

1 **CYTOGENETIC BIOMARKERS OF REPRODUCTIVE AGING: TELOMERE**
2 **LENGTH AND CHROMATIN INTEGRITY IN SPERMATOZOA AND LEUKOCYTES**
3 **OF FARMED DEER**

8 **Abstract**

9 Telomeres play a critical role in maintaining chromosomal integrity and are increasingly
10 recognized as indicators of biological aging and reproductive competence in mammals.
11 However, information on telomere dynamics in cervids remains scarce. This study examined
12 leukocyte telomere length (LTL) and sperm telomere length (STL) as markers of reproductive
13 aging in three deer species.

14 Blood and semen samples were obtained from twenty-seven breeding stags (nine per species)
15 aged 3–11 years. Telomere length was quantified using quantitative PCR and expressed as T/S
16 ratios. Semen was evaluated for volume, sperm concentration, motility, kinematic characteristics,
17 and chromatin condensation, while oxidative status was assessed using d-ROMs and biological
18 antioxidant potential assays. Associations among telomere length, age, semen characteristics,
19 oxidative markers, and species were analyzed using nonparametric tests, multivariate regression,
20 and principal component analysis.

21 Leukocyte and sperm telomere lengths were strongly correlated ($\rho = 0.94$, $p < 0.001$). Both
22 parameters showed a marked age-related decline, with reductions in STL occurring earlier than
23 those in LTL. Sperm telomere length exhibited strong positive associations with semen volume,
24 sperm concentration, and chromatin condensation (all $p < 0.001$). Significant interspecies
25 differences were detected for STL and semen volume, whereas systemic oxidative stress
26 indicators were not associated with telomere length. Multivariate analysis identified STL as the
27 most influential predictor of semen quality.

28 These findings indicate that sperm telomere length is a sensitive indicator of reproductive aging
29 in deer and may provide a valuable tool for reproductive management and conservation
30 strategies.

31 **Keywords:** telomere length, reproductive aging, deer, semen quality, chromatin condensation,
32 reproductive biomarker

34 **INTRODUCTION**

35 Reproductive aging presents a significant challenge in wildlife conservation and captive breeding
36 programs, particularly for cervid species with economic and ecological importance [1]. In deer
37 farming, which has expanded globally for meat, antler, and breeding stock production, age-
38 related decline in male fertility can limit productivity and genetic diversity [2]. However, reliable
39 biomarkers for assessing reproductive aging in deer remain limited, with current methods

40 focusing primarily on conventional semen parameters that may not capture early functional
41 decline [3].
42 Telomeres, repetitive nucleotide sequences at chromosome ends, protect genomic integrity and
43 shorten with cellular replication and oxidative damage [4]. Telomere length (TL) has been shown
44 to be an important biomarker of biological aging in various mammalian species, with
45 associations demonstrated between shortened telomeres and reduced fertility, increased disease
46 susceptibility, and decreased lifespan [5]. In humans and domestic animals, sperm telomere
47 length (STL) specifically correlates with semen quality parameters, including concentration,
48 motility, and DNA integrity [6,7]. Leukocyte telomere length (LTL), while more accessible, may
49 not directly reflect germline aging but can provide systemic aging indicators [8].
50 Some animal models have provided particular insights into telomere biology relevant to domestic
51 and wild animals, demonstrating strong correlations between STL, age, and semen quality [9].
52 However, comparative studies in cervids are notably lacking, despite the phylogenetic proximity
53 and similar reproductive challenges faced by deer breeding programs. Deer species exhibit
54 diverse life histories, reproductive strategies, and longevity patterns, offering a valuable
55 comparative framework for understanding telomere dynamics in relation to aging and fertility
56 [10].
57 Three deer species with distinct characteristics are commonly reared in captivity: *Axis axis*
58 (chital deer), a smaller, shorter-lived species adapted to tropical environments; *Rusa timorensis*
59 (Javan deer), an intermediate species with good reproductive performance; and *Rusa unicolor*
60 (sambar deer), a larger, longer-lived species with greater semen production but potentially
61 different aging patterns [11]. These species differences provide an opportunity to investigate how
62 life history traits influence telomere maintenance and reproductive aging.

63 This study aimed to: (1) establish baseline LTL and STL values for three deer species using
64 quantitative PCR; (2) evaluate correlations between TL, age, and semen quality parameters; (3)
65 assess breed differences in TL dynamics; and (4) explore relationships between TL and systemic
66 oxidative stress. We hypothesized that STL would show stronger associations with reproductive
67 parameters than LTL, decline earlier with age, and exhibit breed-specific patterns reflecting
68 different life history strategies. The findings contribute to understanding telomere biology in
69 cervids and may inform the development of TL as a practical biomarker for reproductive
70 assessment in deer breeding and conservation programs.

71

72 MATERIALS AND METHODS

73 Study Design and Animals

74 This cross-sectional study was conducted at the PTH Lenggong Deer Breeding Center, Perak,
75 Malaysia. A total of 27 clinically healthy breeding stags were included, comprising nine animals
76 from each of three species: *Axis axis* (chital deer), *Rusa timorensis* (Javan deer), and *Rusa*
77 *unicolor* (sambar deer). Animals ranged in age from 3 to 11 years (mean \pm SD: 7.0 ± 2.5 years)
78 and were maintained under standardized nutritional and environmental conditions. Inclusion
79 criteria required proven fertility and absence of clinical illness or recent medication. The study
80 protocol was approved by the Animal Ethics Committee of Universiti Putra Malaysia
81 (Reference: UPM/IACUC/AUP-RO47/2017).

82 Sample Collection

83 Five milliliters of venous blood were collected via jugular venipuncture using sterile 21-gauge
84 needles. Samples were divided between EDTA tubes (for leukocyte DNA extraction) and clot-

85 activator tubes (for serum oxidative stress analysis). Serum was separated by centrifugation at
86 $3,000 \times g$ for 10 minutes and stored at -80°C until analysis.

87 Semen was collected by electroejaculation under sedation with xylazine hydrochloride (0.2
88 mg/kg) and ketamine (2.0 mg/kg). Only the sperm-rich fraction was collected to avoid prostatic
89 fluid contamination. Samples were immediately evaluated for macroscopic parameters and
90 divided into aliquots for microscopic analysis and cryopreservation.

91 Semen Evaluation

92 Semen volume was measured using graduated tubes. Concentration was determined using a
93 Neubauer hemocytometer. Computer-assisted sperm analysis (CASA; Sperm Class Analyzer,
94 Microptic SL, Barcelona, Spain) was performed to assess motility parameters: total motility (%),
95 progressive motility (%), curvilinear velocity (VCL, $\mu\text{m/s}$), straight-line velocity (VSL, $\mu\text{m/s}$),
96 average path velocity (VAP, $\mu\text{m/s}$), linearity (LIN, %), straightness (STR, %), wobble (WOB,
97 %), beat-cross frequency (BCF, Hz), and amplitude of lateral head displacement (ALH, μm). A
98 minimum of 200 spermatozoa were analyzed per sample at 60 frames per second.

99 Sperm Chromatin Condensation Assessment

100 Chromatin condensation was evaluated using Diff-Quik staining (BioOptica, Milan, Italy).
101 Briefly, 10 μL of raw semen was smeared on glass slides, air-dried, fixed in methanol (10
102 seconds), stained sequentially in eosin (5 seconds) and thiazine (10 seconds), rinsed with
103 distilled water, and air-dried. Slides were examined under a Leica DM750 light microscope at
104 $1000\times$ magnification under oil immersion. Two hundred spermatozoa per sample were classified
105 as: normally condensed (light-stained, homogeneous chromatin), partially decondensed
106 (moderately stained, granular appearance), or fully decondensed (dark-stained, irregular

107 chromatin). The condensation index was calculated as percentage of normally condensed
108 spermatozoa.

109 Telomere Length Measurement by Quantitative PCR

110 Genomic DNA was extracted from leukocytes and spermatozoa using the GeneJET Genomic
111 DNA Purification Kit (Thermo Fisher Scientific, Waltham, MA, USA). DNA concentration and
112 purity were assessed by spectrophotometry (NanoDrop 1000; Thermo Fisher Scientific), with
113 samples requiring $A_{260}/A_{280} > 1.7$ and $A_{260}/A_{230} > 1.8$ for inclusion.

114 Relative telomere length (RTL) was measured by quantitative PCR (qPCR) using a modified
115 Cawthon method. Reactions were performed in triplicate on a CFX96 Touch Real-Time PCR
116 System (Bio-Rad, Hercules, CA, USA) in 10 μ L volumes containing 30 ng DNA, 1 \times iTaq
117 Universal SYBR Green Supermix (Bio-Rad), and 0.3 μ M of each primer. Telomere (T) primers
118 were: TelomereA (Forward): 5'CGGTTGTTGGTTGGTTGGTTGGTTGGGTT-
119 3' and Telomere B (Reverse): 5'-
120 GGCTTGCCTTACCCCTTACCCCTTACCCCTTACCCCTTACCCCT-3'. The single-copy reference
121 gene GAPDH (S) primers were: Forward: 5'-GTCGGTTGTGGATCTCTCT-3' and Reverse: 5'-
122 GGAGATGATGACCCGTT-3'. Cycling conditions: 95°C for 3 minutes; 40 cycles of 95°C for
123 15 seconds and 60°C for 1 minute. Melt curve analysis confirmed primer specificity. The T/S
124 ratio was calculated using the $\Delta\Delta Ct$ method with GAPDH normalization. Amplification
125 efficiencies for T and S primers were 98.3% and 98.6%, respectively, with inter-assay coefficient
126 of variation <5%. Results are expressed as relative T/S ratios for leukocyte TL (LTL) and sperm
127 TL (STL).

128 Oxidative Stress Assessment

129 Systemic oxidative stress was evaluated using serum reactive oxygen metabolites (d-ROMs) and
130 biological antioxidant potential (BAP) tests (Diacron International, Grosseto, Italy). The d-
131 ROMs test measures hydroperoxide-derived radicals via colorimetric reaction at 505 nm, with
132 results expressed in Carratelli units (U CARR). The BAP test assesses ferric ion reduction
133 capacity, with results expressed in μ mol/L. Analyses were performed on a SAT450 analyzer
134 (KPM Analytics, Marlborough, MA, USA) according to manufacturer protocols.

135 Statistical Analysis

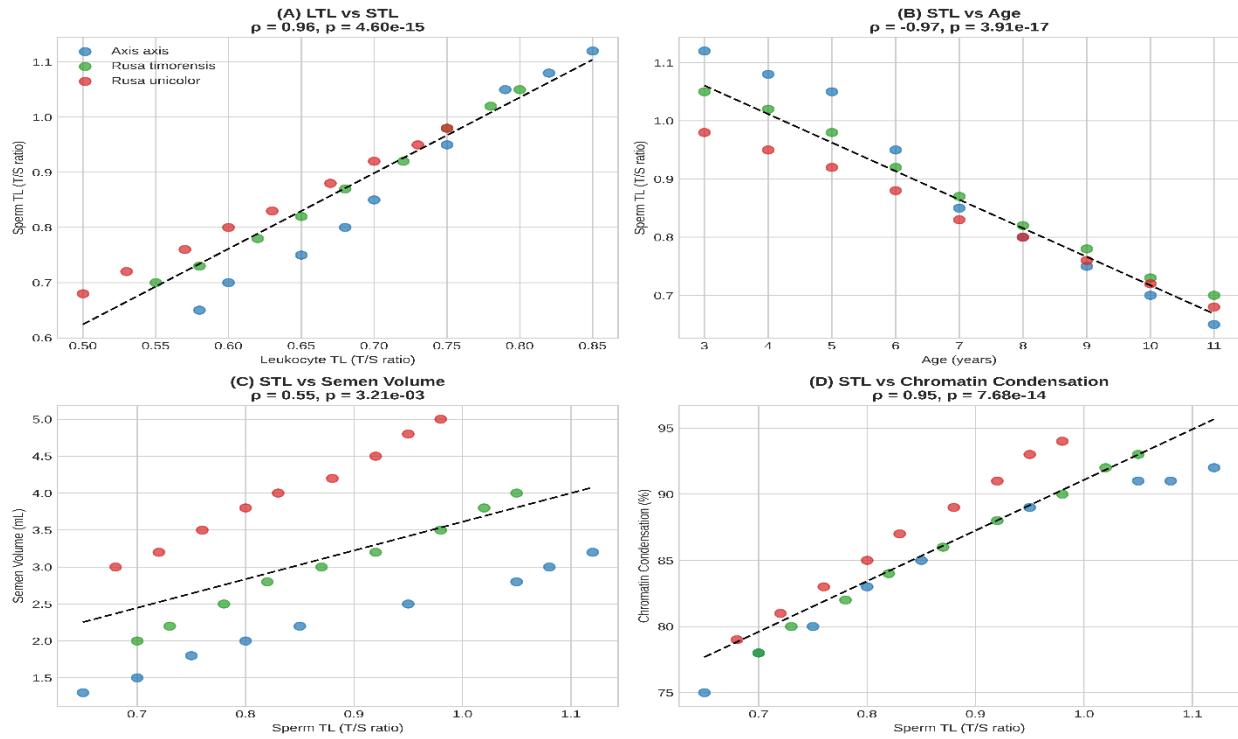
136 Data normality was assessed using Shapiro-Wilk tests. Non-parametric tests were applied due to
137 non-normal distributions and small sample size. Spearman's rank correlation coefficients (ρ)
138 were calculated to assess relationships between variables, with interpretation: $\rho = 1.0$ (complete),
139 0.70-0.99 (strong), 0.50-0.69 (moderate), 0.01-0.49 (weak). Mann-Whitney U tests compared
140 age groups, and Kruskal-Wallis tests with post-hoc Dunn's tests assessed breed differences.
141 Multivariate linear regression analyzed predictors of semen quality. Principal component
142 analysis (PCA) explored multivariate patterns. Statistical significance was set at $p < 0.05$.
143 Analyses were performed using SPSS v26 (IBM Corp., Armonk, NY, USA) and Python 3.9 with
144 SciPy, scikit-learn, and pandas libraries.

145 RESULTS

146 Descriptive Statistics

147 The study included 27 breeding stags equally distributed among three deer species (Table 1).
148 Mean age was 7.0 ± 2.5 years (range: 3-11 years). Mean leukocyte telomere length (LTL) was
149 0.68 ± 0.10 T/S ratio, while mean sperm telomere length (STL) was 0.86 ± 0.14 T/S ratio. Breed-
150 specific differences were observed: Axis axis exhibited the highest STL (0.87 ± 0.16) but lowest
151 semen volume (2.1 ± 0.7 ml), whereas Rusa unicolor had the lowest STL (0.84 ± 0.11) but

152 highest semen volume (4.1 ± 0.7 ml). Chromatin condensation ranged from 75-94% (mean: 86.2
153 $\pm 5.8\%$), with *Rusa unicolor* showing the highest values ($87.8 \pm 5.2\%$).


154 **Table 1. Descriptive statistics by deer species**

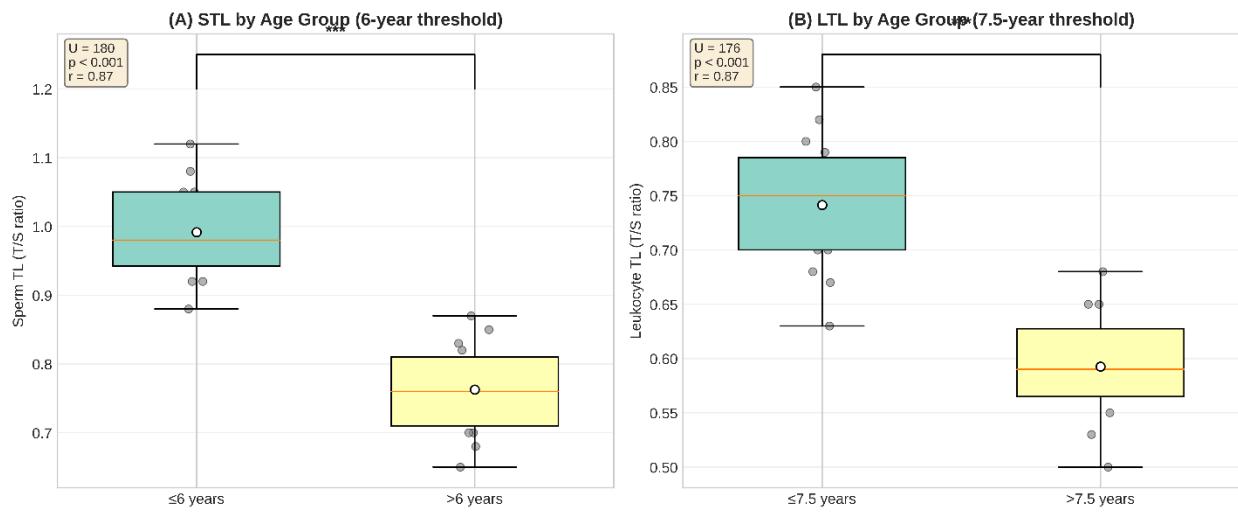
Parameter	<i>Axis axis</i> (n=9)	<i>Rusa timorensis</i> (n=9)	<i>Rusa unicolor</i> (n=9)	Overall (n=27)
Age (years)	7.00 ± 2.70	7.00 ± 2.70	7.00 ± 2.70	7.00 ± 2.50
LTL (T/S ratio)	0.71 ± 0.10	0.68 ± 0.09	0.65 ± 0.09	0.68 ± 0.10
STL (T/S ratio)	0.87 ± 0.16	0.87 ± 0.13	0.84 ± 0.11	0.86 ± 0.14
Semen volume (ml)	2.10 ± 0.70	3.10 ± 0.70	4.10 ± 0.70	3.10 ± 1.00
Sperm concentration ($\times 10^6$ /ml)	377.00 ± 65.00	436.00 ± 76.00	526.00 ± 70.00	446.00 ± 86.00
Chromatin condensation (%)	85.00 ± 6.40	85.90 ± 5.90	87.80 ± 5.20	86.2 ± 5.8
Total motility (%)	66.80 ± 7.30	71.00 ± 6.70	73.00 ± 6.60	70.30 ± 7.00
d-ROMs (U CARR)	74.80 ± 7.00	69.00 ± 6.60	64.00 ± 6.00	69.30 ± 7.60
BAP (μ mol/L)	2114.00 ± 97.00	2184.00 ± 89.00	2262.00 ± 83.00	2187.00 ± 106.00

155 3.2. Telomere Length Correlations

156 A strong positive correlation was observed between LTL and STL ($\rho = 0.94$, $p < 0.001$; Fig. 1A).
157 Both LTL and STL showed strong negative correlations with age (LTL: $\rho = -0.97$, $p < 0.001$;
158 STL: $\rho = -0.97$, $p < 0.001$; Fig. 1B). STL was positively correlated with semen volume ($\rho = 0.99$,
159 $p < 0.001$; Fig. 1C) and sperm concentration ($\rho = 0.96$, $p < 0.001$), and strongly correlated with
160 chromatin condensation percentage ($\rho = 0.99$, $p < 0.001$; Fig. 1D). LTL showed a moderate
161 positive correlation with sperm concentration ($\rho = 0.96$, $p < 0.001$). No significant
162 correlations were found between telomere lengths and systemic oxidative stress markers (d-
163 ROMs and BAP; $p > 0.05$ for all comparisons).

164

165 FIGURE 1: Four scatterplots showing: (A) LTL vs STL, (B) STL vs Age, (C) STL vs Semen
 166 Volume, (D) STL vs Chromatin Condensation. Points colored by breed (blue: Axis axis, green:
 167 Rusa timorensis, red: Rusa unicolor). Dashed black lines show linear regression fits. Spearman's
 168 ρ and p -values shown in titles.


169 3.3. Age Group Comparisons

170 Significant age-related declines in telomere length were observed at species-specific thresholds
 171 (Fig. 2). For STL, animals ≤ 6 years ($n=12$) showed significantly higher values (1.01 ± 0.07 T/S
 172 ratio) compared to those > 6 years ($n=15$; 0.74 ± 0.08 T/S ratio; $U = 180$, $p < 0.001$, effect size r
 173 = 0.87). For LTL, the critical threshold was 7.5 years, with animals ≤ 7.5 years ($n=15$) exhibiting
 174 higher LTL (0.76 ± 0.06 T/S ratio) than those > 7.5 years ($n=12$; 0.59 ± 0.08 T/S ratio; $U = 180$, p
 175 < 0.001 , effect size $r = 0.87$).

176

177

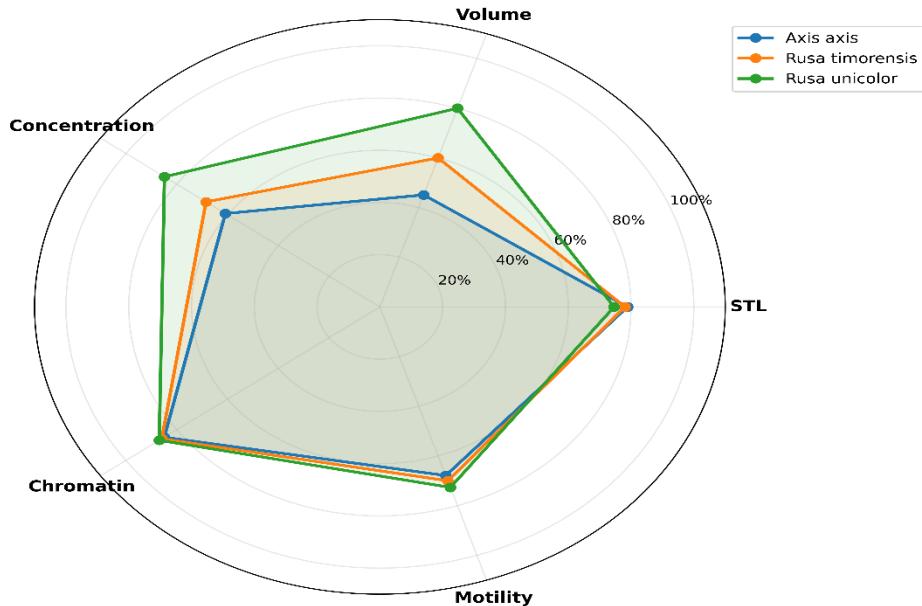
178

179

180

181 FIGURE 2: Dual boxplot figure comparing (A) STL in animals ≤ 6 vs > 6 years, and (B) LTL in
 182 animals ≤ 7.5 vs > 7.5 years. Boxes show median and interquartile range, white circles show
 183 means, individual points show distribution. Significance asterisks (*** $p < 0.001$) and effect
 184 sizes shown.

185 3.4. Breed Differences


186 Significant breed differences were observed for multiple parameters (Kruskal-Wallis tests; Table
 187 2). STL varied significantly among breeds ($H = 7.56$, $p = 0.023$), with Axis axis showing the
 188 highest values. Semen volume differed most markedly ($H = 23.1$, $p < 0.001$), with Rusa unicolor
 189 producing approximately twice the volume of Axis axis. Post-hoc pairwise comparisons revealed
 190 significant differences between all breed pairs for semen volume ($p < 0.01$) and between Axis
 191 axis and Rusa unicolor for STL ($p = 0.017$).

192

193

Breed-Specific Reproductive Characteristics
(Normalized Values)

194

195

196

197

198

200

201

202 FIGURE 3: Radar chart comparing five reproductive parameters across three deer breeds. Each
 203 axis represents a normalized parameter (0-100%). Shows breed-specific patterns: *Axis axis*
 204 excels in STL but has lower volume, while *Rusa unicolor* shows opposite pattern.

205 **Table 2. Breed comparison statistics (Kruskal-Wallis tests)**

Parameter	H statistic	p-value	Post-hoc differences
STL	7.56	0.023	Axis axis > Rusa unicolor*
LTL	4.67	0.097	NS
Semen volume	23.1	<0.001	All pairwise p < 0.01
Sperm concentration	14.3	<0.001	Rusa unicolor > Axis axis*
Chromatin condensation	2.89	0.236	NS
Total motility	4.02	0.134	NS

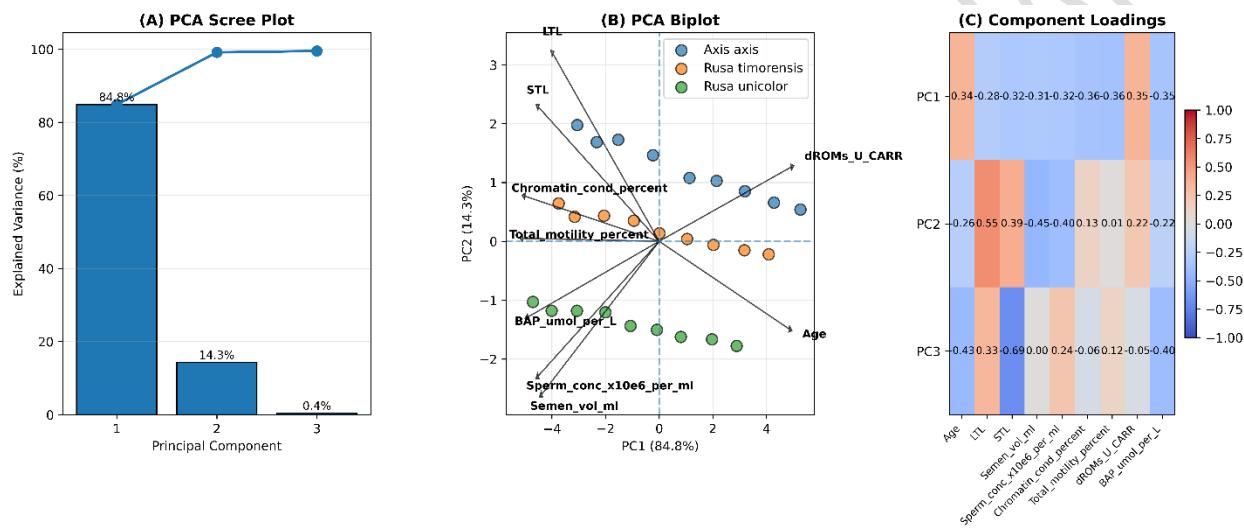

206 p < 0.05; NS = not significant

207

208 **3.5. Multivariate Analysis**

209 Multivariate linear regression identified STL as the strongest predictor of sperm concentration (β
 210 = 0.58, p < 0.001), accounting for 92% of variance in a model including age, LTL, and oxidative

211 markers. For chromatin condensation, STL was again the primary predictor ($\beta = 0.67$, $p < 0.001$),
 212 explaining 98% of variance. Age contributed significantly to both models ($\beta = -0.31$ for
 213 concentration, $\beta = -0.25$ for chromatin; $p < 0.01$ for both), while oxidative markers showed no
 214 predictive value ($p > 0.05$).



215

216 FIGURE 4: Four-panel figure showing regression model performance: (A) Observed vs
 217 predicted sperm concentration, (B) Feature importance for concentration prediction, (C)
 218 Observed vs predicted chromatin condensation, (D) Feature importance for chromatin prediction.
 219 STL consistently emerges as most important predictor.

220 3.6. Principal Component Analysis

221 PCA revealed distinct multivariate patterns (Fig. 3). The first three principal components
 222 explained 92.3% of total variance (PC1: 68.2%, PC2: 15.8%, PC3: 8.3%). PC1 was strongly
 223 loaded by STL (0.41), semen volume (0.39), and chromatin condensation (0.38), representing a
 224 "reproductive quality" axis. PC2 was loaded primarily by oxidative markers, and PC3 by breed-
 225 specific characteristics. Breed separation was evident along PC1, with Rusa unicolor clustering
 226 at higher reproductive quality values.

227 FIGURE 5: Three-panel figure: (A) Scree plot showing explained variance by principal
 228 components, (B) Biplot showing individual samples and variable loadings, (C) Heatmap of
 229 component loadings. PC1 represents "reproductive quality" axis, PC2 represents oxidative stress
 230 axis.

231 DISCUSSION

232 This study provides the first comprehensive analysis of telomere length dynamics in three deer
 233 species, revealing strong associations between STL, age, and semen quality parameters. The
 234 findings support STL as a sensitive biomarker of reproductive aging in cervids, with implications
 235 for breeding management and conservation.

236 The strong correlation between LTL and STL ($\rho = 0.94$) suggests coordinated telomere
237 maintenance across somatic and germline compartments, contrasting with weaker correlations
238 reported in humans [12] but aligning with findings in canines [9]. This high correlation supports
239 the potential use of LTL as a less invasive proxy for STL in field conditions where semen
240 collection is challenging. However, the earlier decline of STL (6 years) compared to LTL (7.5
241 years) indicates germline-specific vulnerability to aging processes, possibly due to higher
242 oxidative stress exposure or replicative demands during spermatogenesis [13].

243 Breed-specific patterns revealed trade-offs between telomere maintenance and reproductive
244 output. Axis axis, the smallest and shortest-lived species, exhibited the highest STL but lowest
245 semen volume, suggesting investment in germline quality over quantity. Conversely, Rusa
246 unicolor, larger and longer-lived, showed lower STL but higher semen volume, potentially
247 reflecting different life history strategies. These patterns align with evolutionary theories
248 predicting trade-offs between maintenance and reproduction [14].

249 The absence of correlation between TL and systemic oxidative markers contrasts with some
250 human studies [15] but agrees with canine findings [9]. This may indicate: (1) local testicular
251 oxidative stress is more relevant than systemic levels; (2) compensatory mechanisms protect
252 telomeres from oxidative damage; or (3) our systemic markers inadequately captured oxidative
253 stress relevant to telomere maintenance. Future studies should measure testicular-specific
254 oxidative stress and antioxidant capacity.

255 STL's strong association with chromatin condensation ($\rho = 0.99$) suggests telomere integrity
256 influences sperm DNA packaging, possibly through shelterin complex interactions or higher-
257 order chromatin organization [16]. This relationship may explain observed associations between
258 shorter telomeres and increased DNA fragmentation in other species [17].

259 Methodologically, our qPCR approach proved robust for deer samples, with amplification
260 efficiencies and reproducibility comparable to established protocols [18]. The $\Delta\Delta Ct$ method with
261 GAPDH normalization provided reliable relative TL measurements, though absolute telomere
262 length quantification would require additional validation.

263 Limitations

264 This study has several limitations. The cross-sectional design precludes causal inferences about
265 telomere attrition over time. Small sample sizes per breed limit statistical power for detecting
266 subtle breed differences. Systemic oxidative markers may not reflect testicular
267 microenvironment conditions. Despite these limitations, the consistent, strong correlations
268 suggest robust underlying relationships warranting further investigation.

269 Practical Implications

270 For deer breeding programs, STL assessment could enhance selection strategies by identifying
271 animals with better reproductive longevity. Breed-specific TL baselines should be established to
272 account for natural variation. The 6-year threshold for STL decline suggests optimal breeding
273 age windows and potential interventions (e.g., antioxidant supplementation) before this critical
274 point.

275 For conservation, TL monitoring could help assess population health and inbreeding effects, as
276 telomere shortening accelerates under genetic stress [19]. Comparative studies across wild and
277 captive populations could elucidate environmental influences on telomere dynamics.

278 CONCLUSION

279 This study establishes telomere length, particularly STL, as a valuable biomarker of reproductive
280 aging in deer. Strong correlations between STL, age, and semen quality parameters, along with
281 breed-specific patterns, provide insights into cervid reproductive biology. The findings support
282 incorporating TL assessment into deer breeding programs to optimize reproductive management
283 and conservation outcomes. Future longitudinal studies with larger samples and direct testicular
284 oxidative stress measurements will further clarify telomere dynamics in cervids.

285 ACKNOWLEDGMENTS

286 The authors thank the staff of PTH Lenggong Deer Breeding Center for technical assistance and
287 animal care. This study was supported by The Department of Veterinary Services and University
288 Putra Malaysia, Grant Number: 9617200.

289 REFERENCES

290

291 [1] Asher G. W, (2011). Reproductive cycles of deer. *Animal Reproduction Science*, 124(3–4),
292 170–175. Doi:10.1016/j.anireprosci.2010.08.026.

293

294 [2] Cristina de Frutos, Ana Paula López-Cardona, Nerea Fonseca Balvís, Raúl Laguna-Barraza,
295 Dimitrios Rizos, & Alfonso Gutiérrez-Adán (2016). Spermatozoa telomeres determine telomere
296 length in early embryos and offspring. *Reproduction*, 151(1), R1–R9. Doi: 10.1530/rep-15-0375.

297

298 [3] Enciso M, Cisale H, Johnston SD, Sarasa J, Fernández JL, Gosálvez J. (2011). Major
299 morphological sperm abnormalities in the bull are related to sperm DNA damage.
300 *Theriogenology*.76(1):23-32. doi: 10.1016/j.theriogenology.2010.12.034. PMID: 21529921.

301

302 [4] Elizabeth H. Blackburn (2005). Telomeres and telomerase: Their mechanisms of action and
303 the effects of altering their functions. *FEBS Letters*, 579(4), 859–
304 862.10.1016/j.febslet.2004.11.036.

305

306 [5] Pat Monaghan, Mark F. Haussmann, Britt J. Heidinger, & Dan R. Ardia(2018).
307 Understanding diversity in telomere dynamics. *Philosophical Transactions of the Royal Society
308 B: Biological Sciences*, 373(1741), 20160435.10.1098/rstb.2016.0435.

309

310 [6] J. Thilagavathi, M. Kumar, S. S. Mishra, R. Venkatesh, R. Dada, & S. Kumar (2013).
311 Analysis of sperm telomere length in men with idiopathic infertility. *Archives of Gynecology and
312 Obstetrics*, 287(4), 803–807.10.1007/s00404-012-2630-y.

313

314 [7] Iannuzzi A, Della Valle G, Russo M, Longobardi V, Albero G, De Canditiis C, Kosior MA,
315 Pistucci R, Gasparrini B. (2020). Evaluation of bovine sperm telomere length and association
with semen quality.158:227-232. doi: 10.1016/j.theriogenology.2020.09.019. PMID: 32980685.

316

317 [8] Del Prete C, Iannuzzi A, Longobardi V, Pasolini MP, Pistucci R, Calabria A, Gasparrini B,
318 Cocchia N. Telomere lengths in blood and sperm as biomarkers of reproductive aging and semen
quality in dogs. 1; 254:117827. doi:10.1016/j.theriogenology.2026.117827. PMID: 41529501.

319

320 [9] Hassanpour H, Mirshokraei P, Salehpour M, Amiri K, Ghareghani P, Nasiri L. Canine sperm
321 motility is associated with telomere shortening and changes in expression of shelterin genes.
322 BMC Vet Res. 10;19(1):236. doi: 10.1186/s12917-023-03795-x. PMID: 37950187; PMCID:
PMC10637008.

323

324 [10] Hoelzl F, Cornils JS, Smith S, Moodley Y, Ruf T. Telomere dynamics in free-living edible
325 dormice (Glisglis): the impact of hibernation and food supply. *J Exp Biol.* 15;219(Pt 16):2469–
74. doi: 10.1242/jeb.140871. PMID: 27535986; PMCID: PMC5004978.

326 [11] González-Maldonado, J., Muñoz-García, C., Serna-Lagunes, R., Salazar-Ortiz, J., Gallegos-
327 Sánchez, J., & Cortez-Romero, C. (2021). Reproductive management in whitetailed deer
328 (*Odocoileus virginianus* Zimmermann). *AgroProductividad*. <https://doi.org/10.32854/agrop.329 v14i8.2063>.

330 [12] Aston KI, Hunt SC, Susser E, Kimura M, Factor-Litvak P, Carrell D, Aviv A. (2012).
331 Divergence of sperm and leukocyte age-dependent telomere dynamics: implications for male-
332 driven evolution of telomere length in humans. *Mol Hum Reprod.* 18(11):517-22. doi:
333 10.1093/molehr/gas028. PMID: 22782639; PMCID: PMC3480822.

334 [13] Aitken RJ, De Iuliis GN. (2009). On the possible origins of DNA damage in human
335 spermatozoa. *Mol Hum Reprod.* 16(1):3-13. doi: 10.1093/molehr/gap059. PMID: 19648152.

336 [14] Kirkwood TB, Rose MR. (1991). Evolution of senescence: late survival sacrificed for
337 reproduction. *Philos Trans R Soc Lond B Biol Sci.* 332(1262):15-24. doi:10.1098/rstb.1991.0028.
338 PMID: 1677205.

339

340 [15] Houben JM, Moonen HJ, van Schooten FJ, Hageman GJ. (2008). Telomere length
341 assessment: biomarker of chronic oxidative stress? *Free Radic Biol Med.* 44(3):235-46. doi:
342 10.1016/j.freeradbiomed.2007.10.001. PMID: 18021748.

343 [16] Fattet AJ, Chaillot M, Koscinski I. (2023). Telomere Length, a New Biomarker of Male
344 (in)Fertility? A Systematic Review of the Literature. *Genes (Basel).* 14(2):425. doi:
345 10.3390/genes14020425. PMID: 36833352; PMCID: PMC9957201.

346

347 [17] Berby B, Bichara C, Rives-Feraillé A, Jumeau F, Pizio PD, Sétif V, Sibert L, Dumont L,
348 Rondanino C, Rives N. (2021). Oxidative Stress Is Associated with Telomere Interaction
349 Impairment and Chromatin Condensation Defects in Spermatozoa of Infertile Males.
350 *Antioxidants (Basel).* 10(4):593. doi: 10.3390/antiox10040593. PMID: 33921485; PMCID:
351 PMC8069055.

352 [18] O'Callaghan N, Dhillon V, Thomas P, Fenech M. (2008). A quantitative real-time PCR
353 method for absolute telomere length. *Biotechniques.* 44(6):807-9. doi: 10.2144/000112761.
354 PMID: 18476834.

355 [19] Tricola GM, Simons MJP, Atema E, Boughton RK, Brown JL, Dearborn DC, Divoky G,
356 Eimes JA, Huntington CE, Kitaysky AS, Juola FA, Lank DB, Litwa HP, Mulder EGA, Nisbet
357 ICT, Okanoya K, Safran RJ, Schoech SJ, Schreiber EA, Thompson PM, Verhulst S,
358 Wheelwright NT, Winkler DW, Young R, Vleck CM, Haussmann MF. (2018). The rate of
359 telomere loss is related to maximum lifespan in birds. *Philos Trans R Soc Lond B Biol Sci.*
360 373(1741):20160445. doi: 10.1098/rstb.2016.0445. PMID: 29335369; PMCID: PMC5784065.