

1 **PULMONARY METASTASES FROM RENAL CELL CARCINOMA: CLINICAL**
2 **FEATURES AND THERAPEUTIC MANAGEMENT**
3
4

5 **Abstract**

6 Renal cell carcinoma (RCC) is characterized by a high metastatic potential, with the lung
7 representing the most frequent site of dissemination in patients with advanced disease.
8 Pulmonary metastases play a central role in prognostic assessment and therapeutic decision-
9 making. Over the past decade, major advances in immunotherapy and targeted therapies have
10 profoundly transformed the management of metastatic RCC. This narrative review provides
11 an overview of the biological behavior, clinical presentation, prognostic implications, and
12 therapeutic management of pulmonary metastases from RCC. Available evidence suggests
13 that pulmonary metastases exhibit distinct clinical characteristics, including enhanced
14 sensitivity to immunotherapy-based combinations compared with other visceral metastatic
15 sites. Immunotherapy–tyrosine kinase inhibitor combinations and dual immune checkpoint
16 blockade now constitute the cornerstone of first-line treatment. In selected patients with lung-
17 dominant oligometastatic disease, the integration of local treatment strategies such as
18 pulmonary metastasectomy or stereotactic body radiotherapy may result in prolonged disease
19 control. Multidisciplinary and individualized management remains essential to optimize
20 clinical outcomes.

21 **Keywords:** Renal cell carcinoma; Pulmonary metastases; Immunotherapy; Targeted therapy;
22 Oligometastatic disease.

23 **1. Introduction**

24 Renal cell carcinoma accounts for approximately 2–3% of all adult malignancies worldwide
25 and represents the most common primary cancer of the kidney (1). Clear cell carcinoma is the
26 predominant histological subtype. Despite curative-intent surgery for localized disease, a
27 substantial proportion of patients will develop metastatic relapse during follow-up (2). The
28 lung is the most frequent site of metastasis, observed in nearly half of patients with advanced
29 disease (2). Pulmonary involvement significantly influences prognosis and therapeutic
30 strategy, particularly in the era of immunotherapy-based treatments (3).

31

32

33 **2. Biological and Clinical Characteristics of Pulmonary Metastases**

34 Pulmonary metastases from RCC occur primarily through hematogenous dissemination via
35 the renal vein and inferior vena cava (4). Radiological presentations include solitary or
36 multiple pulmonary nodules and, less frequently, diffuse parenchymal involvement.
37 Clinically, pulmonary metastases are often asymptomatic and detected incidentally during
38 routine imaging (2). When present, symptoms may include cough, dyspnea, chest pain, or
39 hemoptysis. RCC is characterized by an unpredictable clinical course, including the
40 possibility of late metastatic recurrence many years after initial treatment (6).

41 **3. Prognostic Implications**

42 Prognostic evaluation in metastatic RCC is commonly based on the International Metastatic
43 Renal Cell Carcinoma Database Consortium (IMDC) criteria, which incorporate clinical and
44 laboratory parameters (14). Patients are stratified into favorable, intermediate, and poor risk
45 groups, guiding treatment decisions. Several studies have demonstrated that patients with
46 lung-dominant metastatic disease have more favorable outcomes compared with those with
47 liver or bone metastases, even in the immunotherapy era (4,5).

48 **4. Systemic Treatment Strategies**

49 The treatment landscape of metastatic RCC has evolved substantially with the introduction of
50 immune checkpoint inhibitors. Dual immunotherapy with nivolumab plus ipilimumab has
51 demonstrated durable overall survival benefit, particularly in patients with intermediate- and
52 poor-risk disease (7). In addition, combinations of immunotherapy with tyrosine kinase
53 inhibitors, such as pembrolizumab plus axitinib, nivolumab plus cabozantinib, and
54 pembrolizumab plus lenvatinib, have shown high response rates and rapid tumor shrinkage
55 (8–10). These regimens are particularly relevant for patients with pulmonary metastases
56 requiring prompt disease control. Subsequent lines of therapy may include targeted agents
57 depending on prior treatment exposure and disease kinetics (3).

58 A proposed therapeutic algorithm for the management of pulmonary metastatic renal cell
59 carcinoma is presented in Figure 1.

60 **5. Local Treatment of Oligometastatic Pulmonary Disease**

61 The concept of oligometastatic disease has gained increasing interest in RCC (11). In selected
62 patients with a limited number of lung metastases and controlled primary tumors, local
63 treatment approaches such as pulmonary metastasectomy or stereotactic body radiotherapy

64 (SBRT) may offer prolonged disease control (12,13). Retrospective series have reported
65 favorable long-term survival following complete resection of pulmonary metastases (15).
66 SBRT provides an effective non-invasive alternative with high local control rates for
67 pulmonary lesions (12).

68 **6. Summary of Key Studies**

69 The principal studies evaluating systemic and local treatment strategies in patients with
70 pulmonary metastatic RCC are summarized in **Table 1**.

71 **7. Discussion**

72 Pulmonary metastases represent the most frequent metastatic manifestation of RCC and
73 constitute a clinically distinct subgroup within metastatic disease. Compared with other
74 visceral metastatic sites, lung involvement has consistently been associated with more
75 favorable outcomes, including higher response rates to systemic therapies and prolonged
76 survival (4,5). This observation suggests organ-specific tumor–host interactions that influence
77 therapeutic sensitivity.

78 The introduction of immunotherapy has profoundly reshaped the management of metastatic
79 RCC. Both dual immune checkpoint blockade and immunotherapy–tyrosine kinase inhibitor
80 combinations have demonstrated robust efficacy, with particularly high response rates
81 observed in pulmonary lesions (7–10). Subgroup analyses indicate that lung metastases often
82 exhibit deeper and more durable responses than liver or bone metastases, which are
83 commonly associated with poorer prognosis (4–6).

84 Several biological hypotheses may explain the favorable behavior of pulmonary metastases.
85 The lung is a highly vascularized and immunologically active organ, potentially facilitating
86 immune cell infiltration and antitumor immune responses (4). In addition, pulmonary
87 metastases are frequently detected early through routine imaging, allowing timely therapeutic
88 intervention. Although predictive biomarkers remain limited, these factors may collectively
89 contribute to improved outcomes in lung-dominant disease (16).

90 The management of patients with pulmonary metastatic RCC should be individualized.
91 Immunotherapy–tyrosine kinase inhibitor combinations are particularly suitable for patients
92 requiring rapid tumor shrinkage, such as those with symptomatic disease or compromised
93 respiratory function (8–10). Conversely, dual immunotherapy may offer durable disease
94 control and treatment-free intervals in selected patients with limited tumor burden (7). The

95 concept of oligometastatic pulmonary disease further expands therapeutic options, as local
96 treatments may achieve prolonged disease control when integrated with effective systemic
97 therapy (11–13).

98 Despite these advances, several challenges remain. Most randomized trials were not designed
99 to assess lung-specific outcomes as primary endpoints, limiting definitive conclusions. The
100 optimal sequencing of therapies after progression on immunotherapy-based regimens remains
101 uncertain, and evidence supporting local treatment strategies is largely retrospective (11,15).
102 Furthermore, the absence of robust predictive biomarkers continues to limit personalized
103 treatment selection (16).

104 **8. Clinical Implications**

105 Recognition of lung-dominant metastatic RCC is important in daily clinical practice.
106 Pulmonary metastases often respond favorably to modern systemic therapies, and treatment
107 discontinuation should be approached cautiously in cases of suspected pseudo-progression
108 (17). Early multidisciplinary evaluation is recommended, particularly in patients with limited
109 pulmonary disease who may be candidates for local therapies (11–13).

110 **9. Management of Pulmonary Toxicities**

111 Immune checkpoint inhibitors are associated with immune-related adverse events, including
112 pneumonitis. Differentiating immune-related pneumonitis from disease progression or
113 infection is critical, particularly in patients with pulmonary metastases (17). Prompt
114 recognition and appropriate management, including treatment interruption and corticosteroid
115 therapy when indicated, are essential to minimize morbidity while preserving oncologic
116 outcomes.

117 **10. Future Directions**

118 Future research should focus on organ-specific endpoints in clinical trials, improved
119 characterization of the pulmonary tumor microenvironment, and identification of predictive
120 biomarkers of response (16). Advances in imaging, artificial intelligence–assisted radiological
121 assessment, and novel therapeutic combinations may further refine the management of
122 pulmonary metastatic RCC (18).

123

124

125 **11. Limitations of This Review**

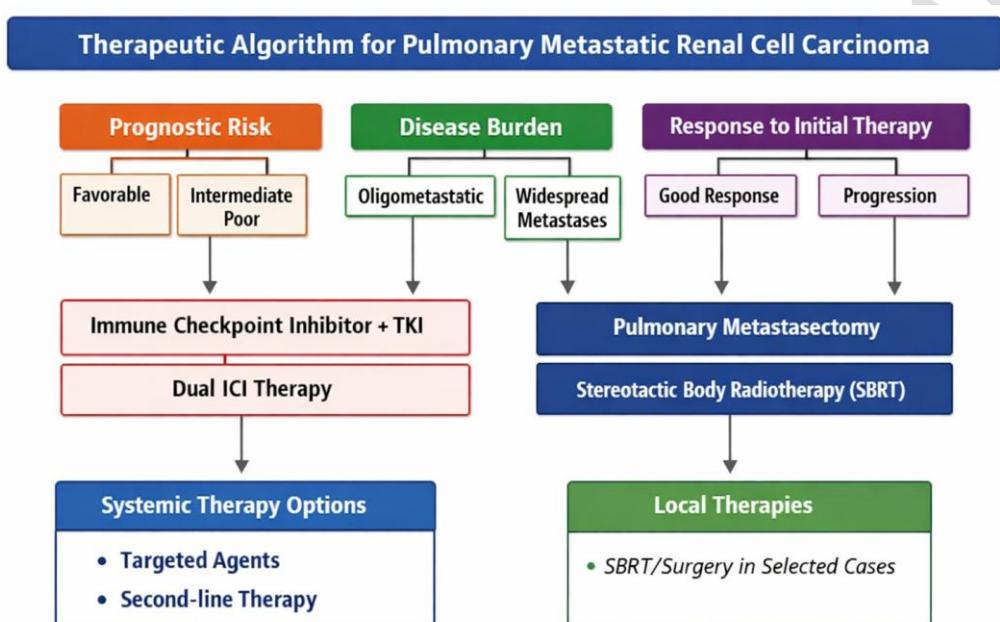
126 This review is limited by its narrative design and the heterogeneity of available evidence.
127 Many data supporting local treatment strategies are retrospective and subject to selection bias
128 (11,15). Nevertheless, this review provides a comprehensive and clinically oriented synthesis
129 of current evidence relevant to pulmonary metastatic RCC.

130 **12. Conclusion**

131 Pulmonary metastatic RCC is a common and clinically significant condition with favorable
132 responsiveness to modern systemic therapies. Immunotherapy-based combinations have
133 become the cornerstone of treatment and have significantly improved patient outcomes (7–
134 10). Selected patients with lung-dominant oligometastatic disease may benefit from the
135 integration of local therapies (11–13). Continued multidisciplinary collaboration and future
136 research focusing on organ-specific outcomes are essential to further optimize management
137 strategies.

138 **References :**

- 139 1. Sung H, Ferlay J, Siegel RL, et al. CA Cancer J Clin. 2021;71:209–249.
- 140 2. Ljungberg B, Albiges L, Abu-Ghanem Y, et al. Eur Urol. 2023;84:1–20.
- 141 3. Motzer RJ, Jonasch E, Agarwal N, et al. J Natl Compr Canc Netw. 2024;22:1–18.
- 142 4. Escudier B, Porta C, Schmidinger M, et al. Ann Oncol. 2019;30:706–720.
- 143 5. Kroeger N, Choueiri TK, Lee JL, et al. Eur Urol. 2013;63:72–79.
- 144 6. Dabestani S, Marconi L, Hofmann F, et al. Lancet Oncol. 2014;15:e549–e561.
- 145 7. Motzer RJ, Tannir NM, McDermott DF, et al. N Engl J Med. 2018;378:1277–1290.
- 146 8. Rini BI, Plimack ER, Stus V, et al. N Engl J Med. 2019;380:1116–1127.
- 147 9. Choueiri TK, Powles T, Burotto M, et al. N Engl J Med. 2021;384:829–841.
- 148 10. Motzer RJ, Alekseev B, Rha SY, et al. N Engl J Med. 2021;384:1289–1300.
- 149 11. Hellman S, Weichselbaum RR. J Clin Oncol. 1995;13:8–10.
- 150 12. Tree AC, Khoo VS, Eeles RA, et al. Lancet Oncol. 2013;14:e28–e37.
- 151 13. Hofmann HS, Neef H, Krohe K, et al. Eur Urol. 2005;48:77–81.


152 14. Heng DY, Xie W, Regan MM, et al. *J Clin Oncol*. 2009;27:5794–5799.

153 15. Hofmann HS, Neef H, Krohe K, et al. *Eur Urol*. 2005;48:77–81.

154 16. McDermott DF, Huseni MA, Atkins MB, et al. *Nat Med*. 2018;24:749–757.

155 17. Chiou VL, Burotto M. *J Clin Oncol*. 2015;33:3541–3543.

156 18. Choueiri TK, Bauer TM, Papadopoulos KP, et al. *N Engl J Med*. 2021;384:648–65

170 **Figure 1.** Therapeutic algorithm for the management of pulmonary metastatic renal cell carcinoma, integrating prognostic risk stratification, disease burden, and treatment response to guide systemic and local therapeutic strategies.

Ref.	Author (year)	Study design	Population	Treatment	Key lung-related findings
7	Motzer et al. (2018)	Phase III RCT	Metastatic RCC	Nivolumab + ipilimumab	+ Durable pulmonary responses and OS benefit
8	Rini et al. (2019)	Phase III RCT	Metastatic RCC	Pembrolizumab + axitinib	+ Rapid shrinkage in lung lesions
9	Choueiri et al. (2021)	Phase III RCT	Metastatic RCC	Nivolumab + cabozantinib	+ Improved PFS and OS in lung-dominant disease
10	Motzer et al. (2021)	Phase III RCT	Metastatic RCC	Pembrolizumab + lenvatinib	+ High objective response rate in pulmonary

Ref.	Author (year)	Study design	Population	Treatment	Key lung-related findings
6	Dabestani et al. (2014)	Systematic review	Metastatic RCC	Local therapies	metastases
15	Hofmann et al. (2005)	Retrospective cohort	RCC lung metastases	Metastasectomy	Survival benefit in selected patients
12	Tree et al. (2013)	Prospective series	Oligometastatic RCC	SBRT	Five-year OS $\approx 45\%$ Local control $> 90\%$

173

174 **Table 1. Major studies on pulmonary metastases from renal cell carcinoma**