

1 **Comparative Study of Transcutaneous Electrical Nerve Stimulation**
2 **(TENS) versus Sterile Water Injection (SWI) for Labour Analgesia in a**
3 **Tertiary Care Hospital**

6 **Abstract**

7 **Background:** Labour pain is severe and impacts maternal-fetal health. This study compares
8 non-pharmacological TENS, which blocks pain via the Gate Control Theory, and Sterile
9 Water Injection (SWI), which utilizes diffuse noxious inhibitory control. Both offer safe,
10 effective analgesia, reducing VAS scores and enhancing maternal satisfaction without
11 affecting labour duration or neonatal outcomes.

12 **Aims:** This study compares the efficacy of Transcutaneous Electrical Nerve Stimulation
13 (TENS) and intradermal sterile water injection (SWI) in reducing labour pain and to assess
14 feto-maternal outcomes and maternal satisfaction.

15 **Methodology:** A prospective interventional study was conducted among 125 term pregnant
16 women aged 21-35 years scheduled for normal vaginal delivery. Participants were divided
17 into Group T (TENS), Group S (Sterile Water Injection), and Group C (Control). Pain was
18 assessed using the Visual Analogue Scale (VAS) at baseline and intervals up to 360 minutes.

19 **Results:** TENS and SWI significantly reduced pain compared to the control group ($p < 0.05$).
20 TENS showed a more rapid and sustained reduction in pain intensity than SWI. Maternal
21 satisfaction was highest in the TENS group (4.54 ± 1.19), followed by SWI (3.82 ± 1.2), and
22 lowest in the control group (2.9 ± 1.3). No significant differences were found in the duration
23 of labour stages or neonatal outcomes (APGAR scores).

24 **Conclusion:** Both TENS and SWI are effective, safe, non-pharmacological methods for
25 labour analgesia, with TENS providing superior maternal satisfaction and more sustained
26 pain relief.

27 **Keywords:** Labour Analgesia, Transcutaneous Electrical Nerve Stimulation (TENS), Sterile
28 Water Injection (SWI), Visual Analogue Scale (VAS), Maternal Satisfaction, Non-
29 pharmacological pain management, Michaeli's Rhomboid.

30
31 **1. Introduction:**

34 The pain associated with labour is one of the most intense forms of human pain. As a
35 subjective and multifaceted experience, it necessitates an individualized approach to
36 management. Effective labour analgesia is vital for both maternal and fetal well-being; severe
37 pain and stress trigger the release of circulating catecholamines, leading to uterine

38 vasoconstriction and reduced placental perfusion. These processes can result in fetal hypoxia
39 and metabolic acidosis. Furthermore, pain-induced hyperventilation causes maternal
40 respiratory alkalosis, further emphasizing the clinical necessity of pain relief.

41 While pharmacological methods are effective, they may cause a loss of essential feedback,
42 potentially prolonging labour or increasing the need for intervention. Many pharmacological
43 agents also limit maternal motility and autonomy, which can be distressing. Consequently,
44 there has been a significant shift toward non-pharmacological techniques. This trend is driven
45 by an emphasis on patient-centered, holistic care that empowers women to actively engage in
46 the birth experience with minimal adverse effects.

47 Among these, Transcutaneous Electrical Nerve Stimulation (TENS) and Sterile Water
48 Injection (SWI) have emerged as accessible, non-invasive options. TENS utilizes pulsed
49 electrical currents delivered across the skin to activate underlying nerves. It is believed to
50 operate via the "Gate Control Theory" and the release of endogenous opioids, providing
51 maximal analgesia through non-painful electrical paraesthesia.

52 In contrast, Sterile Water Injections function through "diffuse noxious inhibitory control."
53 Intradermal injections in the lower back create a brief, painful stimulus that triggers the brain
54 to release its internal supply of endorphins, thereby reducing the perception of labour pain.
55 This study aims to investigate the clinical application and effectiveness of TENS versus SWI
56 to provide obstetricians with evidence-based data to guide intrapartum care.

57

58 **2. Materials & Methods:**

59 A prospective interventional study was conducted among 125 term pregnant women aged 21-
60 35 years scheduled for normal vaginal delivery from December 2023 to March 2025 in
61 Department of Obstetrics & Gynaecology, Pt. J.N.M. Medical College and Dr. BRAM
62 Hospital, Raipur (C.G.). Participants were divided into Group T (TENS), Group S (Sterile
63 Water Injection), and Group C (Control).

64 **2.1 Methodology:**

65 **Group T: Transcutaneous Electrical Nerve Stimulation (TENS)**

66

- 67 • Placement: Upper electrodes placed bilaterally over the T10-L1 paravertebral region
68 (~2 cm lateral to the spinous processes). Lower electrodes placed bilaterally over the
69 S2-S4 sacral foramina.
- 70 • Settings: The device was set to a frequency of 100 Hz for a minimum of 30 minutes.
- 71 • Reapplication: Based on maternal request.

72 **Group S: Sterile Water Injection (SWI)**

73

- 74 • Procedure: Four intradermal injections of 0.5 mL sterile water each.
- 75 • Anatomical Site: Administered over the Michaelis rhomboid.
- 76 • Injection Points: Two over the posterior superior iliac spines (PSIS) and two placed 1
77 cm medial and 1-2 cm inferior to the PSIS.

76 **Group C: Control Group**

77 • This group received standard care without the specific analgesic interventions used in
78 the other groups to serve as a baseline comparator.

79 **2.2 Outcome:**

80 • Pain Relief: Assessed using the Visual Analogue Scale (VAS) score reduction.
81 • Labour Progress: Duration of the first, second, and third stages of labour was
82 monitored.
83 • Maternal Satisfaction: Evaluated using a 7-point Likert Scale.
84 • Feto-Maternal Outcomes: Includes neonatal APGAR scores at 5 minutes and
85 monitoring for side effects such as nausea, syncope, or skin reactions
86 (allergy/tingling/pain) at the site of intervention.

87 **2.3 Statistical Analysis:**

88 • Sample size was estimated with 95% confidence limits and 80% power to detect at
89 least a 10% difference in effect proportions.
90 • Data was analyzed using appropriate statistical tests (e.g., P-values) to determine
91 significance in intergroup comparisons.

92

93 **3. Results:**

94 **3.1 Demographic Profile:**

95

Characteristics	Group T (TENS) (n=50)	Group S (SWI) (n=50)	Group C (Control) (n=25)	P-Value
Mean Age (years)	26.34 ± 3.21	26.52 ± 3.11	25.96 ± 2.98	0.79
Mean BMI (kg/m ²)	27.32 ± 3.17	28.1 ± 3.29	27.72 ± 3.58	0.19
Primigravida (%)	15 (30.0%)	16 (32.0%)	09 (36.0%)	0.38
Multigravida (%)	35 (70.0%)	34 (68.0%)	16 (64.0%)	0.38

96 **3.2 Labour Analgesia Efficacy (VAS Scores):**

97

Interval	Group T (TENS)	Group S (SWI)	Group C (Control)	P-value (T vs S)
Baseline	9.96 ± 0.19	9.88 ± 0.43	9.65 ± 0.25	0.89
15 minutes	8.6 ± 0.49	9.52 ± 0.86	9.5 ± 0.51	<0.001
120 minutes	7.5 ± 0.5	8.74 ± 0.48	9.75 ± 0.44	<0.001
240 minutes	6.34 ± 0.55	8.02 ± 0.24	9.95 ± 0.22	<0.001
360 minutes	6.08 ± 0.39	7.78 ± 0.46	9.7 ± 0.47	<0.001

98

99 **3.3 Distribution of Mode of Delivery:**

100

Mode of Delivery	Group T (TENS) (n=50)	Group S (SWI) (n=50)	Group C (Control) (n=25)	P-Value
Vaginal Delivery	38 (76.0%)	36 (72.0%)	17 (68.0%)	0.38
Instrumental (AVD)	06 (12.0%)	06 (12.0%)	04 (16.0%)	0.92
LSCS	06 (12.0%)	08 (16.0%)	04 (16.0%)	0.84

101 **3.4 Distribution of mean Maternal satisfaction:**

102

Maternal Satisfaction Score	Group T (TENS) (n=50)	Group S (SWI) (n=50)	Group C (Control) (n=25)	P-value (T vs S)	P-value (T vs C)	P-value (S vs C)
	4.54 ± 1.19	3.82 ± 1.2	2.9 ± 1.3	0.03	0.002	0.04

103 **3.5Comparison of Neonatal Outcomes:**

104

Neonatal Parameter	Group T (TENS) (n=50)	Group S (SWI) (n=50)	Group C (Control) (n=25)	P-Value
Mean APGAR Score (at 5 min)	9.48 ± 0.54	9.44 ± 0.64	9.52 ± 0.68	0.67
Neonatal Death	0 (0%)	0 (0%)	0 (0%)	0.98

105

106 **Discussion:**

107 Labour pain, one of the most intense human experiences, significantly affects both the mother
108 and fetus. In the mother, it activates the sympathetic nervous system, causing tachycardia,
109 hypertension, and hyperventilation, which may lead to respiratory alkalosis and reduced
110 uterine blood flow. This can prolong labour, impair cooperation, and cause emotional trauma
111 and exhaustion. For the fetus, decreased placental perfusion and maternal hyperventilation
112 can result in fetal hypoxia, while prolonged labour increases the risk of birth trauma and
113 emergency interventions.

114 Labour analgesia is a basic right and an essential part of respectful maternity care. Women
115 should be given options and supported to make informed choices that align with their
116 preferences. It is vital for the safety, comfort, and emotional well-being of both mother and
117 baby & has the following importance:

- 118 • **Improves Maternal Comfort and Satisfaction:** allows the mother to remain calm,
119 reduce fear and anxiety, and improve overall experience.
- 120 • **Enhances Physiological Outcomes:** pain relief reduces stress response, improves
121 blood flow to uterus, and promotes effective contractions.
- 122 • **Reduces Maternal and Fetal Morbidity:** prevents exhaustion, hypertension, and
123 fetal distress by maintaining stable maternal physiology.
- 124 • **Encourages Active Participation:** with effective analgesia, mothers can be more
125 active in decision-making and delivery efforts.

126 Effective pain relief during labour is crucial for maternal well-being, satisfaction, and
127 positive birth outcomes. A balanced approach using pharmacological and non-
128 pharmacological methods ensures optimal outcomes.

129 Pharmacological analgesia remains the mainstay of labour pain management due to its proven
130 efficacy. Systemic opioids such as pethidine, fentanyl, and tramadol are widely used for their
131 ease of administration and moderate pain relief. They help reduce anxiety and discomfort
132 during labour, especially in early stages. However, they come with maternal side effects like
133 nausea, vomiting, sedation, and respiratory depression. These drugs also cross the placenta,
134 potentially causing neonatal respiratory depression, decreased alertness, and impaired
135 initiation of breastfeeding.

136 Inhalational agents, such as nitrous oxide, offer the benefit of rapid onset, self-administration,
137 and minimal effect on the fetus. They are particularly useful in the early or transitional phases
138 of labour. Yet, maternal side effects like dizziness, nausea, and euphoria may reduce the
139 mother's ability to cooperate during labour, and in rare cases, can cause loss of consciousness.
140 Regional analgesia, particularly epidural anaesthesia, provides the most effective pain relief
141 throughout labour indicated by significant reduction in VAS score. It enables mothers to
142 remain alert and actively participate in childbirth. Nevertheless, it is not available in many
143 centres due to the paucity of anaesthesiologists & it is associated with risks such as maternal
144 hypotension, urinary retention, motor block, and, rarely, neurological complications. If
145 maternal hypotension occurs, it can lead to transient fetal bradycardia, it is an invasive
146 method, hence, is not readily opted by patients in labour.

147 While pharmacological methods provide significant benefits, the potential for maternal and
148 fetal side effects necessitates a balanced approach. This underscores the importance of non-
149 pharmacological analgesia such as Transcutaneous Electrical Nerve Stimulation (TENS) and
150 sterile water injections. These techniques are safe, non-invasive, and free of systemic side
151 effects. They promote maternal involvement, reduce anxiety, and can be especially valuable
152 when used in combination with pharmacological methods or when medication is
153 contraindicated. The debut of non-pharmacological analgesia in labour represents a
154 significant advancement in obstetric care—offering women effective, accessible, and
155 empowering options for pain relief while supporting favourable maternal and neonatal
156 outcomes.

157 **Limitations:**

- 158 1. A small sample size can limit generalizability of the findings to a larger population.
- 159 2. VAS scores rely on subjective patient reporting, which may be influenced by anxiety,
160 expectations, or individual pain thresholds.
- 161 3. Complete blinding is challenging as Intradermal sterile water injection causes a sharp
162 stinging sensation and TENS produces a tingling effect making it likely for
163 participants to identify their assigned intervention.
- 164 4. Without a cross-over design, differences in individual pain perception may influence
165 the comparison of outcomes.

166 **Future scope of the study:**

- 167 1. Expanding the sample size and conducting multi-centric trials can enhance
168 generalizability and validate the findings.

175 2. Cross-over Study Designs: Allowing each subject to experience both modalities at
176 different times could reduce inter-subject variability.
177
178 3. Integration with Other Modalities: Studying TENS or ISWI in combination with
179 breathing techniques, acupressure, or massage for synergistic effects.
180
181 4. Applicability of TENS and ISWI in post-operative pain can be explored, various doses
182 & routes of sterile water injection & its effect on VAS score reduction.
183

184
185 **Conclusion:**

186 Transcutaneous Electrical Nerve Stimulation (TENS) and Sterile Water Injection (SWI) both
187 interventions significantly reduced maternal pain scores and improves overall maternal
188 satisfaction when compared to the control group, without adversely affecting the duration of
189 labour, delivery outcomes, or neonatal well-being.

190 When compared directly, **TENS demonstrated several advantages over SWI**. It provided
191 **more sustained, early and pronounced pain relief**, as evidenced by consistently lower VAS
192 scores over time. TENS was also associated with **higher maternal satisfaction scores**, likely
193 due to its non-invasive nature, immediate onset of action.

194 On the other hand, **SWI also proved to be a safe and effective method**, particularly for
195 women experiencing lower back pain during labour. While pain relief with SWI was
196 significant as compared to control it was **less sustained and slightly less effective** compared
197 to TENS. However, it offered the advantage of simplicity, minimal equipment requirements,
198 and rapid administration—making it a practical option in low-resource settings or when
199 TENS is unavailable.

200 Both methods were well-tolerated with only minor, transient side effects like tingling with
201 TENS and localized pain with SWI. Additionally, vaginal delivery rates were higher and fetal
202 distress was lower in both intervention groups compared to the control, indicating a positive
203 influence of labour analgesia on labour outcomes.

204 In conclusion, **TENS is the superior modality** in terms of analgesic efficacy and maternal
205 satisfaction. However, **SWI remains a valuable alternative**. Integrating these non-
206 pharmacological techniques into routine obstetric care can enhance the labour experience,
207 particularly in resource-constrained environments, by offering safe, effective, and patient-
208 friendly options for pain management.

210
211 **References:**

212 1. Sharma S, Menia V, Bedi J, Dogra S. Labour Analgesia: An Unmet Right of Labouring
213 Women in India. J South Asian Feder Obst Gynae. 2013;5(1):26-32.
214
215 2. WHO recommendations: intrapartum care for a positive childbirth experience. Geneva:
216 World Health Organization; 2018.
217
218 3. Njogu A, Qin S, Chen Y, Hu L, Luo Y. The effects of transcutaneous electrical nerve
219 stimulation during the first stage of labour: a randomized controlled trial. BMC
220 Pregnancy Childbirth. 2021;21:164.
221 4. Mårtensson LB, Hutton EK, Lee N, Kildea S, Gao Y, Bergh I. Sterile water injections for
childbirth pain: an evidenced based guide to practice. Women Birth. 2018;31:380-5.

222 5. Sluka KA, Walsh D. Transcutaneous electrical nerve stimulation: basic science
223 mechanisms and clinical effectiveness. *J Pain*. 2003;4:109-21.

224 6. Derry S, Straube S, Moore RA, Hancock H, Collins SL. Intracutaneous or subcutaneous
225 sterile water injection compared with blinded controls for pain management in labour.
226 *Cochrane Database Syst Rev*. 2012;1:CD009107.

227 7. Santana LS, Gallo RB, Ferreira CH, et al. Transcutaneous electrical nerve stimulation
228 (TENS) reduces pain and postpones the need for pharmacological analgesia during
229 labour: a randomised trial. *J Physiother*. 2016;62(1):29-34.

230 8. Huang CY, Lo SF, Chou SH, Shih CL. Analgesic effects of sterile water injection in the
231 management of low back pain during labour: a systematic review and meta-analysis. *Int J*
232 *Gynaecol Obstet*. 2022;159:642-50.

233 9. Abreu G, Feeley C, Moran VH, et al. Women's experiences of pharmacological and non-
234 pharmacological pain relief methods for labour and childbirth: a qualitative systematic
235 review. *Reprod Health*. 2019;16:71.

236 10. Mamuk R, Şahin N. Effect of Intradermal Sterile Water Injection on Labour Experiences:
237 A Randomized Controlled Study. *Clin Exp Obstet Gynecol*. 2023;50(3):11-17._

239

240 **Ethical Approval:** The study protocol was approved by the Institutional Ethics Committee of
241 Pandit Jawaharlal Nehru Memorial Medical College, Raipur, Chhattisgarh, India. All
242 procedures were conducted by the ethical standards of the institutional and national research
243 committee and with the 1964 Helsinki Declaration and its later amendments or comparable
244 ethical standards.

245 **Informed Consent:** Informed consent was obtained from all individual participants included
246 in the study.

247