337 studies suggest that rhPDGF-BB, when used adjunctively with bone grafts, may enhance
338 radiographic bone fill and clinical attachment levels in peri-implant defects, although long-term,
339 implant-specific randomized controlled trials remain limited.^{41,42}

340 Enamel matrix derivative (EMD) has also been proposed as an adjunctive regenerative agent
341 due to its anti-inflammatory properties and ability to enhance soft tissue healing. While EMD
342 alone does not appear to induce significant peri-implant bone regeneration, its use in
343 combination with surgical debridement and grafting has been associated with improved clinical
344 outcomes, including reduced probing depths and inflammation.^{43,44}

345 Emerging strategies targeting biomaterials and implant surface engineering seek to overcome
346 the challenge of re-osseointegration. Novel surface modifications, antibacterial coatings, and
347 bioactive materials are under investigation to promote favorable host-implant interactions while
348 limiting bacterial adhesion.⁴⁵ In parallel, host modulation therapies—such as
349 photobiomodulation, probiotics, and local delivery of anti-inflammatory agents—aim to control
350 the host inflammatory response and improve treatment stability.⁴⁶

351 Despite these advances, current evidence underscores the absence of a universally predictable
352 treatment protocol for peri-implantitis. Variability in diagnostic criteria, defect morphology, and
353 outcome measures continues to limit comparability across studies.³² Future research should
354 focus on well-designed randomized controlled trials with long-term follow-up and standardized
355 reporting. Ultimately, a personalized, risk-based treatment approach integrating surgical,
356 regenerative, biological, and maintenance strategies is likely to offer the greatest potential for
357 long-term peri-implant health.

358

359 **Abbreviations**

360
361 GBR-Guided bone regeneration
362 MDBA-Mineralized dehydrated bone allograft
363 PDGF-Platelet derived growth factor
364 BMP-Bone morphogenic protein
365 TGF- β -Transforming growth factor beta
366 IGF-Insulin like growth factor
367 VEGF-Vascular endothelial growth factor
368 rhPDGF-BB-Recombinant human platelet derived growth factor-BB
369 GEM 21S-Growth factor enhanced matrix
370 EMD-Enamel matrix derivative
371 PGA- Propylene glycol alginate
372

373 **References**

374 1.Roccuzzo A, Stähli A, Monje A, Sculean A, Salvi GE. Peri-implantitis: A clinical update on
375 prevalence and surgical treatment outcomes. *J Clin Med.* 2021;10(5):1107.
376

377 2.Ganesh A, Rajapandian K, Lochini S, Ravi Shankar PL, Kalaivani K, Saravanan AV, et al.
378 Management of peri-implantitis: A literature review on diagnosis, therapy, and long-term
379 maintenance. *Int J Adv Res.* 2025;13(1):1–15.
380

381 3.Kormas I, Pedercini C, Pedercini A, Raptopoulos M, Alassy H, Wolff LF. Peri-implant
382 diseases: Diagnosis, clinical, histological, microbiological characteristics and treatment
383 strategies—A narrative review. *Antibiotics (Basel).* 2020;9(11):835.
384

385 4.Barootchi S, Wang HL. Peri-implant diseases: Current understanding and management. *Int J
386 Oral Implantol (New Malden).* 2021;14(3):263–282.
387

388 5.Rokaya D, Srimaneepong V, Wisitrasameewon W, Humagain M, Thunyakitpisal P. Peri-
389 implantitis update: Risk indicators, diagnosis, and treatment. *Eur J Dent.* 2020;14(4):672–682.

390

391 6.Ismail A, Shaddox L, Santamaria M, Sabbagh M. Peri-implantitis: A review to simplify a
392 mystifying disease. *Med Res Arch.* 2022;10(2):1–12.
393

394 7.Ramanauskaite A, Cafferata EA, Begić A, Schwarz F. Surgical interventions for the treatment
395 of peri-implantitis. *Clin Implant Dent Relat Res.* 2022;24(6):710–722.
396

397 8.Shatta A, Anil S. Peri-implantitis revisited. In: *Current Concepts in Dental Implantology—From*
398 *Science to Clinical Research*. IntechOpen; 2020. p. 1–20.

399 9.Lasserre JF, Brecx MC, Toma S. Oral Microbes, Biofilms and Their Role in Periodontal and
400 Peri-Implant Diseases. *Materials (Basel)*. 2018;11(10):1802.

401

402 10.Roccuzzo M, Mirra D, Roccuzzo A. Surgical treatment of peri-implantitis. *Br Dent J.*
403 2024;236(10):803-808.

404

405 11.Gupta R, Arora SA, Gupta G, et al. Effect of open flap debridement with and without LLLT in
406 patients with periodontitis on wound healing, GCF ALP levels, and clinical parameters. *J*
407 *Contemp Dent Pract.* 2024;25(12):1148-1155.

408

409 12.Caccianiga G, Rey G, Caccianiga P, Leonida A, Baldoni M, Baldoni A, et al. Peri-implantitis
410 management: surgical versus non-surgical approach using photodynamic therapy combined
411 with hydrogen peroxide (OHLLT—oxygen high level laser therapy): a retrospective controlled
412 study. *Appl Sci.* 2021;11(11):5073.

413

414 13.Ramanauskaite A, Schwarz F. Current Concepts for the Treatment of Peri-implant Disease.
415 *Int J Prosthodont.* 2024 Apr 22;37(2):124-134.

416

417 14. Shiba T, Komatsu K, Watanabe T, Takeuchi Y, Nemoto T, Ohsugi Y, Katagiri S, Shimogishi
418 M, Marukawa E, Iwata T. Peri-implantitis management by resective surgery combined with
419 implantoplasty and Er:YAG laser irradiation, accompanied by free gingival graft: a case report.
420 *Ther Adv Chronic Dis.* 2023 Jun 6;14:20406223231174816.

421

422 15. Shrivastava D, Natoli V, Srivastava KC, Alzoubi IA, Nagy AI, Hamza MO, Al-Johani K, Alam
423 MK, Khurshid Z. Novel Approach to Dental Biofilm Management through Guided Biofilm
424 Therapy (GBT): A Review. *Microorganisms.* 2021 Sep 16;9(9):1966.

425

426 16. Wang HL, Avila-Ortiz G, Monje A, Kumar P, Calatrava J, Aghaloo T, et al. AO/AAP
427 consensus on prevention and management of peri-implant diseases and conditions: Summary
428 report. *J Periodontol.* 2025 Jun;96(6):519-541.

429

430 17. Keeve PL, Koo KT, Ramanauskaite A, Romanos G, Schwarz F, Sculean A, Khouri F.
431 Surgical treatment of peri-implantitis with non-augmentative techniques. *Implant Dent.* 2019
432 Apr;28(2):177–186.

433

434 18. Aghazadeh A, Persson RG, Renvert S. Impact of bone defect morphology on the outcome of
435 reconstructive treatment of peri-implantitis. *Int J Implant Dent.* 2020 Jun 17;6(1):33.

436

437 19. La Monaca G, Pranno N, Annibali S, Polimeni A, Cristalli MP. A 10-Year Follow-Up of
438 Reconstructive Treatment of Peri-Implantitis Using Mineralized Dehydrated Allograft and
439 Resorbable Membrane: A Retrospective Case Series. *Clin Oral Implants Res.* 2025
440 Mar;36(3):325-338.

441

442 20. Mordini L, Sun N, Chang N, De Guzman JP, Generali L, Consolo U. Peri-Implantitis
443 Regenerative Therapy: A Review. *Biology (Basel).* 2021 Aug 13;10(8):773.

444

445 21. Fukuba S, Okada M, Nohara K, Iwata T. Alloplastic Bone Substitutes for Periodontal and
446 Bone Regeneration in Dentistry: Current Status and Prospects. *Materials (Basel).* 2021 Feb
447 26;14(5):1096.

448

449 22. Chandwani N, Nigotia P, Jain SK, Joshi N, Joshi M, Laddha R. Growth factors and
450 osseointegration in dental implants - A review. *Bioinformation.* 2025 Aug 31;21(8):2464-2468.

451

452 23. Tavelli L, Ravidà A, Barootchi S, Chambrone L, Giannobile WV. Recombinant Human
453 Platelet-Derived Growth Factor: A Systematic Review of Clinical Findings in Oral Regenerative
454 Procedures. *JDR Clin Trans Res.* 2021 Apr;6(2):161-173.

455

456 24. De Lauretis A, Øvrebø Ø, Romandini M, Lyngstadaas SP, Rossi F, Haugen HJ. From Basic
457 Science to Clinical Practice: A Review of Current Periodontal/Mucogingival Regenerative
458 Biomaterials. *Adv Sci (Weinh).* 2024 May;11(17):e2308848.

459

460 25. Song HJ, Jang KJ, Han SH, Kim NJ, Park WJ, Park JB. Evaluation of Long-Term Outcomes
461 of Enamel Matrix Derivative in the Treatment of Peri-Implant Disease: A Systematic Review and
462 Meta-Analysis. *Bioengineering (Basel).* 2025 Nov 25;12(12):1296.

463

464 26. Zahra Mohammed Hassan Maran, Abdullah Mufarrih AlGahtani, Aisha Abdullah AlAssiri,
465 Sheikah Mohammad Albreek, Monirah Zaid Alqaqeli, Reem Mohammed Alhowel, ... Alwah
466 Muhammad Alshmrani. (2024). Management of Peri-Implantitis: Current Approaches and Future
467 Direction. *International Journal of Medical Toxicology and Legal Medicine,* 27(3), 593–598.

468

469 27. Luigi Barbato^{1*}, Raffaele Cavalcanti², Cosimo Rupe¹, Daniele Scartabelli¹, Lapo Serni¹,
470 Leandro Chambrone^{3,4,5} and Francesco Cairo¹ Barbato et al .Clinical efficacy of adjunctive
471 methods for the non-surgical treatment of peri-implantitis: a systematic review and meta-
472 analysis. *BMC Oral Health* 2023 Jun 9;23(1):375

473

474 28. Weili Li, ab Maoxue Li, ab Tianlei Cai,ab Yi Ding,ab Weidong Tian*ac and Shujuan
475 Guo*ab Intelligent biomaterials for periodontitis and peri-implantitis therapies: stimuli-responsive
476 strategies targeting inflammation and regeneration *Journal of Materials Chemistry Issue* 47,
477 2025

478

479 29. Yu YM, Lu YP, Zhang T, Zheng YF, Liu YS, Xia DD. Biomaterials science and surface
480 engineering strategies for dental peri-implantitis management. *Mil Med Res.* 2024 May
481 13;11(1):29.

482

483 30. Amato M, Di Spirito F, D'Ambrosio F, Boccia G, Moccia G, De Caro F. Probiotics in
484 Periodontal and Peri-Implant Health Management: Biofilm Control, Dysbiosis Reversal, and
485 Host Modulation. *Microorganisms.* 2022 Nov 18;10

486

487 31. Steve Chang, DDS, MSc; Michael Glogauer, DDS, Dip Perio, PhD, FRCD(C); Lorne Golub,
488 DMD, MSc, DSc, MDSc; Joseph Bacigalupo, DDS et al. Host-Modulation Therapy for Peri-
489 Implantitis: Current Systemic and Future Medical Applications Recognizing the Potential
490 Systemic Impact of Peri-Implantitis on Systemic Disease

491 32. Schwarz F, Derks J, Monje A, Wang HL. Peri-implantitis. *J Clin Periodontol.* 2018;45(Suppl
492 20):S246–66.

493 33. Berglundh T, Armitage G, Araujo MG, Avila-Ortiz G, Blanco J, Camargo PM, et al. Peri-
494 implant diseases and conditions: Consensus report of the 2017 World Workshop. *J Clin
495 Periodontol.* 2018;45(Suppl 20):S286–91.

496 34. Renvert S, Polyzois I. Treatment of pathologic peri-implant pockets. *Periodontal 2000.*
497 2018;76(1):180–90.

498 35. Figuero E, Graziani F, Sanz I, Herrera D, Sanz M. Management of peri-implantitis: A
499 systematic review. *J Clin Periodontol.* 2018;45(Suppl 20):S303–15.

500 36. Heitz-Mayfield LJA, Salvi GE. Peri-implant mucositis and peri-implantitis: Clinical diagnosis
501 and management. *Periodontal 2000.* 2018;76(1):148–62.

502 37. Roccuzzo M, Layton DM, Roccuzzo A, Heitz-Mayfield LJA. Clinical outcomes of peri-
503 implantitis surgical treatments: A systematic review. *Clin Oral Implants Res.* 2021;32(Suppl
504 21):185–227.

505 38. Schwarz F, Schmucker A, Becker J. Efficacy of alternative or adjunctive measures to
506 surgical therapy of peri-implantitis. *Int J Implant Dent.* 2019;5(1):22.

507 39. Roccuzzo M, De Angelis N, Bonino F, Aglietta M. Surgical therapy of peri-implantitis with
508 xenografts and collagen membranes. *Clin Oral Implants Res.* 2020;31(10):1025–35.

509 40.Monje A, Insua A, Wang HL. Understanding peri-implantitis as a plaque-associated and site-
510 specific entity. *Clin Oral Implants Res.* 2019;30(1):1–6.

511 41.McGuire MK, Scheyer ET, Schupbach P. Growth factor–mediated periodontal regeneration:
512 A randomized controlled trial. *J Periodontol.* 2019;90(6):610–22.

513 42.Nevins M, Giannobile WV, McGuire MK, Kao RT, McAllister BS, Murphy KS, et al. Platelet-
514 derived growth factor stimulates bone fill. *J Periodontol.* 2020;91(6):709–19.

515 43.Schwarz F, Jepsen S, Herten M, Sager M, Rothamel D, Becker J. Influence of EMD on
516 healing following surgical therapy of peri-implantitis. *Clin Oral Investig.* 2018;22(8):3049–57.

517 44.Aghazadeh A, Rutger Persson G, Renvert S. A randomized controlled trial on adjunctive
518 EMD in peri-implantitis surgery. *J Clin Periodontol.* 2020;47(9):1084–94.

519 45.Alghamdi HS, Jansen JA. The development and future of dental implants. *Dent Mater J.*
520 2020;39(2):167–72.

521 46.Romanos GE, Javed F, Delgado-Ruiz RA, Calvo-Guirado JL. Peri-implant diseases: A
522 review of treatment approaches. *Materials (Basel).* 2019;12(18):2942.

523