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ACTIVATION OF NRF2/HO-1 SIGNALING MEDIATES THE PROTECTIVE
EFFECTS OF HIBISCUS SABDARIFFA AGAINST RESTRAINT STRESS-INDUCED
OXIDATIVE DAMAGE IN FEMALE WISTAR RATS

ABSTRACT

Chronic psychological stress disrupts redox homeostasis, leading to oxidative damage,
inflammation, and organ dysfunction. Females may be particularly vulnerable due to stress-
related hormonal modulation of antioxidant signaling pathways. Hibiscus sabdariffa (HS)
possesses documented antioxidant properties; however, its redox-regulated molecular
mechanisms under stress conditions remain incompletely understood.

This study investigated whether activation of the nuclear factor erythroid 2-related factor 2/heme
oxygenase-1 (Nrf2/HO-1) pathway underlies the protective effects of HS in restraint stress—
exposed female Wistar rats. Thirty-six rats were allocated to six groups: non-stressed control,
stress control, stress + HS (250 or 500 mg/kg), and HS alone (250 or 500 mg/kg). Restraint stress
was applied for 6 h/day for 14 days. Oxidative stress biomarkers, antioxidant enzyme activities,
gene and protein expression of Nrf2, HO-1, TNF-a, and iNOS, and histopathological alterations
in the brain, liver, and kidney were assessed.

Restraint stress markedly increased lipid peroxidation and suppressed endogenous antioxidant
defenses, accompanied by downregulation of Nrf2 and HO-1 and upregulation of TNF-a and
INOS. HS treatment dose-dependently restored antioxidant enzyme activities, reduced oxidative
damage, activated Nrf2/HO-1 signaling, and attenuated inflammatory gene and protein
expression. High-dose HS (500 mg/kg) normalized redox and inflammatory markers to near-
control levels and conferred significant histological protection across examined tissues.

These findings demonstrate that HS mitigates stress-induced oxidative injury through activation
of Nrf2-dependent antioxidant signaling and suppression of inflammatory mediators. The study
provides mechanistic evidence supporting HS as a low-cost, accessible redox-modulating
therapeutic candidate for stress-related oxidative disorders, particularly in females.

Keywords: Hibiscus sabdariffa; oxidative stress; Nrf2/HO-1; restraint stress; inflammation;
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INTRODUCTION

Chronic psychological stress is a major contributor to the development of oxidative stress—
related disorders, including neurodegenerative diseases, metabolic dysfunction, cardiovascular
pathology, and reproductive impairment [1]. Prolonged stress exposure disrupts cellular redox
homeostasis by promoting excessive generation of reactive oxygen species (ROS) and reactive
nitrogen species (RNS), overwhelming endogenous antioxidant defense systems and leading to
lipid peroxidation, protein oxidation, DNA damage, and inflammatory activation [2,3,4]. These
redox disturbances play a central role in stress-induced tissue injury and organ dysfunction.
Emerging evidence indicates that females may exhibit heightened vulnerability to stress-induced
oxidative damage due to sex-specific neuroendocrine and hormonal modulation of antioxidant
signaling pathways [5,6]. Fluctuations in estrogen and glucocorticoids under chronic stress
conditions can influence mitochondrial function, redox-sensitive transcription factors, and
inflammatory mediators, thereby exacerbating oxidative and inflammatory responses [7,8].
Despite increasing recognition of sex differences in stress biology, mechanistic studies
investigating redox regulation under stress conditions in females remain limited.

At the molecular level, the nuclear factor erythroid 2—-related factor 2 (Nrf2) signaling pathway is
a master regulator of cellular antioxidant and cytoprotective responses [9,10,11]. Under basal
conditions, Nrf2 is sequestered in the cytoplasm by Kelch-like ECH-associated protein 1
(Keapl) and targeted for proteasomal degradation [12,13]. Oxidative or electrophilic stress
disrupts this interaction, allowing Nrf2 to translocate into the nucleus, where it binds antioxidant
response elements (ARES) and induces transcription of phase Il detoxifying and antioxidant
enzymes, including heme oxygenase-1 (HO-1), superoxide dismutase (SOD), catalase (CAT),
and glutathione peroxidase (GPx) [14,15,16]. Impairment of Nrf2 signaling has been implicated
in stress-induced oxidative injury, neuroinflammation, and systemic inflammatory disorders
[17,18,19]. In parallel, chronic stress activates pro-inflammatory signaling cascades
characterized by increased expression of tumor necrosis factor-a. (TNF-a), inducible nitric oxide
synthase (iNOS), and excessive nitric oxide production, further amplifying oxidative damage
through nitrosative stress mechanisms [20]. The reciprocal regulation between Nrf2-mediated
antioxidant defense and inflammatory signaling highlights the importance of redox-inflammatory
crosstalk in stress-related pathology [21].

Plant-derived polyphenols have attracted considerable attention as modulators of redox signaling
pathways, particularly due to their ability to activate endogenous antioxidant defenses rather than
acting solely as direct radical scavengers [22,23,24]. Hibiscus sabdariffa L. (Malvaceae) is a
widely consumed medicinal plant rich in anthocyanins, flavonoids, phenolic acids, and organic
acids [25,26]. Previous studies have documented its antioxidant, anti-inflammatory,
antihypertensive, hepatoprotective, and neuroprotective properties. However, many of these
studies remain largely descriptive, focusing on biochemical endpoints without clearly elucidating
upstream molecular signaling mechanisms [27,28,29]. Recent experimental evidence suggests
that Hibiscus sabdariffa may exert its protective effects through modulation of redox-sensitive
transcription factors, including Nrf2. Nonetheless, whether activation of the Nrf2/HO-1 signaling
axis underlies the protective actions of Hibiscus sabdariffa against chronic psychological stress
particularly in female subjects—remains poorly defined. Moreover, comprehensive studies
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integrating biochemical, molecular, and histopathological outcomes in stress-exposed female
models are scarce.

Restraint stress is a well-established experimental paradigm that mimics chronic psychological
stress and reliably induces oxidative stress, inflammation, and tissue injury across multiple organ
systems, including the brain, liver, and kidney [30,31]. Investigating therapeutic interventions
within this model provides valuable mechanistic insights into stress-related redox dysregulation.

Therefore, the present study was designed to investigate the molecular mechanisms underlying
the therapeutic potential of Hibiscus sabdariffa in restraint stress—induced oxidative damage in
female Wistar rats. We hypothesized that Hibiscus sabdariffa confers cytoprotection by
activating the Nrf2/HO-1 antioxidant signaling pathway while suppressing pro-inflammatory
mediators such as TNF-a and iNOS. To test this hypothesis, we evaluated oxidative stress
biomarkers, antioxidant enzyme activities, gene and protein expression of key redox and
inflammatory markers, and histopathological alterations in stress-vulnerable organs.

MATERIALS AND METHODS
Chemicals and Reagents

All chemicals and reagents used in this study were of analytical grade. Assay Kkits for
malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione
peroxidase (GPx) were obtained from standard commercial suppliers. Primary antibodies for
Nrf2, HO-1, TNF-a, iNOS, and B-actin were procured from reputable vendors, and all reagents
for molecular analyses were prepared according to manufacturers’ instructions.

Plant Material and Extract Preparation

Fresh calyces of Hibiscus sabdariffa L. were obtained from a local market and authenticated by a
qualified botanist. A voucher specimen was deposited in the departmental herbarium for future
reference. The calyces were air-dried at room temperature and pulverized into a fine powder. The
powdered material was extracted using standard solvent extraction procedures. The resulting
extract was filtered, concentrated under reduced pressure, and stored at 4 °C until use.
Appropriate dilutions were prepared freshly prior to administration.

Experimental Animals

Adult female Wistar rats (180220 g) were obtained from an accredited animal facility. Animals
were housed under standard laboratory conditions (12 h light/12 h dark cycle, temperature 22 + 2
°C, relative humidity 50-60%) with free access to standard rat chow and water. Animals were
acclimatized for one week prior to the commencement of the experiment.

All experimental procedures were conducted in accordance with internationally accepted
guidelines for the care and use of laboratory animals and were approved by the Institutional
Animal Ethics Committee.
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Experimental Design and Treatment Protocol

Thirty-six female Wistar rats were randomly assigned into six experimental groups (n = 6 per
group):

Group I: Non-stressed control

Group I1: Restraint stress control

Group I11: Restraint stress + Hibiscus sabdariffa (250 mg/kg)

Group 1V: Restraint stress + Hibiscus sabdariffa (500 mg/kg)

Group V: Hibiscus sabdariffa only (250 mg/kg)

Group VI: Hibiscus sabdariffa only (500 mg/kg)

Extract administration was performed orally once daily using an oral gavage for 14 consecutive
days. Dose selection was based on previous experimental studies demonstrating biological
efficacy and safety.

Induction of Restraint Stress

Restraint stress was induced using a well-established protocol. Animals in the stress groups were
placed in ventilated restraint tubes for 6 h daily for 14 consecutive days. Non-stressed control
animals were handled similarly but were not subjected to restraint. All stress procedures were
conducted at the same time each day to minimize circadian variability.

Sample Collection

Twenty-four hours after the final stress session, animals were anesthetized, and blood samples
were collected via cardiac puncture. Serum was separated by centrifugation and stored at —80 °C
until biochemical analysis. Animals were subsequently sacrificed, and brain, liver, and kidney
tissues were harvested, rinsed in ice-cold saline, and processed for biochemical, molecular, and
histopathological analyses.

Assessment of Oxidative Stress Biomarkers

Serum levels of MDA were measured as an index of lipid peroxidation. Antioxidant enzyme
activities, including SOD, CAT, and GPx, were determined spectrophotometrically using
commercially available assay kits, following manufacturers’ protocols. Enzyme activities were

expressed per milligram of protein.

RNA Extraction and Quantitative Real-Time PCR
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Total RNA was extracted from tissue samples using standard RNA isolation reagents. RNA
purity and concentration were assessed spectrophotometrically. Complementary DNA (cDNA)
was synthesized using a reverse transcription kit. Quantitative real-time PCR (gPCR) was
performed to determine the mRNA expression levels of Nrf2, HO-1, TNF-a, and iNOS using
gene-specific primers. f-actin was used as the housekeeping gene. Relative gene expression was
calculated using the 2 AACt method.

Protein Expression Analysis

Protein expression levels of Nrf2, HO-1, TNF-o, and iNOS were evaluated using Western
blotting and/or enzyme-linked immunosorbent assay (ELISA), as appropriate. Equal amounts of
protein were separated by SDS-PAGE, transferred to PVDF membranes, and incubated with
specific primary antibodies followed by appropriate secondary antibodies. Protein bands were
visualized and quantified using densitometric analysis, normalized to -actin.

Histopathological Examination

Brain, liver, and kidney tissues were fixed in 10% buffered formalin, processed using standard
histological techniques, and embedded in paraffin wax. Tissue sections (4-5 pum) were stained
with hematoxylin and eosin (H&E) and examined under a light microscope by a blinded
histopathologist for structural alterations and tissue integrity.

Statistical Analysis

Data were expressed as mean * standard error of the mean (SEM). Statistical analysis was
performed using appropriate statistical software. Comparisons among groups were conducted
using one-way analysis of variance (ANOVA) followed by post hoc multiple comparison tests. A
value of p < 0.05 was considered statistically significant.

RESULTS

Restraint Stress Induces Oxidative Damage and Suppresses Antioxidant Defense in Female
Rats

Exposure of female Wistar rats to restraint stress for 14 days resulted in a marked disruption of
redox homeostasis. Serum malondialdehyde (MDA) levels were significantly elevated in the
stress control group compared with non-stressed controls (p < 0.001), indicating enhanced lipid
peroxidation (Figure 1A). Concurrently, restraint stress significantly reduced the activities of key
endogenous antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and
glutathione peroxidase (GPx) (p < 0.001 for all; Figures 1B-D).

These findings confirm that chronic restraint stress induces pronounced oxidative stress in
female rats, characterized by increased oxidative damage and impaired antioxidant capacity.

Hibiscus sabdariffa Restores Redox Balance in a Dose-Dependent Manner
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Oral administration of Hibiscus sabdariffa (HS) significantly attenuated restraint stress—induced
oxidative damage. Treatment with HS at both 250 mg/kg and 500 mg/kg resulted in a dose-
dependent reduction in serum MDA levels compared with the stress control group (p < 0.01 and
p < 0.001, respectively; Figure 1A). Notably, MDA levels in the high-dose HS group were
comparable to those of non-stressed controls.

Similarly, HS treatment significantly restored SOD, CAT, and GPx activities in stressed rats
(Figures 1B-D). The 500 mg/kg dose produced a more pronounced effect, normalizing
antioxidant enzyme activities to near basal levels. Administration of HS alone in non-stressed
animals did not produce adverse alterations in oxidative stress markers, indicating a favorable
safety profile.

Hibiscus sabdariffa Activates Nrf2/HO-1 Antioxidant Signaling Under Stress Conditions

To elucidate the molecular mechanisms underlying the antioxidant effects of HS, the expression
of Nrf2 and its downstream effector HO-1 was assessed at both mRNA and protein levels.
Restraint stress significantly downregulated Nrf2 and HO-1 expression in brain, liver, and kidney
tissues compared with non-stressed controls (p < 0.01; Figures 2A-D).

HS treatment markedly reversed stress-induced suppression of Nrf2 and HO-1 expression in a
dose-dependent manner. High-dose HS (500 mg/kg) significantly upregulated Nrf2 and HO-1
expression relative to stress controls (p < 0.001), restoring levels comparable to non-stressed
animals. These effects were consistently observed across all examined tissues.

These results indicate that HS exerts its antioxidant effects, at least in part, through activation of
the Nrf2/HO-1 signaling pathway.

Hibiscus sabdariffa Suppresses Stress-Induced Pro-Inflammatory Gene and Protein
Expression

Given the close interplay between oxidative stress and inflammation, the expression of key
inflammatory mediators was evaluated. Restraint stress significantly upregulated tumor necrosis
factor-a (TNF-a) and inducible nitric oxide synthase (iNOS) at both gene and protein levels (p <
0.001; Figures 3A-D), consistent with heightened inflammatory activation.

HS treatment significantly attenuated the stress-induced upregulation of TNF-a and iNOS. The
effect was dose-dependent, with the 500 mg/kg HS group exhibiting near-normalization of
inflammatory marker expression. HS-only groups did not show significant changes compared
with non-stressed controls, further supporting the safety of the extract.

Histopathological Analysis Confirms Multi-Organ Protection by Hibiscus sabdariffa

Histopathological examination revealed marked structural alterations in the brain, liver, and
kidney tissues of restraint-stressed rats. Observed changes included neuronal degeneration,
hepatocellular distortion, sinusoidal congestion, glomerular shrinkage, and tubular epithelial
damage (Figure 4).
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In contrast, HS-treated stressed rats exhibited substantial preservation of tissue architecture.
Low-dose HS partially ameliorated stress-induced damage, whereas high-dose HS conferred
near-complete protection, with tissue morphology closely resembling that of non-stressed
controls. No histological abnormalities were observed in HS-only groups.

These findings corroborate the biochemical and molecular data, demonstrating that HS provides
robust structural protection against stress-induced oxidative injury.

Integrated Analysis Highlights Nrf2-Mediated Redox and Anti-Inflammatory Protection

Collectively, the results demonstrate that restraint stress induces oxidative damage through
suppression of Nrf2-dependent antioxidant defenses and activation of inflammatory mediators.
HS treatment restores redox homeostasis by activating the Nrf2/HO-1 pathway, enhancing
endogenous antioxidant capacity, suppressing inflammatory signaling, and preserving tissue
integrity across multiple organs.

DISCUSSION

The present study demonstrates that Hibiscus sabdariffa confers robust protection against
restraint stress—induced oxidative damage in female Wistar rats through coordinated activation of
antioxidant signaling and suppression of inflammatory pathways. Chronic restraint stress
disrupted redox homeostasis, as evidenced by increased lipid peroxidation, impaired antioxidant
enzyme activities, downregulation of the Nrf2/HO-1 axis, and heightened expression of pro-
inflammatory mediators. Treatment with Hibiscus sabdariffa dose-dependently reversed these
alterations, highlighting its capacity to modulate redox-sensitive molecular mechanisms rather
than acting solely as a direct radical scavenger.

One of the central findings of this study is the stress-induced suppression of Nrf2 signaling
observed across multiple organs. Nrf2 is widely recognized as a master regulator of cellular
defense against oxidative and electrophilic stress. Although acute oxidative stimuli typically
activate Nrf2, chronic psychological stress has been shown to paradoxically impair Nrf2
signaling through sustained glucocorticoid exposure, mitochondrial dysfunction, and Keapl-
mediated degradation. The observed downregulation of Nrf2 and its downstream effector HO-1
in stressed female rats is consistent with this maladaptive redox response and provides
mechanistic insight into stress-induced vulnerability to oxidative injury.

Activation of the Nrf2/HO-1 pathway by Hibiscus sabdariffa represents a key mechanistic
advance of this study. Restoration of Nrf2 signaling was accompanied by normalization of
endogenous antioxidant enzymes, including SOD, CAT, and GPx, indicating functional
transcriptional activation of antioxidant response elements. These findings support the concept
that HS acts as a redox signaling modulator, likely through its rich content of polyphenolic
compounds capable of modifying Keapl cysteine residues and facilitating Nrf2 nuclear
translocation [32,33,34]. Such indirect antioxidant mechanisms are increasingly recognized as
more biologically relevant than direct free radical scavenging in vivo [35]. The suppression of
inflammatory mediators TNF-o and iNOS by HS further underscores the tight interplay between
oxidative stress and inflammation. Excessive ROS and RNS production can activate pro-
inflammatory transcription factors, while inflammatory cytokines further exacerbate oxidative
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damage, creating a self-amplifying cycle. Activation of Nrf2 has been shown to antagonize
inflammatory signaling by inhibiting NF-«kB activation and reducing nitric oxide overproduction.
The concurrent upregulation of Nrf2/HO-1 and downregulation of TNF-a and iNOS observed in
this study suggests that HS disrupts this vicious cycle, thereby attenuating both oxidative and
inflammatory components of stress-induced pathology. Importantly, the protective effects of HS
extended beyond biochemical and molecular markers to preservation of tissue architecture in the
brain, liver, and kidney. These organs are particularly susceptible to stress-induced oxidative
injury due to their high metabolic activity and vulnerability to redox imbalance. The
histopathological findings provide structural validation of the molecular data and strengthen the
translational relevance of the study.

The use of a female-specific stress model represents a notable strength of this investigation.
Females exhibit distinct neuroendocrine responses to stress, with estrogen and glucocorticoid
signaling exerting complex effects on redox regulation [36]. By focusing on female rats, this
study addresses an important gap in stress-redox research, which has historically been male-
biased [37]. The findings suggest that HS may be Estrogen can both enhance antioxidant
defenses and, under certain conditions, increase oxidative susceptibility particularly beneficial in
mitigating stress-related oxidative disorders in females.

Despite its strengths, this study has some limitations. The precise upstream molecular
interactions between HS phytochemicals and the Keapl-Nrf2 complex were not directly
examined. Additionally, assessment of mitochondrial function and downstream Nrf2 target genes
beyond HO-1 would provide further mechanistic depth. Future studies employing
pharmacological or genetic inhibition of Nrf2 could help establish causality and further delineate
the signaling pathways involved. From a translational perspective, the findings highlight
Hibiscus sabdariffa as a low-cost, accessible, and culturally accepted nutraceutical with potential
therapeutic relevance for stress-related oxidative disorders. Given the increasing global burden of
chronic stress and its disproportionate impact on women, interventions that enhance endogenous
antioxidant defenses through redox signaling modulation may offer significant public health
benefits.

In conclusion, this study provides compelling mechanistic evidence that Hibiscus sabdariffa
mitigates restraint stress—induced oxidative damage in female rats by activating the Nrf2/HO-1
antioxidant pathway, restoring redox balance, suppressing inflammatory mediators, and
preserving tissue integrity. These findings advance our understanding of plant-derived redox
modulators and support further investigation of Hibiscus sabdariffa as a therapeutic strategy for
managing stress-associated oxidative pathologies.
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Figures



437

438  Figure 1. Fleshy calyces of Hibiscus sabdariffa. Representative photograph showing the dark-
439  red calyces used for aqueous extraction. (Adapted from Aliyu et al., 2014).
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441  Figure 2. Serum malondialdehyde (MDA) levels across experimental groups. Restraint stress
442  significantly increased MDA levels, whereas H. sabdariffa (HS) supplementation dose-
443 dependently reduced lipid peroxidation. Data are presented as mean + SEM (n = 6 per group). *p
444 < 0.001 vs NC; #p < 0.05 vs SC. NC = non-stress control; SC = stress control; HS-L = HS 250

445  mg/kg; HS-H = HS 500 mg/kg.
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447  Figure 3. Superoxide dismutase (SOD) activity in serum. HS treatment restored SOD activity
448  suppressed by restraint stress in a dose-dependent manner. Data are mean £ SEM (n = 6). *p <
449  0.001 vs NC; #p < 0.05 vs SC.
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Figure 4. Catalase (CAT) activity in serum. HS supplementation improved CAT activity
diminished by stress exposure. Data are mean = SEM (n = 6). Statistical analysis: one-way

ANOVA with Bonferroni post hoc test.
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455  Figure 5. Glutathione peroxidase (GPx) activity in serum. HS restored GPx levels in stressed
456  rats in a dose-dependent manner. Data are mean + SEM (n = 6); *p < 0.001 vs NC; #p < 0.05 vs
457  SC.
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Figure 6. Relative gene expression of antioxidant (Nrf2, HO-1) and inflammatory (TNF-a,
iINOS) markers in liver tissue. Restraint stress downregulated Nrf2/HO-1 and upregulated TNF-
a/iNOS; HS treatment normalized these genes. Data normalized to NC (1.0) and expressed as
mean £ SEM (n = 6). *p < 0.05, **p < 0.01.
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Figure 7. Protein expression of Nrf2, HO-1, TNF-a, and iNOS in liver tissue via Western blot.
HS treatment restored antioxidant protein levels and suppressed inflammatory proteins.
Representative blots are shown; densitometry values normalized to NC. Data are mean £ SEM (n
=6). *p < 0.05, **p < 0.01.
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469  Plate 1. Histopathological assessment of hippocampus, liver, and kidney (H&E, x400). (A) NC:
470  normal architecture; (B) SC: tissue degeneration; (C) SC + HS 250 mg/kg: partial restoration;
471 (D) SC + HS 500 mg/kg: near-complete restoration.
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Table 1. Body weight changes across experimental groups.

Initial Weight (g) Final Weight (g) Weight Gain (g)

Group

NC 192.3+3.4 2185+ 4.2
SC 1914 +4.1 198.7 £ 3.6
SC + HS 250 mg/kg 190.6 + 3.9 2104+ 45
SC + HS 500 mg/kg 192.5 + 4.2 216.9+ 3.8
HS 250 mg/kg 193.8 £3.7 219.1+40

26.2 2.5
7.3+1.8*
19.8 £ 2.17
244423+
253 +2.4

*Data are mean £ SEM (n=6). p < 0.01 vs NC; 1p < 0.05 vs SC; #7p < 0.01 vs SC.

Table 2. Serum oxidative stress biomarkers.

Group
NC
SC

SC + HS 500 mg/kg 3.45 + 0.221+

HS 500 mg/kg

MDA (nmol/mL) SOD (U/mL) CAT (U/mL) GPx (U/mL)
3.12+0.19 12.4 £ 0.6
8.41 + 0.25* 59+ 04*
SC + HS 250 mg/kg 5.02 £ 0.31+ 10.1 £ 0.57

3.07+0.18 129+ 0.6

122+ 0.7+ 30.9 £ 1.2%+

328+14 395+18
182+ 1.1* 21.4+15*
264+ 131 317+ 1.6

37.6+ 1,37

335+13 401+17

*Data are mean + SEM (n = 6). p < 0.001 vs NC; 1p < 0.01 vs SC; #fp < 0.001 vs SC.

Table 3. Gene expression analysis (QRT-PCR) in stress-exposed rats.

Gene NC

1.00
Nrf2 0.05

1.00
HO-1 "5 04
TNF- 1.00
a 0.06
) 1.00
INOS 0.05

SC

+0.35
0.03

+0.42
0.03

+3.80
0.20

+4.50
0.25

SC + HS 250SC + HS 500% Change vs NC

mg/kg
*0.65+0.04

£0.70 +0.04
$210+0.15

*9250+0.18

mg/kg
0.98 £ 0.05

0.99 +0.04
1.10 +0.08

1.20+0.09

(SC)
-65%

-58%
+280%

+350%

Table 4. Protein expression (Western blot / ELISA) in stress-exposed rats.



Protein NC SC SC + HS 500 mg/kg % Change vs NC (SC)

Nrf2 1.00+0.05 0.40+0.08 0.98+0.05 -60%
HO-1 1.00+0.04 0.45+0.03 0.97+0.04 -55%
TNF-o 1.00+0.66 3.80+0.20 1.05+0.06 +280%
INOS 1.00+0.05 450+0.25 1.10+0.07 +350%
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