

1 **ACTIVATION OF NRF2/HO-1 SIGNALING MEDIATES THE PROTECTIVE**
2 **EFFECTS OF HIBISCUS SABDARIFFA AGAINST RESTRAINT STRESS-INDUCED**
3 **OXIDATIVE DAMAGE IN FEMALE WISTAR RATS**

4

5

6 **ABSTRACT**

7 Chronic psychological stress disrupts redox homeostasis, leading to oxidative damage,
8 inflammation, and organ dysfunction. Females may be particularly vulnerable due to stress-
9 related hormonal modulation of antioxidant signaling pathways. *Hibiscus sabdariffa* (HS)
10 possesses documented antioxidant properties; however, its redox-regulated molecular
11 mechanisms under stress conditions remain incompletely understood.

12 This study investigated whether activation of the nuclear factor erythroid 2-related factor 2/heme
13 oxygenase-1 (Nrf2/HO-1) pathway underlies the protective effects of HS in restraint stress-
14 exposed female Wistar rats. Thirty-six rats were allocated to six groups: non-stressed control,
15 stress control, stress + HS (250 or 500 mg/kg), and HS alone (250 or 500 mg/kg). Restraint stress
16 was applied for 6 h/day for 14 days. Oxidative stress biomarkers, antioxidant enzyme activities,
17 gene and protein expression of Nrf2, HO-1, TNF- α , and iNOS, and histopathological alterations
18 in the brain, liver, and kidney were assessed.

19 Restraint stress markedly increased lipid peroxidation and suppressed endogenous antioxidant
20 defenses, accompanied by downregulation of Nrf2 and HO-1 and upregulation of TNF- α and
21 iNOS. HS treatment dose-dependently restored antioxidant enzyme activities, reduced oxidative
22 damage, activated Nrf2/HO-1 signaling, and attenuated inflammatory gene and protein
23 expression. High-dose HS (500 mg/kg) normalized redox and inflammatory markers to near-
24 control levels and conferred significant histological protection across examined tissues.

25 These findings demonstrate that HS mitigates stress-induced oxidative injury through activation
26 of Nrf2-dependent antioxidant signaling and suppression of inflammatory mediators. The study
27 provides mechanistic evidence supporting HS as a low-cost, accessible redox-modulating
28 therapeutic candidate for stress-related oxidative disorders, particularly in females.

29 **Keywords:** *Hibiscus sabdariffa*; oxidative stress; Nrf2/HO-1; restraint stress; inflammation;
30 antioxidant enzymes.

31

32 Address for correspondence: Aliyu Buhari, Department of Nursing Sciences, Faculty of Basic
33 Medical Sciences, Zamfara State University Talata Mafara & Department of Physiology, Faculty
34 of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University Sokoto,
35 Sokoto State, Nigeria Telephone: +2348035474438
36 email: bayarko74@yahoo.com

37

38 **INTRODUCTION**

39 Chronic psychological stress is a major contributor to the development of oxidative stress–
40 related disorders, including neurodegenerative diseases, metabolic dysfunction, cardiovascular
41 pathology, and reproductive impairment [1]. Prolonged stress exposure disrupts cellular redox
42 homeostasis by promoting excessive generation of reactive oxygen species (ROS) and reactive
43 nitrogen species (RNS), overwhelming endogenous antioxidant defense systems and leading to
44 lipid peroxidation, protein oxidation, DNA damage, and inflammatory activation [2,3,4]. These
45 redox disturbances play a central role in stress-induced tissue injury and organ dysfunction.

46 Emerging evidence indicates that females may exhibit heightened vulnerability to stress-induced
47 oxidative damage due to sex-specific neuroendocrine and hormonal modulation of antioxidant
48 signaling pathways [5,6]. Fluctuations in estrogen and glucocorticoids under chronic stress
49 conditions can influence mitochondrial function, redox-sensitive transcription factors, and
50 inflammatory mediators, thereby exacerbating oxidative and inflammatory responses [7,8].
51 Despite increasing recognition of sex differences in stress biology, mechanistic studies
52 investigating redox regulation under stress conditions in females remain limited.

53 At the molecular level, the nuclear factor erythroid 2–related factor 2 (Nrf2) signaling pathway is
54 a master regulator of cellular antioxidant and cytoprotective responses [9,10,11]. Under basal
55 conditions, Nrf2 is sequestered in the cytoplasm by Kelch-like ECH-associated protein 1
56 (Keap1) and targeted for proteasomal degradation [12,13]. Oxidative or electrophilic stress
57 disrupts this interaction, allowing Nrf2 to translocate into the nucleus, where it binds antioxidant
58 response elements (AREs) and induces transcription of phase II detoxifying and antioxidant
59 enzymes, including heme oxygenase-1 (HO-1), superoxide dismutase (SOD), catalase (CAT),
60 and glutathione peroxidase (GPx) [14,15,16]. Impairment of Nrf2 signaling has been implicated
61 in stress-induced oxidative injury, neuroinflammation, and systemic inflammatory disorders
62 [17,18,19]. In parallel, chronic stress activates pro-inflammatory signaling cascades
63 characterized by increased expression of tumor necrosis factor- α (TNF- α), inducible nitric oxide
64 synthase (iNOS), and excessive nitric oxide production, further amplifying oxidative damage
65 through nitrosative stress mechanisms [20]. The reciprocal regulation between Nrf2-mediated
66 antioxidant defense and inflammatory signaling highlights the importance of redox-inflammatory
67 crosstalk in stress-related pathology [21].

68 Plant-derived polyphenols have attracted considerable attention as modulators of redox signaling
69 pathways, particularly due to their ability to activate endogenous antioxidant defenses rather than
70 acting solely as direct radical scavengers [22,23,24]. *Hibiscus sabdariffa* L. (Malvaceae) is a
71 widely consumed medicinal plant rich in anthocyanins, flavonoids, phenolic acids, and organic
72 acids [25,26]. Previous studies have documented its antioxidant, anti-inflammatory,
73 antihypertensive, hepatoprotective, and neuroprotective properties. However, many of these
74 studies remain largely descriptive, focusing on biochemical endpoints without clearly elucidating
75 upstream molecular signaling mechanisms [27,28,29]. Recent experimental evidence suggests
76 that *Hibiscus sabdariffa* may exert its protective effects through modulation of redox-sensitive
77 transcription factors, including Nrf2. Nonetheless, whether activation of the Nrf2/HO-1 signaling
78 axis underlies the protective actions of *Hibiscus sabdariffa* against chronic psychological stress
79 particularly in female subjects—remains poorly defined. Moreover, comprehensive studies

80 integrating biochemical, molecular, and histopathological outcomes in stress-exposed female
81 models are scarce.

82 Restraint stress is a well-established experimental paradigm that mimics chronic psychological
83 stress and reliably induces oxidative stress, inflammation, and tissue injury across multiple organ
84 systems, including the brain, liver, and kidney [30,31]. Investigating therapeutic interventions
85 within this model provides valuable mechanistic insights into stress-related redox dysregulation.

86 Therefore, the present study was designed to investigate the molecular mechanisms underlying
87 the therapeutic potential of *Hibiscus sabdariffa* in restraint stress-induced oxidative damage in
88 female Wistar rats. We hypothesized that *Hibiscus sabdariffa* confers cytoprotection by
89 activating the Nrf2/HO-1 antioxidant signaling pathway while suppressing pro-inflammatory
90 mediators such as TNF- α and iNOS. To test this hypothesis, we evaluated oxidative stress
91 biomarkers, antioxidant enzyme activities, gene and protein expression of key redox and
92 inflammatory markers, and histopathological alterations in stress-vulnerable organs.

93 MATERIALS AND METHODS

94 Chemicals and Reagents

95 All chemicals and reagents used in this study were of analytical grade. Assay kits for
96 malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione
97 peroxidase (GPx) were obtained from standard commercial suppliers. Primary antibodies for
98 Nrf2, HO-1, TNF- α , iNOS, and β -actin were procured from reputable vendors, and all reagents
99 for molecular analyses were prepared according to manufacturers' instructions.

100 Plant Material and Extract Preparation

101 Fresh calyces of *Hibiscus sabdariffa* L. were obtained from a local market and authenticated by a
102 qualified botanist. A voucher specimen was deposited in the departmental herbarium for future
103 reference. The calyces were air-dried at room temperature and pulverized into a fine powder. The
104 powdered material was extracted using standard solvent extraction procedures. The resulting
105 extract was filtered, concentrated under reduced pressure, and stored at 4 °C until use.
106 Appropriate dilutions were prepared freshly prior to administration.

107 Experimental Animals

108 Adult female Wistar rats (180–220 g) were obtained from an accredited animal facility. Animals
109 were housed under standard laboratory conditions (12 h light/12 h dark cycle, temperature 22 ± 2
110 °C, relative humidity 50–60%) with free access to standard rat chow and water. Animals were
111 acclimatized for one week prior to the commencement of the experiment.

112 All experimental procedures were conducted in accordance with internationally accepted
113 guidelines for the care and use of laboratory animals and were approved by the Institutional
114 Animal Ethics Committee.

115 **Experimental Design and Treatment Protocol**

116 Thirty-six female Wistar rats were randomly assigned into six experimental groups (n = 6 per
117 group):

118 **Group I:** Non-stressed control

119 **Group II:** Restraint stress control

120 **Group III:** Restraint stress + *Hibiscus sabdariffa* (250 mg/kg)

121 **Group IV:** Restraint stress + *Hibiscus sabdariffa* (500 mg/kg)

122 **Group V:** *Hibiscus sabdariffa* only (250 mg/kg)

123 **Group VI:** *Hibiscus sabdariffa* only (500 mg/kg)

124 Extract administration was performed orally once daily using an oral gavage for 14 consecutive
125 days. Dose selection was based on previous experimental studies demonstrating biological
126 efficacy and safety.

127 **Induction of Restraint Stress**

128 Restraint stress was induced using a well-established protocol. Animals in the stress groups were
129 placed in ventilated restraint tubes for 6 h daily for 14 consecutive days. Non-stressed control
130 animals were handled similarly but were not subjected to restraint. All stress procedures were
131 conducted at the same time each day to minimize circadian variability.

132 **Sample Collection**

133 Twenty-four hours after the final stress session, animals were anesthetized, and blood samples
134 were collected via cardiac puncture. Serum was separated by centrifugation and stored at -80 °C
135 until biochemical analysis. Animals were subsequently sacrificed, and brain, liver, and kidney
136 tissues were harvested, rinsed in ice-cold saline, and processed for biochemical, molecular, and
137 histopathological analyses.

138 **Assessment of Oxidative Stress Biomarkers**

139 Serum levels of MDA were measured as an index of lipid peroxidation. Antioxidant enzyme
140 activities, including SOD, CAT, and GPx, were determined spectrophotometrically using
141 commercially available assay kits, following manufacturers' protocols. Enzyme activities were
142 expressed per milligram of protein.

143 **RNA Extraction and Quantitative Real-Time PCR**

144 Total RNA was extracted from tissue samples using standard RNA isolation reagents. RNA
145 purity and concentration were assessed spectrophotometrically. Complementary DNA (cDNA)
146 was synthesized using a reverse transcription kit. Quantitative real-time PCR (qPCR) was
147 performed to determine the mRNA expression levels of Nrf2, HO-1, TNF- α , and iNOS using
148 gene-specific primers. β -actin was used as the housekeeping gene. Relative gene expression was
149 calculated using the $2^{-\Delta\Delta Ct}$ method.

150 **Protein Expression Analysis**

151 Protein expression levels of Nrf2, HO-1, TNF- α , and iNOS were evaluated using Western
152 blotting and/or enzyme-linked immunosorbent assay (ELISA), as appropriate. Equal amounts of
153 protein were separated by SDS-PAGE, transferred to PVDF membranes, and incubated with
154 specific primary antibodies followed by appropriate secondary antibodies. Protein bands were
155 visualized and quantified using densitometric analysis, normalized to β -actin.

156 **Histopathological Examination**

157 Brain, liver, and kidney tissues were fixed in 10% buffered formalin, processed using standard
158 histological techniques, and embedded in paraffin wax. Tissue sections (4–5 μ m) were stained
159 with hematoxylin and eosin (H&E) and examined under a light microscope by a blinded
160 histopathologist for structural alterations and tissue integrity.

161 **Statistical Analysis**

162 Data were expressed as mean \pm standard error of the mean (SEM). Statistical analysis was
163 performed using appropriate statistical software. Comparisons among groups were conducted
164 using one-way analysis of variance (ANOVA) followed by post hoc multiple comparison tests. A
165 value of $p < 0.05$ was considered statistically significant.

166 **RESULTS**

167 **Restraint Stress Induces Oxidative Damage and Suppresses Antioxidant Defense in Female
168 Rats**

169 Exposure of female Wistar rats to restraint stress for 14 days resulted in a marked disruption of
170 redox homeostasis. Serum malondialdehyde (MDA) levels were significantly elevated in the
171 stress control group compared with non-stressed controls ($p < 0.001$), indicating enhanced lipid
172 peroxidation (Figure 1A). Concurrently, restraint stress significantly reduced the activities of key
173 endogenous antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and
174 glutathione peroxidase (GPx) ($p < 0.001$ for all; Figures 1B–D).

175 These findings confirm that chronic restraint stress induces pronounced oxidative stress in
176 female rats, characterized by increased oxidative damage and impaired antioxidant capacity.

177 **Hibiscus sabdariffa Restores Redox Balance in a Dose-Dependent Manner**

178 Oral administration of *Hibiscus sabdariffa* (HS) significantly attenuated restraint stress-induced
179 oxidative damage. Treatment with HS at both 250 mg/kg and 500 mg/kg resulted in a dose-
180 dependent reduction in serum MDA levels compared with the stress control group ($p < 0.01$ and
181 $p < 0.001$, respectively; Figure 1A). Notably, MDA levels in the high-dose HS group were
182 comparable to those of non-stressed controls.

183 Similarly, HS treatment significantly restored SOD, CAT, and GPx activities in stressed rats
184 (Figures 1B–D). The 500 mg/kg dose produced a more pronounced effect, normalizing
185 antioxidant enzyme activities to near basal levels. Administration of HS alone in non-stressed
186 animals did not produce adverse alterations in oxidative stress markers, indicating a favorable
187 safety profile.

188 **Hibiscus sabdariffa Activates Nrf2/HO-1 Antioxidant Signaling Under Stress Conditions**

189 To elucidate the molecular mechanisms underlying the antioxidant effects of HS, the expression
190 of Nrf2 and its downstream effector HO-1 was assessed at both mRNA and protein levels.
191 Restraint stress significantly downregulated Nrf2 and HO-1 expression in brain, liver, and kidney
192 tissues compared with non-stressed controls ($p < 0.01$; Figures 2A–D).

193 HS treatment markedly reversed stress-induced suppression of Nrf2 and HO-1 expression in a
194 dose-dependent manner. High-dose HS (500 mg/kg) significantly upregulated Nrf2 and HO-1
195 expression relative to stress controls ($p < 0.001$), restoring levels comparable to non-stressed
196 animals. These effects were consistently observed across all examined tissues.

197 These results indicate that HS exerts its antioxidant effects, at least in part, through activation of
198 the Nrf2/HO-1 signaling pathway.

199 **Hibiscus sabdariffa Suppresses Stress-Induced Pro-Inflammatory Gene and Protein 200 Expression**

201 Given the close interplay between oxidative stress and inflammation, the expression of key
202 inflammatory mediators was evaluated. Restraint stress significantly upregulated tumor necrosis
203 factor- α (TNF- α) and inducible nitric oxide synthase (iNOS) at both gene and protein levels ($p <$
204 0.001 ; Figures 3A–D), consistent with heightened inflammatory activation.

205 HS treatment significantly attenuated the stress-induced upregulation of TNF- α and iNOS. The
206 effect was dose-dependent, with the 500 mg/kg HS group exhibiting near-normalization of
207 inflammatory marker expression. HS-only groups did not show significant changes compared
208 with non-stressed controls, further supporting the safety of the extract.

209 **Histopathological Analysis Confirms Multi-Organ Protection by Hibiscus sabdariffa**

210 Histopathological examination revealed marked structural alterations in the brain, liver, and
211 kidney tissues of restraint-stressed rats. Observed changes included neuronal degeneration,
212 hepatocellular distortion, sinusoidal congestion, glomerular shrinkage, and tubular epithelial
213 damage (Figure 4).

214 In contrast, HS-treated stressed rats exhibited substantial preservation of tissue architecture.
215 Low-dose HS partially ameliorated stress-induced damage, whereas high-dose HS conferred
216 near-complete protection, with tissue morphology closely resembling that of non-stressed
217 controls. No histological abnormalities were observed in HS-only groups.

218 These findings corroborate the biochemical and molecular data, demonstrating that HS provides
219 robust structural protection against stress-induced oxidative injury.

220 **Integrated Analysis Highlights Nrf2-Mediated Redox and Anti-Inflammatory Protection**

221 Collectively, the results demonstrate that restraint stress induces oxidative damage through
222 suppression of Nrf2-dependent antioxidant defenses and activation of inflammatory mediators.
223 HS treatment restores redox homeostasis by activating the Nrf2/HO-1 pathway, enhancing
224 endogenous antioxidant capacity, suppressing inflammatory signaling, and preserving tissue
225 integrity across multiple organs.

226 **DISCUSSION**

227 The present study demonstrates that *Hibiscus sabdariffa* confers robust protection against
228 restraint stress-induced oxidative damage in female Wistar rats through coordinated activation of
229 antioxidant signaling and suppression of inflammatory pathways. Chronic restraint stress
230 disrupted redox homeostasis, as evidenced by increased lipid peroxidation, impaired antioxidant
231 enzyme activities, downregulation of the Nrf2/HO-1 axis, and heightened expression of pro-
232 inflammatory mediators. Treatment with *Hibiscus sabdariffa* dose-dependently reversed these
233 alterations, highlighting its capacity to modulate redox-sensitive molecular mechanisms rather
234 than acting solely as a direct radical scavenger.

235 One of the central findings of this study is the stress-induced suppression of Nrf2 signaling
236 observed across multiple organs. Nrf2 is widely recognized as a master regulator of cellular
237 defense against oxidative and electrophilic stress. Although acute oxidative stimuli typically
238 activate Nrf2, chronic psychological stress has been shown to paradoxically impair Nrf2
239 signaling through sustained glucocorticoid exposure, mitochondrial dysfunction, and Keap1-
240 mediated degradation. The observed downregulation of Nrf2 and its downstream effector HO-1
241 in stressed female rats is consistent with this maladaptive redox response and provides
242 mechanistic insight into stress-induced vulnerability to oxidative injury.

243 Activation of the Nrf2/HO-1 pathway by *Hibiscus sabdariffa* represents a key mechanistic
244 advance of this study. Restoration of Nrf2 signaling was accompanied by normalization of
245 endogenous antioxidant enzymes, including SOD, CAT, and GPx, indicating functional
246 transcriptional activation of antioxidant response elements. These findings support the concept
247 that HS acts as a redox signaling modulator, likely through its rich content of polyphenolic
248 compounds capable of modifying Keap1 cysteine residues and facilitating Nrf2 nuclear
249 translocation [32,33,34]. Such indirect antioxidant mechanisms are increasingly recognized as
250 more biologically relevant than direct free radical scavenging *in vivo* [35]. The suppression of
251 inflammatory mediators TNF- α and iNOS by HS further underscores the tight interplay between
252 oxidative stress and inflammation. Excessive ROS and RNS production can activate pro-
253 inflammatory transcription factors, while inflammatory cytokines further exacerbate oxidative

254 damage, creating a self-amplifying cycle. Activation of Nrf2 has been shown to antagonize
255 inflammatory signaling by inhibiting NF- κ B activation and reducing nitric oxide overproduction.
256 The concurrent upregulation of Nrf2/HO-1 and downregulation of TNF- α and iNOS observed in
257 this study suggests that HS disrupts this vicious cycle, thereby attenuating both oxidative and
258 inflammatory components of stress-induced pathology. Importantly, the protective effects of HS
259 extended beyond biochemical and molecular markers to preservation of tissue architecture in the
260 brain, liver, and kidney. These organs are particularly susceptible to stress-induced oxidative
261 injury due to their high metabolic activity and vulnerability to redox imbalance. The
262 histopathological findings provide structural validation of the molecular data and strengthen the
263 translational relevance of the study.

264 The use of a female-specific stress model represents a notable strength of this investigation.
265 Females exhibit distinct neuroendocrine responses to stress, with estrogen and glucocorticoid
266 signaling exerting complex effects on redox regulation [36]. By focusing on female rats, this
267 study addresses an important gap in stress-redox research, which has historically been male-
268 biased [37]. The findings suggest that HS may be Estrogen can both enhance antioxidant
269 defenses and, under certain conditions, increase oxidative susceptibility particularly beneficial in
270 mitigating stress-related oxidative disorders in females.

271 Despite its strengths, this study has some limitations. The precise upstream molecular
272 interactions between HS phytochemicals and the Keap1–Nrf2 complex were not directly
273 examined. Additionally, assessment of mitochondrial function and downstream Nrf2 target genes
274 beyond HO-1 would provide further mechanistic depth. Future studies employing
275 pharmacological or genetic inhibition of Nrf2 could help establish causality and further delineate
276 the signaling pathways involved. From a translational perspective, the findings highlight
277 *Hibiscus sabdariffa* as a low-cost, accessible, and culturally accepted nutraceutical with potential
278 therapeutic relevance for stress-related oxidative disorders. Given the increasing global burden of
279 chronic stress and its disproportionate impact on women, interventions that enhance endogenous
280 antioxidant defenses through redox signaling modulation may offer significant public health
281 benefits.

282 In conclusion, this study provides compelling mechanistic evidence that *Hibiscus sabdariffa*
283 mitigates restraint stress–induced oxidative damage in female rats by activating the Nrf2/HO-1
284 antioxidant pathway, restoring redox balance, suppressing inflammatory mediators, and
285 preserving tissue integrity. These findings advance our understanding of plant-derived redox
286 modulators and support further investigation of *Hibiscus sabdariffa* as a therapeutic strategy for
287 managing stress-associated oxidative pathologies.

288

289 **Ethical Approval**

290 All experimental protocols were approved by the Animal Research Ethics Committee of Usmanu
291 Danfodiyo University, Sokoto, Nigeria (Approval number: PTAC/HS/(Ae)/OT/36-17).

292 **Authors' Contributions**

- **Aliyu Buhari:** Formal analysis (equal); investigation (equal); methodology (equal); writing – original draft (equal); visualization (equal); writing – review and editing (equal), Project administration (equal); supervision (equal).
- **Lawali Ibrahim:** Conceptualization (equal); writing – review and editing (equal).
- **Sani Suleman:** Visualization (equal); writing – review and editing (equal).
- **Shehu Ibrahim:** Validation (equal); visualization (equal); writing – review and editing (equal).
- **SulemanTijjani:** Conceptualization (equal); writing – review and editing (equal).
- **Bello Muhammad:** Visualization (equal); writing – review and editing (equal).

302 Acknowledgement

303 The authors gratefully acknowledged and appreciate the managements of Zamfara State
304 University, Talata Mafara and Usmanu Danfodiyo University, Sokoto for providing enabling
305 research environments that made this study possible.

306 Funding Information

307 The authors acknowledge the institutional support provided by the Zamfara State University,
308 Talata Mafara. This study was funded by the Tertiary Education Trust Fund (TETFund), Nigeria
309 through its TETFund Institution-based Research Grant Intervention.

310 Conflict of Interest Statement

311 The authors declare no known competing financial interests or personal relationships that could
312 have influenced the work reported in this paper.

313 Data Availability Statement

314 The data supporting the findings of this study are available from the corresponding author upon
315 reasonable request.

316 ORCID iD

317 **Aliyu Buhari:** <https://orcid.org/0000-0002-6975-9010>

319 REFERENCES

- 321 Leyane, T. S., Jere, S. W., & Houreld, N. N. (2022). Oxidative stress in ageing and
322 chronic degenerative pathologies: molecular mechanisms involved in counteracting
323 oxidative stress and chronic inflammation. *International journal of molecular
324 sciences*, 23(13), 7273.

325 2. Jomova, K., Raptova, R., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., &
326 Valko, M. (2023). Reactive oxygen species, toxicity, oxidative stress, and antioxidants:
327 chronic diseases and aging. *Archives of toxicology*, 97(10), 2499-2574.

328 3. Thiruvengadam, R., Venkidasamy, B., Easwaran, M., Chi, H. Y., Thiruvengadam, M., &
329 Kim, S. H. (2024). Dynamic interplay of reactive oxygen and nitrogen species (ROS and
330 RNS) in plant resilience: Unveiling the signaling pathways and metabolic responses to
331 biotic and abiotic stresses. *Plant Cell Reports*, 43(8), 198.

332 4. Kim, S. Y. (2022). Oxidative stress and gender disparity in cancer. *Free Radical
333 Research*, 56(1), 90-105.

334 5. Hodes, G. E., Bangasser, D., Sotiropoulos, I., Kokras, N., & Dalla, C. (2024). Sex
335 differences in stress response: classical mechanisms and beyond. *Current
336 neuropharmacology*, 22(3), 475-494.

337 6. Bellanti, F., Coda, A. R. D., Trecca, M. I., Lo Buglio, A., Serviddio, G., & Vendemiale,
338 G. (2025). Redox imbalance in inflammation: the interplay of oxidative and reductive
339 stress. *Antioxidants*, 14(6), 656.

340 7. Meduri, G. U., & Psarra, A. M. G. (2025, September). The glucocorticoid system: a
341 multifaceted regulator of mitochondrial function, endothelial homeostasis, and intestinal
342 barrier integrity. In *Seminars in Respiratory and Critical Care Medicine*. Thieme
343 Medical Publishers, Inc..

344 8. Chen, X. L., & Kunsch, C. (2004). Induction of cytoprotective genes through
345 Nrf2/antioxidant response element pathway: a new therapeutic approach for the treatment
346 of inflammatory diseases. *Current pharmaceutical design*, 10(8), 879-891.

347 9. Kim, J., Cha, Y. N., & Surh, Y. J. (2010). A protective role of nuclear factor-erythroid 2-
348 related factor-2 (Nrf2) in inflammatory disorders. *Mutation Research/Fundamental and
349 Molecular Mechanisms of Mutagenesis*, 690(1-2), 12-23.

350 10. Zhao, H., Eguchi, S., Alam, A., & Ma, D. (2017). The role of nuclear factor-erythroid 2
351 related factor 2 (Nrf-2) in the protection against lung injury. *American Journal of
352 Physiology-Lung Cellular and Molecular Physiology*, 312(2), L155-L162.

353 11. He, X., & Ma, Q. (2009). NRF2 cysteine residues are critical for oxidant/electrophile-
354 sensing, Kelch-like ECH-associated protein-1-dependent ubiquitination-proteasomal
355 degradation, and transcription activation. *Molecular pharmacology*, 76(6), 1265-1278.

356 12. Tian, W., de la Vega, M. R., Schmidlin, C. J., Ooi, A., & Zhang, D. D. (2018). Kelch-like
357 ECH-associated protein 1 (KEAP1) differentially regulates nuclear factor erythroid-2-
358 related factors 1 and 2 (NRF1 and NRF2). *Journal of Biological Chemistry*, 293(6),
359 2029-2040.

360 13. Ma, Q. (2013). Role of nrf2 in oxidative stress and toxicity. *Annual review of
361 pharmacology and toxicology*, 53(1), 401-426.

362 14. Zhang, M., An, C., Gao, Y., Leak, R. K., Chen, J., & Zhang, F. (2013). Emerging roles of
363 Nrf2 and phase II antioxidant enzymes in neuroprotection. *Progress in
364 neurobiology*, 100, 30-47.

365 15. Ngo, V., & Duennwald, M. L. (2022). Nrf2 and oxidative stress: a general overview of
366 mechanisms and implications in human disease. *Antioxidants*, 11(12), 2345.

367 16. Singh, S., Vrishni, S., Singh, B. K., Rahman, I., & Kakkar, P. (2010). Nrf2-ARE stress
368 response mechanism: a control point in oxidative stress-mediated dysfunctions and
369 chronic inflammatory diseases. *Free radical research*, 44(11), 1267-1288.

370 17. Saha, S., Buttari, B., Profumo, E., Tucci, P., & Saso, L. (2022). A perspective on Nrf2
371 signaling pathway for neuroinflammation: a potential therapeutic target in Alzheimer's
372 and Parkinson's diseases. *Frontiers in cellular neuroscience*, 15, 787258.

373 18. Kaur, K., Narang, R. K., & Singh, S. (2025). Role of Nrf2 in oxidative stress,
374 neuroinflammation and autophagy in Alzheimer's disease: regulation of Nrf2 by different
375 signaling pathways. *Current Molecular Medicine*, 25(4), 372-387.

376 19. Liu, Z., Lei, M., & Bai, Y. (2025). Chronic stress mediates inflammatory cytokines
377 alterations and its role in tumorigenesis. *Journal of Inflammation Research*, 1067-1090.

378 20. Manful, C. F., Fordjour, E., Ikumoinein, E., Abbey, L., & Thomas, R. (2025).
379 Therapeutic strategies targeting oxidative stress and inflammation: a narrative
380 review. *BioChem*, 5(4), 35.

381 21. Rudrapal, M., Khairnar, S. J., Khan, J., Dukhyil, A. B., Ansari, M. A., Alomary, M. N., ...
382 & Devi, R. (2022). Dietary polyphenols and their role in oxidative stress-induced human
383 diseases: Insights into protective effects, antioxidant potentials and mechanism (s) of
384 action. *Frontiers in pharmacology*, 13, 806470.

385 22. Akbari, B., Baghaei-Yazdi, N., Bahmaie, M., & Mahdavi Abhari, F. (2022). The role of
386 plant-derived natural antioxidants in reduction of oxidative stress. *BioFactors*, 48(3),
387 611-633.

388 23. Truong, T. T., Singh, A. A., Tak, S., Na, S., Choi, J., Oh, J., & Mondal, S. (2025). Plant-
389 Derived Antioxidants as Modulators of Redox Signaling and Epigenetic Reprogramming
390 in Cancer. *Cells*, 14(24), 1948.

391 24. Mohd, Suhaili Narisyah Idayu, and Nurhuda Manshoor (2022). Phytochemistry, and
392 bioactivities of Hibiscus sabdariffa L.(Malvaceae). "Ethnomedicine, 451-460.

393 25. Salem, M. A., Zayed, A., Beshay, M. E., Abdel Mesih, M. M., Ben Khayal, R. F.,
394 George, F. A., & Ezzat, S. M. (2022). Hibiscus sabdariffa L.: phytoconstituents, nutritive,
395 and pharmacological applications. *Advances in Traditional Medicine*, 22(3), 497-507.

396 26. Nisar, A., Jagtap, S., Vyawahare, S., Deshpande, M., Harsulkar, A., Ranjekar, P., &
397 Prakash, O. (2023). Phytochemicals in the treatment of inflammation-associated diseases:
398 the journey from preclinical trials to clinical practice. *Frontiers in pharmacology*, 14,
399 1177050.

400 27. Bellavite, P. (2023). Neuroprotective potentials of flavonoids: Experimental studies and
401 mechanisms of action. *Antioxidants*, 12(2), 280.

402 28. Shoaib, S., Ansari, M. A., Fatease, A. A., Safhi, A. Y., Hani, U., Jahan, R., ... & Islam, N.
403 (2023). Plant-derived bioactive compounds in the management of neurodegenerative

404 disorders: challenges, future directions and molecular mechanisms involved in
405 neuroprotection. *Pharmaceutics*, 15(3), 749.

406 29. Chaoui, N., Anarghou, H., Laaroussi, M., Essaidi, O., Najimi, M., & Chigr, F. (2022).
407 Long lasting effect of acute restraint stress on behavior and brain anti-oxidative
408 status. *AIMS neuroscience*, 9(1), 57.

409 30. Schiavone, S., Jaquet, V., Trabace, L., & Krause, K. H. (2013). Severe life stress and
410 oxidative stress in the brain: from animal models to human pathology. *Antioxidants &*
411 *redox signaling*, 18(12), 1475-1490.

412 31. Herranz-López, M., Olivares-Vicente, M., Encinar, J. A., Barrajón-Catalán, E., Segura-
413 Carretero, A., Joven, J., & Micol, V. (2017). Multi-targeted molecular effects of Hibiscus
414 sabdariffa polyphenols: An opportunity for a global approach to obesity. *Nutrients*, 9(8),
415 907.

416 32. Yasmin, R., Gogoi, S., Bora, J., Chakraborty, A., Dey, S., Ghaziri, G., ... & Singh, L. H.
417 (2023). Novel insight into the cellular and molecular signalling pathways on cancer
418 preventing effects of Hibiscus sabdariffa: a review. *Journal of Cancer Prevention*, 28(3),
419 77.

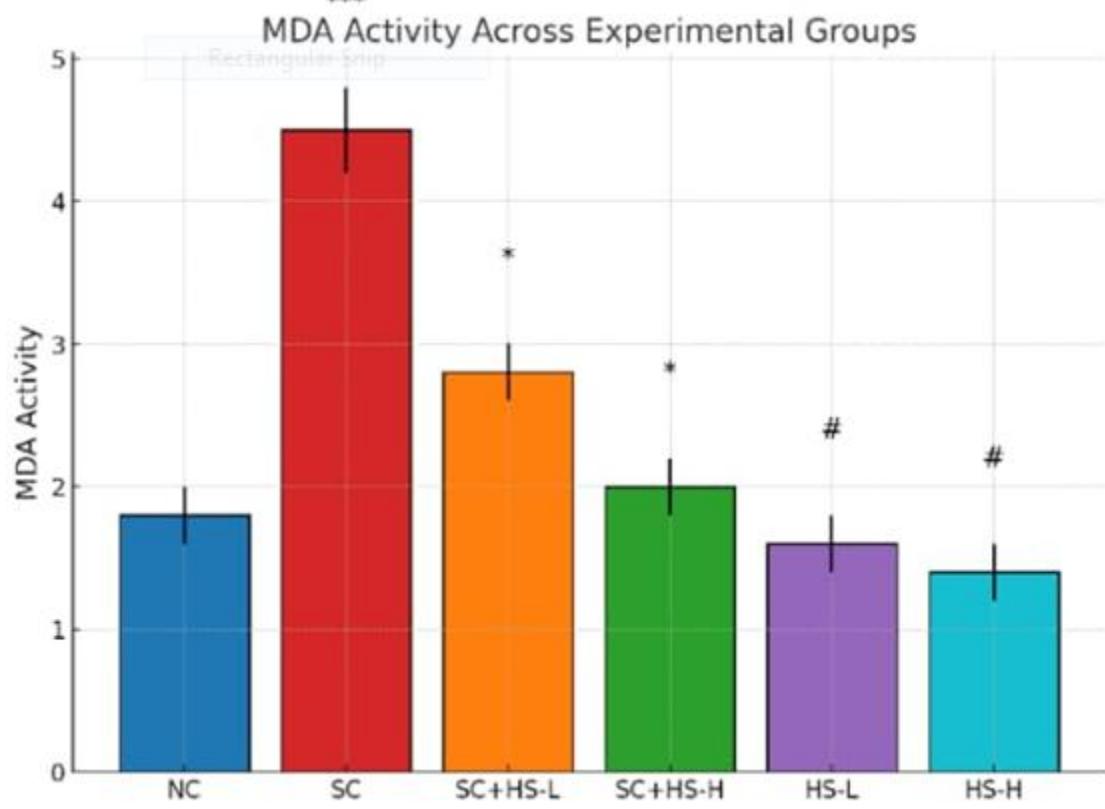
420 33. Ekka, R., & Ahirwar, B. (2025). Hibiscus Sabdariffa Linn: Phytochemical Impact on the
421 Mechanism of Neuroprotective and Anti-inflammatory Pathways. *Recent Advances in*
422 *Inflammation & Allergy Drug Discovery*, 19(2), 173-188.

423 34. Ahmadinejad, F., Geir Møller, S., Hashemzadeh-Chaleshtori, M., Bidkhor, G., & Jami,
424 M. S. (2017). Molecular mechanisms behind free radical scavengers function against
425 oxidative stress. *Antioxidants*, 6(3), 51.

426 35. Heck, A. L., & Handa, R. J. (2019). Sex differences in the hypothalamic–pituitary–
427 adrenal axis' response to stress: an important role for gonadal
428 hormones. *Neuropsychopharmacology*, 44(1), 45-58.

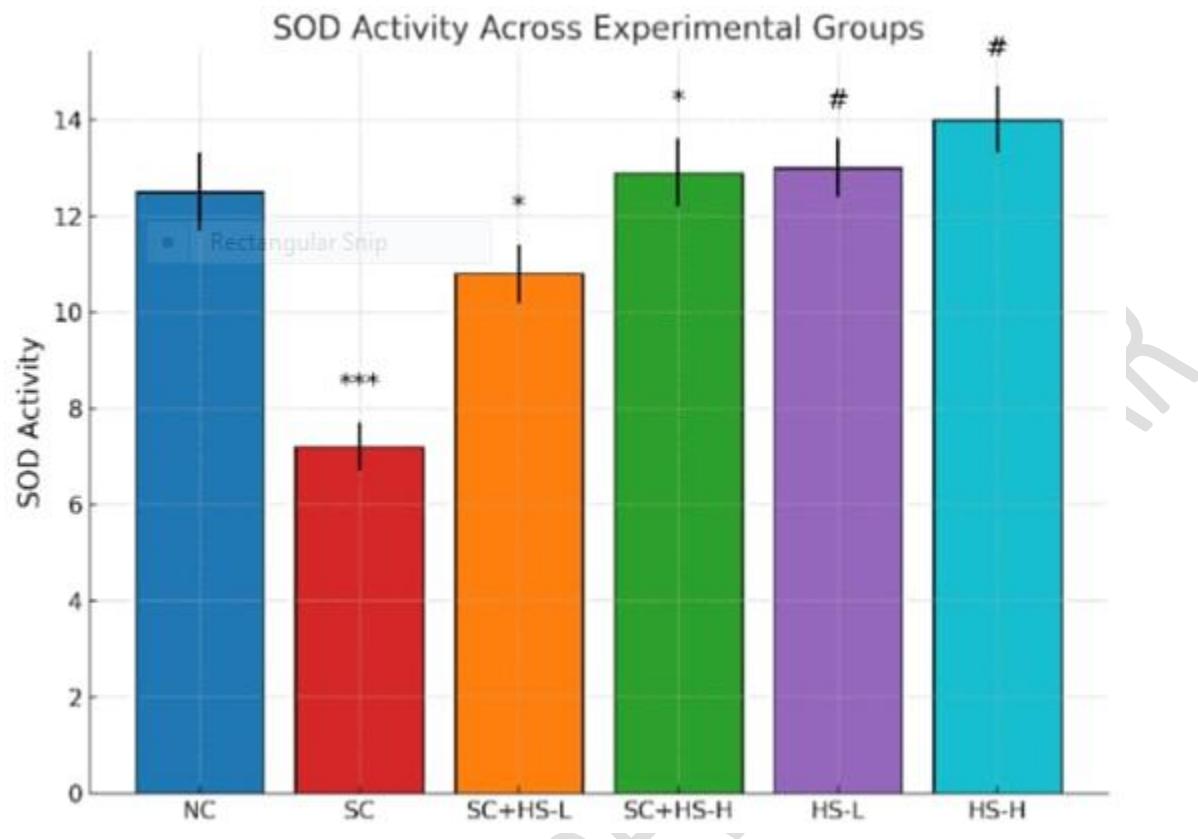
429 36. Krolick, K. N., & Shi, H. (2022). Estrogenic action in stress-induced neuroendocrine
430 regulation of energy homeostasis. *Cells*, 11(5), 879.

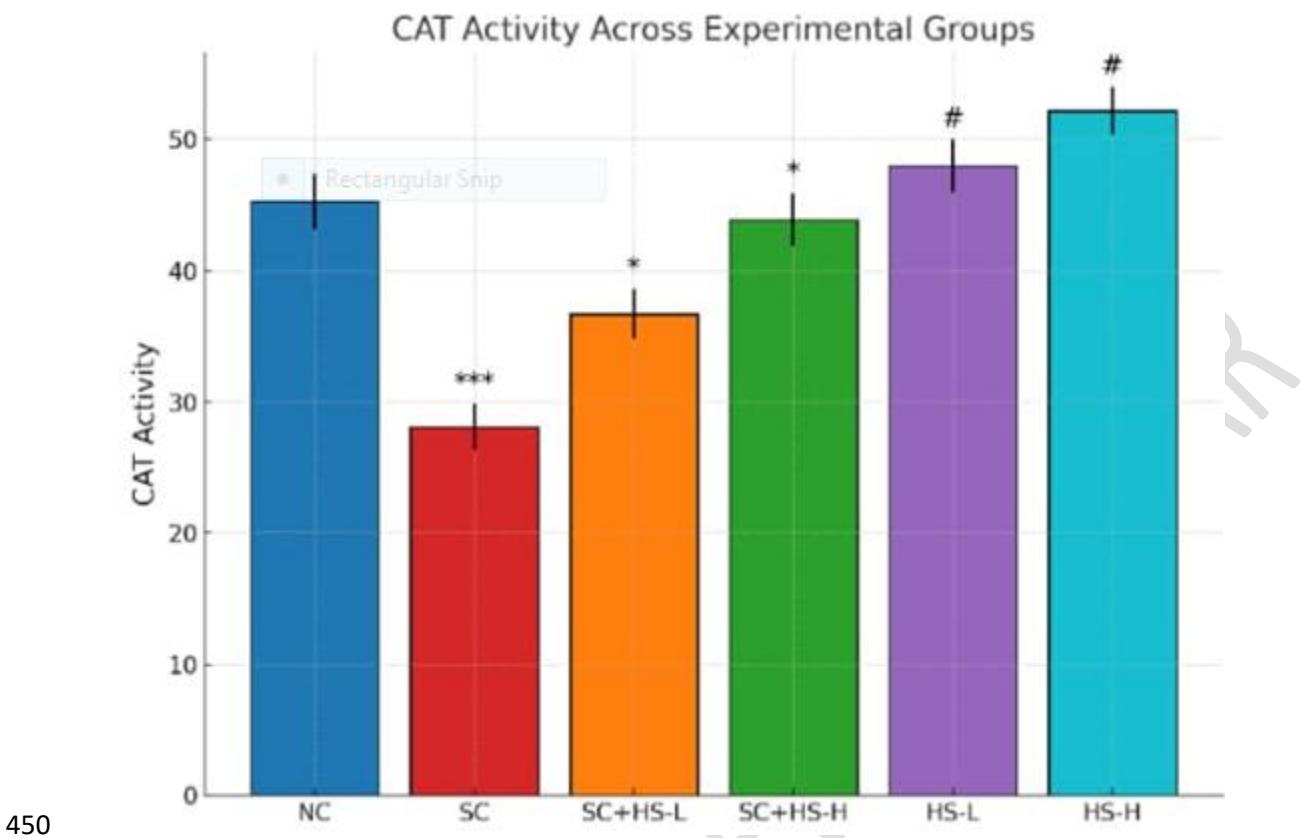
431 37. Castellucci Estevam, E., Nasim, M. J., Faulstich, L., Hakenesch, M., Burkholz, T., &
432 Jacob, C. (2015). A historical perspective on oxidative stress and intracellular redox
433 control. In *Studies on experimental toxicology and pharmacology* (pp. 3-20). Cham:
434 Springer International Publishing.


435

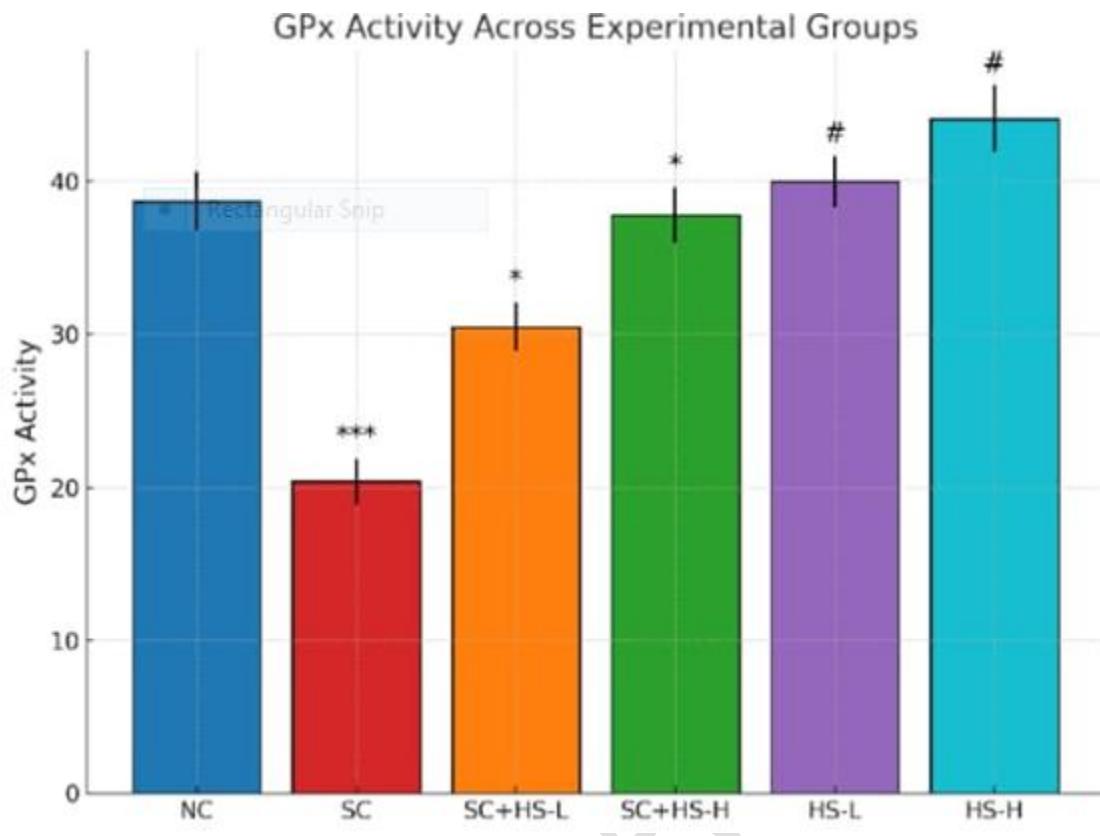
436 **Figures**

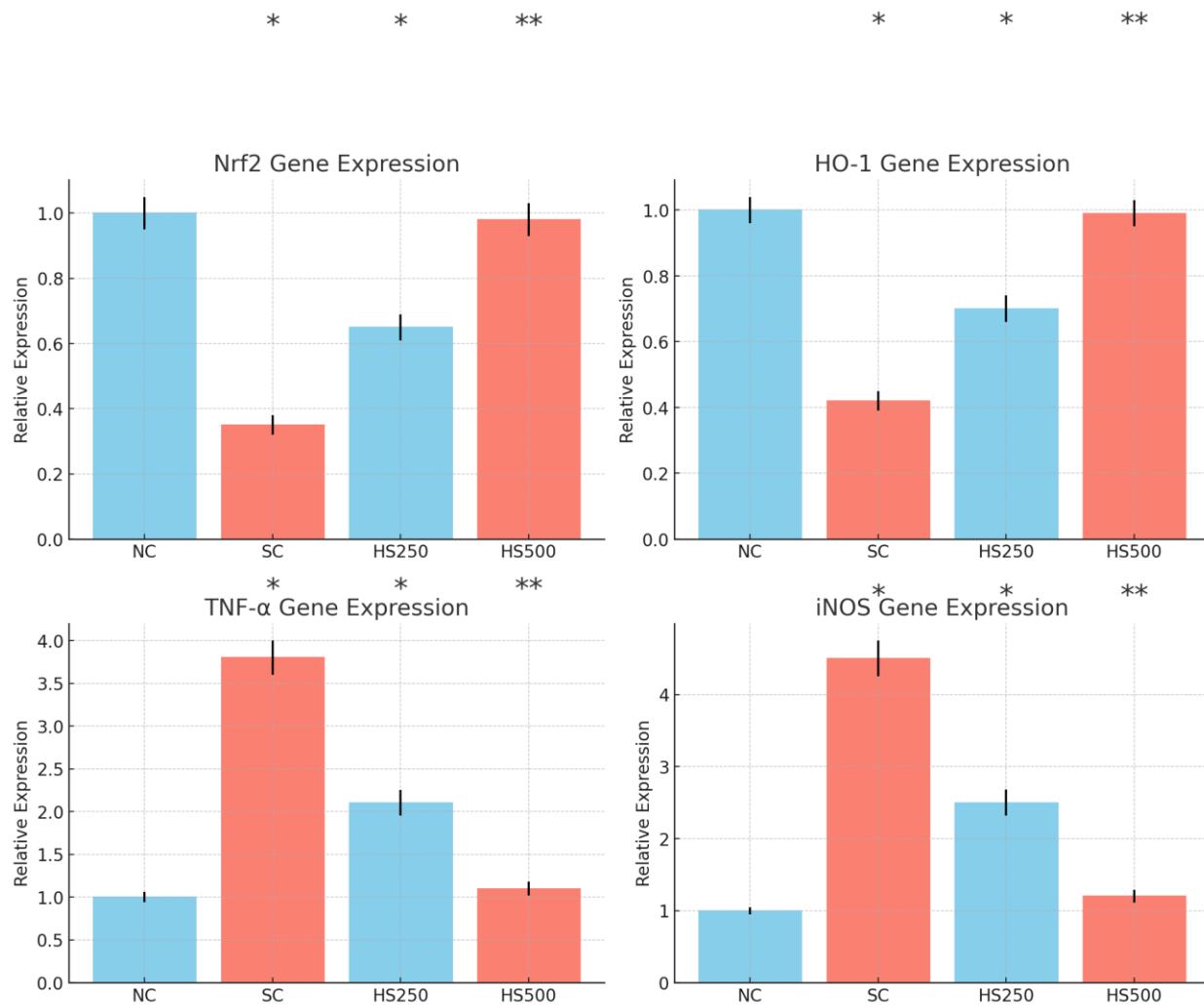
437

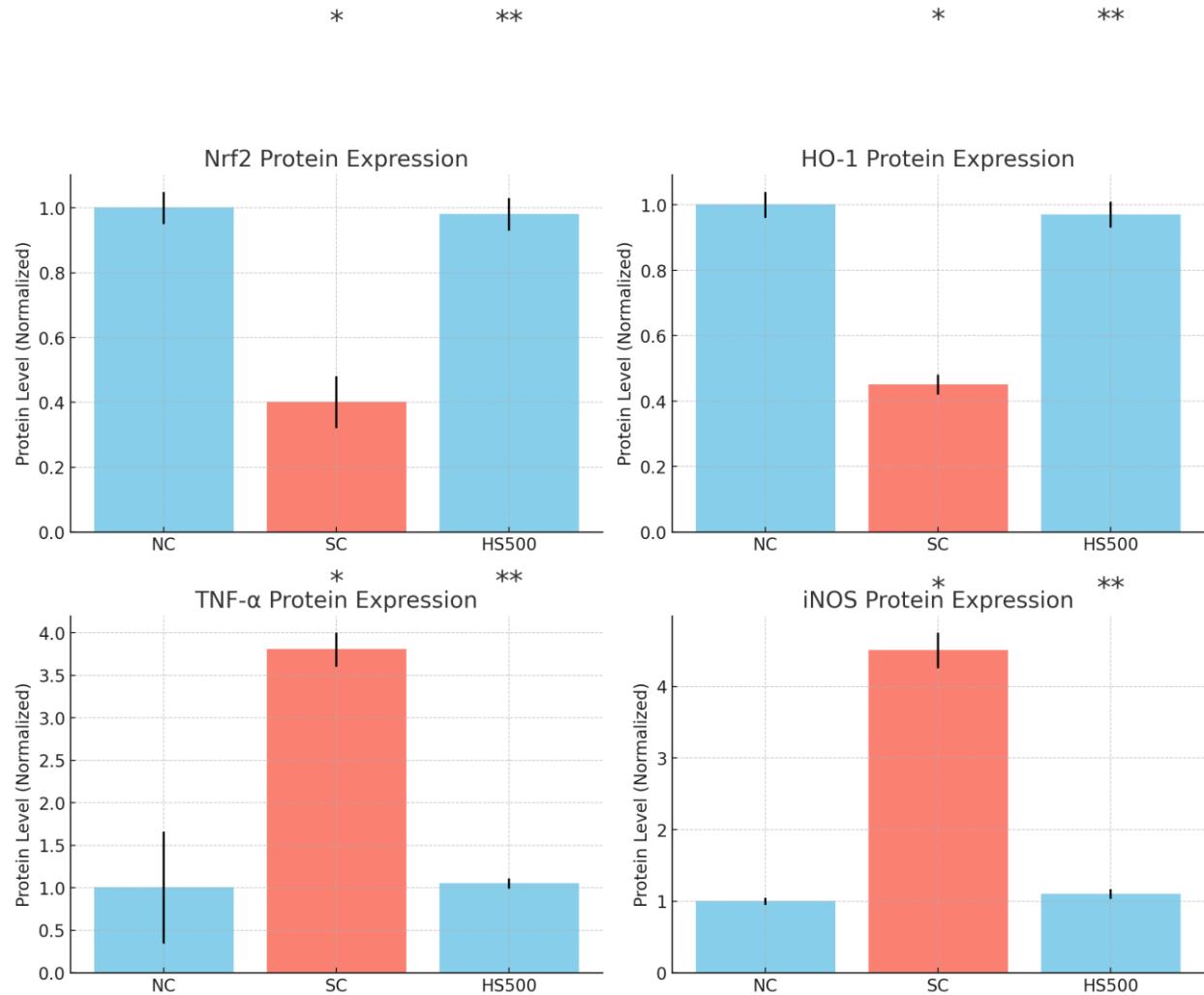

438 **Figure 1.** Fleshy calyces of *Hibiscus sabdariffa*. Representative photograph showing the dark-
439 red calyces used for aqueous extraction. (Adapted from Aliyu et al., 2014).


440

441 **Figure 2.** Serum malondialdehyde (MDA) levels across experimental groups. Restraint stress
442 significantly increased MDA levels, whereas *H. sabdariffa* (HS) supplementation dose-
443 dependently reduced lipid peroxidation. Data are presented as mean \pm SEM (n = 6 per group). *p
444 < 0.001 vs NC; #p < 0.05 vs SC. NC = non-stress control; SC = stress control; HS-L = HS 250
445 mg/kg; HS-H = HS 500 mg/kg.


446


447 **Figure 3.** Superoxide dismutase (SOD) activity in serum. HS treatment restored SOD activity
448 suppressed by restraint stress in a dose-dependent manner. Data are mean \pm SEM (n = 6). *p <
449 0.001 vs NC; #p < 0.05 vs SC.


454

455 **Figure 5.** Glutathione peroxidase (GPx) activity in serum. HS restored GPx levels in stressed
456 rats in a dose-dependent manner. Data are mean \pm SEM (n = 6); *p < 0.001 vs NC; #p < 0.05 vs
457 SC.

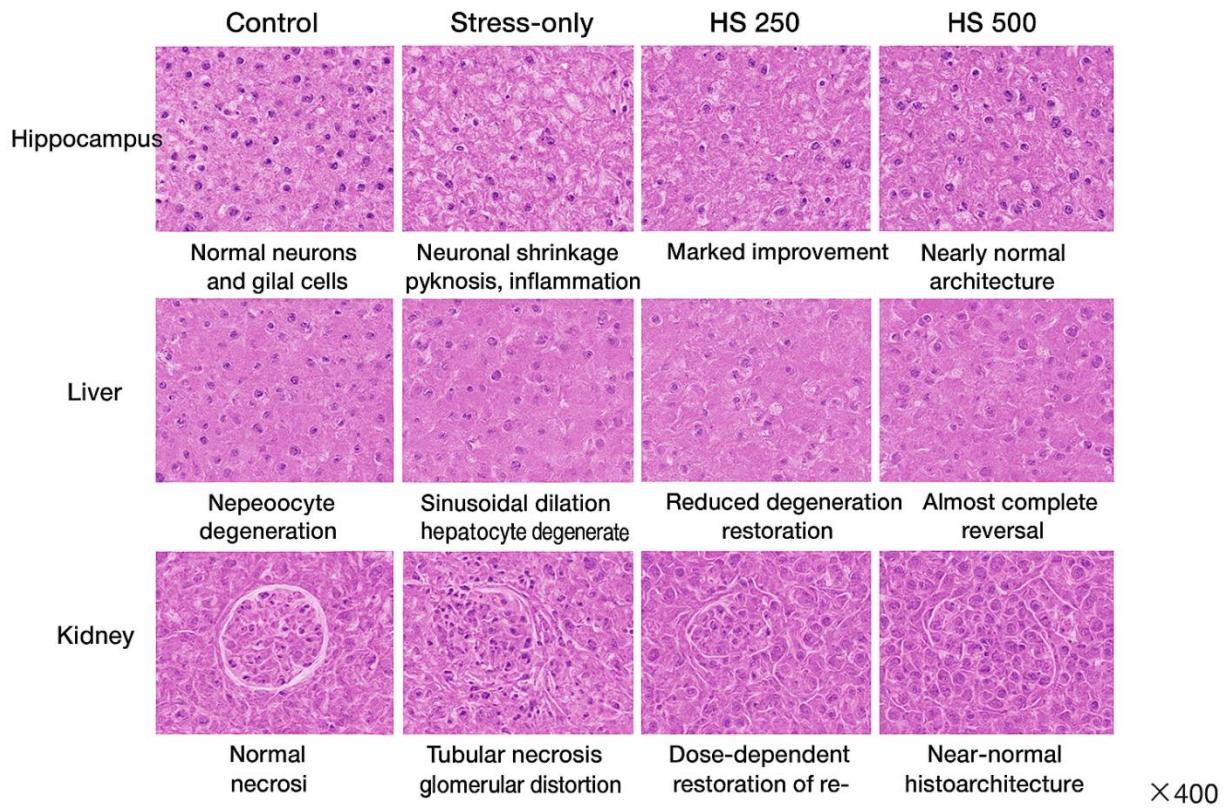


Figure 6. Relative gene expression of antioxidant (Nrf2, HO-1) and inflammatory (TNF- α , iNOS) markers in liver tissue. Restraint stress downregulated Nrf2/HO-1 and upregulated TNF- α /iNOS; HS treatment normalized these genes. Data normalized to NC (1.0) and expressed as mean \pm SEM (n = 6). *p < 0.05, **p < 0.01.

463

Figure 7. Protein expression of Nrf2, HO-1, TNF- α , and iNOS in liver tissue via Western blot. HS treatment restored antioxidant protein levels and suppressed inflammatory proteins. Representative blots are shown; densitometry values normalized to NC. Data are mean \pm SEM (n = 6). *p < 0.05, **p < 0.01.

468

469 **Plate 1.** Histopathological assessment of hippocampus, liver, and kidney (H&E, $\times 400$). (A) NC:
470 normal architecture; (B) SC: tissue degeneration; (C) SC + HS 250 mg/kg: partial restoration;
471 (D) SC + HS 500 mg/kg: near-complete restoration.

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487 **Tables**

488 **Table 1.** Body weight changes across experimental groups.

Group	Initial Weight (g)	Final Weight (g)	Weight Gain (g)
NC	192.3 ± 3.4	218.5 ± 4.2	26.2 ± 2.5
SC	191.4 ± 4.1	198.7 ± 3.6	7.3 ± 1.8*
SC + HS 250 mg/kg	190.6 ± 3.9	210.4 ± 4.5	19.8 ± 2.1†
SC + HS 500 mg/kg	192.5 ± 4.2	216.9 ± 3.8	24.4 ± 2.3††
HS 250 mg/kg	193.8 ± 3.7	219.1 ± 4.0	25.3 ± 2.4

489 *Data are mean ± SEM (n = 6). $p < 0.01$ vs NC; $\dagger p < 0.05$ vs SC; $\ddagger p < 0.01$ vs SC.

490

491 **Table 2.** Serum oxidative stress biomarkers.

Group	MDA (nmol/mL)	SOD (U/mL)	CAT (U/mL)	GPx (U/mL)
NC	3.12 ± 0.19	12.4 ± 0.6	32.8 ± 1.4	39.5 ± 1.8
SC	8.41 ± 0.25*	5.9 ± 0.4*	18.2 ± 1.1*	21.4 ± 1.5*
SC + HS 250 mg/kg	5.02 ± 0.31†	10.1 ± 0.5†	26.4 ± 1.3†	31.7 ± 1.6†
SC + HS 500 mg/kg	3.45 ± 0.22††	12.2 ± 0.7††	30.9 ± 1.2††	37.6 ± 1.3††
HS 500 mg/kg	3.07 ± 0.18	12.9 ± 0.6	33.5 ± 1.3	40.1 ± 1.7

492 *Data are mean ± SEM (n = 6). $p < 0.001$ vs NC; $\dagger p < 0.01$ vs SC; $\ddagger p < 0.001$ vs SC.

493

494 **Table 3.** Gene expression analysis (qRT-PCR) in stress-exposed rats.

Gene	NC	SC	SC mg/kg	HS	250 SC mg/kg	HS	500 % (SC)	Change	vs NC
Nrf2	1.00 0.05	± 0.35 0.03	± 0.65 ± 0.04		0.98 ± 0.05		-65%		
HO-1	1.00 0.04	± 0.42 0.03	± 0.70 ± 0.04		0.99 ± 0.04		-58%		
TNF- α	1.00 0.06	± 3.80 0.20	± 2.10 ± 0.15		1.10 ± 0.08		+280%		
iNOS	1.00 0.05	± 4.50 0.25	± 2.50 ± 0.18		1.20 ± 0.09		+350%		

495

496 **Table 4.** Protein expression (Western blot / ELISA) in stress-exposed rats.

Protein NC	SC	SC + HS 500 mg/kg	% Change vs NC (SC)
Nrf2	1.00 ± 0.05	0.40 ± 0.08	0.98 ± 0.05
HO-1	1.00 ± 0.04	0.45 ± 0.03	0.97 ± 0.04
TNF- α	1.00 ± 0.66	3.80 ± 0.20	1.05 ± 0.06
iNOS	1.00 ± 0.05	4.50 ± 0.25	1.10 ± 0.07

497

498