

1 **EMERGING DONOR PATTERN AT WESTERN INDIA: EARLY TRENDS AND**
2 **PROFILE INSIGHTS FROM INITIAL YEAR OF DONATION ACTIVITY**

7 Abstract:

8 Background- Blood Transfusion Services (BTS) are a vital component of the modern health care
9 system, without which efficient medical care is impossible. BTS play a central role in ensuring
10 the availability of a safe, adequate, and timely supply of blood and blood products for patients in
11 need.

12 Aims and Objective-The aim of this study was to document the current rate and reasons for
13 donor deferral in our tertiary care centre's blood center over a defined period, and to understand
14 how these patterns can inform strategies to improve donation and retention.

15 Methodology- This retrospective record based study was carried out for whole blood donors at
16 blood Center of AIIMS Rajkot.

17 Results- A total of 1241 participants registered for blood donation during the study period; 1066
18 (85.89%) were male and 175(14.10%) were female. Among all registered donors, 13.65 % (145)
19 of males and 61.14 (107)% of females were deferred from donating. Among causes of donor
20 rejection, anemia (Hb < 12.5 g/dL) was the predominant reason134 (53.17%), followed by a
21 history of medication use 97 (38.49%) as deferral. The distribution of ABO blood groups showed
22 that group B was the most frequent370 (37.41%), followed by O 325 (32.86%), A 208 (21.03%),
23 and AB 86 (8.69%). 15 (1.51%) out of 989 donors serostatus reactive for transfusion-
24 transmissible infections.

25 Conclusion- Donor deferral rates and the reasons for deferral are important to highlight for blood
26 donors, the public, and health professionals because they directly impact the safety and
27 effectiveness of blood donation services. Deferrals protect both donors and recipients by
28 ensuring that only eligible, healthy individuals donate, reducing risks of harm or transfusion-
29 transmissible infections.

30
31 Key Words-Blood donation, Donor Selection, ABO blood group, Transfusion Transmissible
32 infection

33
34 Introduction-

35 Blood Transfusion Services (BTS) are a vital component of the modern health care system,
36 without which efficient medical care is impossible [1]. The primary objective of blood
37 transfusion services worldwide is to ensure the availability of a safe and adequate supply of
38 blood and blood products.

39 Blood donation is a vital act that directly contributes to saving lives and improving patient
40 outcomes. From the donor's perspective, voluntary blood donation supports the continuous
41 availability of safe blood for patients requiring transfusion due to trauma, surgery, obstetric
42 emergencies, hematological disorders, and chronic illnesses. Regular blood donors play a crucial
43 role in strengthening blood transfusion services by ensuring a reliable and sustainable blood
44 supply. In addition to its humanitarian value, blood donation promotes a sense of social

45 responsibility and community participation among donors, reinforcing the ethical foundation of
46 modern health care systems.

47 According to the Drugs and Cosmetics Act, not every individual who presents to a blood bank or
48 donation camp qualifies as a blood donor. A donor is defined as a person who, after a complete
49 medical examination by a qualified medical officer, is declared fit to donate blood. To ensure the
50 safety of blood donation and to enhance public confidence in voluntary blood donation, several
51 safety measures have been implemented by the blood transfusion community. Among these,
52 donor selection is the most critical. Stringent, meticulous, and systematic donor screening is
53 essential to protect both blood donors and recipients [2].

54 Blood donors may be deferred for various reasons. The rate and causes of donor deferral vary
55 across regions and among blood transfusion centers. Individuals who are temporarily or
56 permanently disqualified from donating blood are referred to as “deferred” donors [3].

57 Hence, a detailed analysis of the various causes of blood donor deferral may help medical
58 personnel and clinicians identify and address barriers that impede blood donation [4].

59 The proportion of male and female blood donors is an important indicator of donor
60 demographics and reflects sociocultural, physiological, and awareness-related factors influencing
61 blood donation practices. Globally, blood donation is predominantly contributed by male donors,
62 while female participation remains comparatively low in many regions. Factors such as anemia,
63 low body weight, pregnancy, lactation, and sociocultural barriers contribute to higher deferral
64 rates among female donors. Understanding the gender distribution of blood donors is essential
65 for developing targeted strategies to improve female donor participation and to ensure a safe and
66 adequate blood supply.

67 Knowledge of blood group prevalence and transfusion-transmissible infection (TTI) serostatus
68 among blood donors is essential for effective blood transfusion services. The distribution of
69 ABO and Rh blood groups varies across different populations and regions, influencing blood
70 inventory management and transfusion planning. Understanding local blood group prevalence
71 helps blood banks maintain an adequate and balanced supply of blood components to meet
72 clinical demands.

73 Equally important is the assessment of donor serostatus for transfusion-transmissible infections,
74 including human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus
75 (HCV), syphilis, and malaria. Monitoring seroreactivity among blood donors serves as an
76 indirect indicator of the safety of the blood supply and the prevalence of these infections in the
77 general population. Regular evaluation of blood group distribution and serostatus among donors
78 aids in identifying trends, strengthening donor selection strategies, and improving transfusion
79 safety.

80 According to the National AIDS Control Organization (NACO), the annual blood donation rate
81 in India is 7.4 million units, with a shortfall of 2.6 million units.[5]

82 Methodology

83 Place and type of study: This is a retrospective record based study done at blood center of AIIMS
84 Rajkot. The blood donors data from 16 th April 2025(opening day of blood center) to December
85 2025 was collected.

86 This study focused on analysis of the initial demographic characteristics of blood donors,
87 including age , gender distribution, Donor deferral pattern, Major blood group distribution , sero
88 status of donors which is crucial for understanding donor patterns and planning targeted donor
89 recruitment strategies. A structured questionnaire was used to collect information on these
90 sociodemographic characteristics in relation to blood donation. Statistical analyses were
91 performed using SPSS software (version 22). The chi-square test was applied to determine the
92 significance of observed differences between demographic groups.

93 Inclusion criteria-

94 1. All whole blood donors who visited the AIIMS Rajkot Blood Bank and camp organized by
95 them during the study period.
96 2. Donors who completed the full donation process, including screening, blood collection, and
97 post-donation care.

98 Exclusion criteria

99

100 1. Voluntary donors <18years and >65 years.

101 2. Pregnant women.

102 Standard operating Procedures based on the Directorate General of Health Services [DGHS](6)
103 guidelines, Ministry of Health & Family Welfare used for donor selection and deferral.

104 Results-

105 This study was conducted by collecting and analyzing data of initial year of donation activity
106 from the blood center, from 16 April 2025 to 31 December 2025.

107 A total of 1241 participants registered for blood donation during the study period; 1066(85.89%)
108 were male and 175(14.10%) were female. [Figure 1]

109 989 (79.69%)donors eligible for blood donation out of 1241 and 252(20.30%) donors differ for
110 blood donation.[Figure 2]

111 Out of 989 donors 921 (93.12%)were male and 68(6.87%) were female donors.[Figure3]

112 Among all registered donors, 13.65 % (145) of males and 61.14% (107) of females were deferred
113 from donating.[Figure 4]

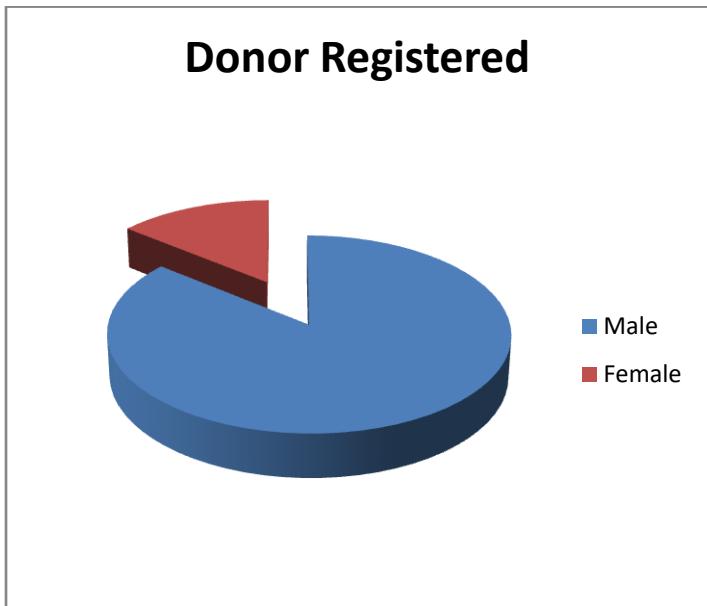
114 Among causes of donor rejection, anemia (Hb < 12.5 g/dL) was the predominant reason
115 (53.17%), followed by a history of medication use 97 (38.49%) as a temporary deferral.[Figure
116 5]

117 564(57.02%) donors donated at our blood center and 435(43.98) donated at camp site which was
118 organized by us.[Figure 6]

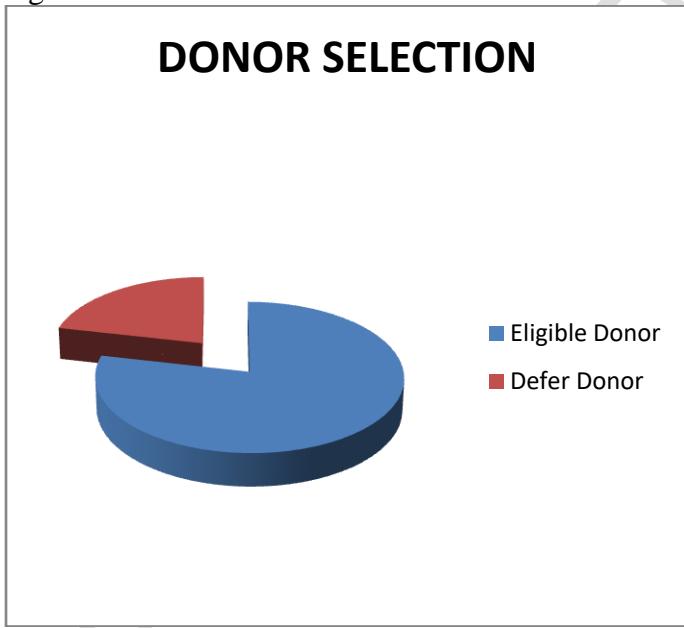
119 The distribution of ABO blood groups showed that group B was the most frequent370 (37.41%),
120 followed by O 325 (32.86%), A 208 (21.03%), and AB 86 (8.69%). [Figure 7]

121 Rhesus (Rh) factor analysis revealed that 932 (94.23)% of donors were Rh positive, and 57(5.76
122 %) were Rh negative.[Figure 8]

123 15 (1.51%) out of 989 donors serostatus for transfusion-transmissible infections, including
124 human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV),
125 syphilis, and malaria were reactive . Hepatitis C virus 06 (0.60%), syphilis 05 (0.50%) and
126 Hepatitis B Virus 04(0.004%) . [Figure 9]


127

128


129

130

131 Figure 1
132

133
134
135
136 Figure 2

137
138
139
140 Figure 3

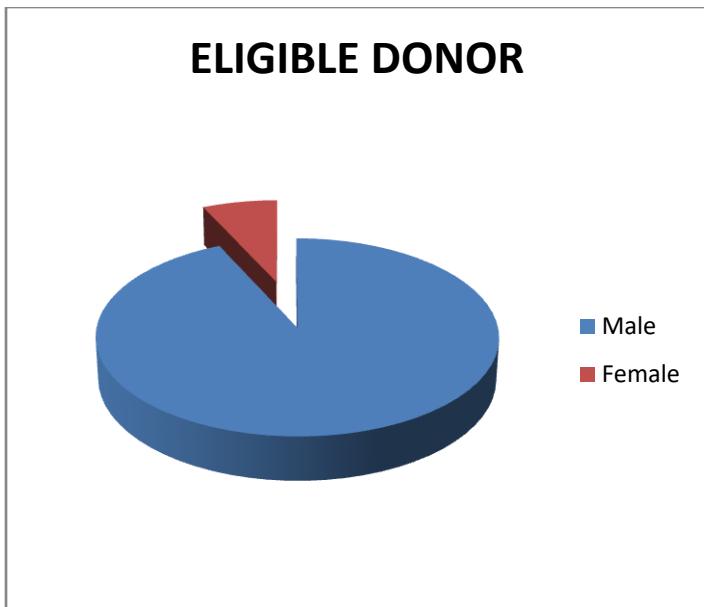


Figure 4

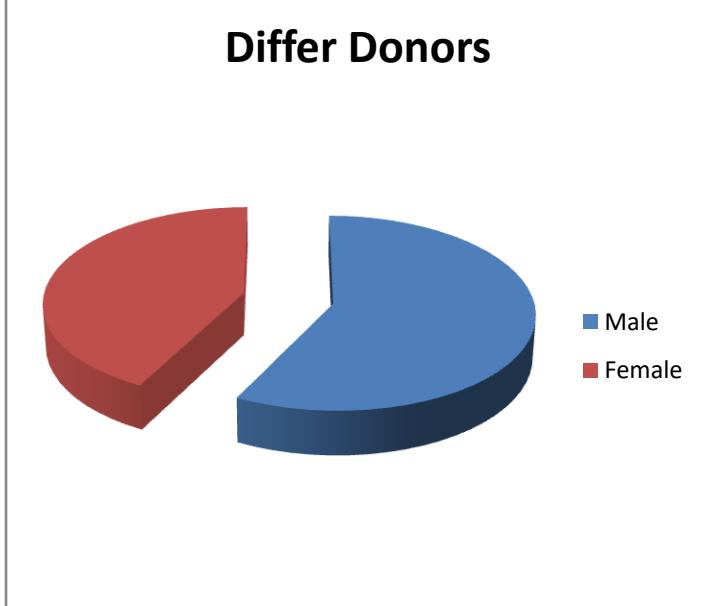


Figure 5

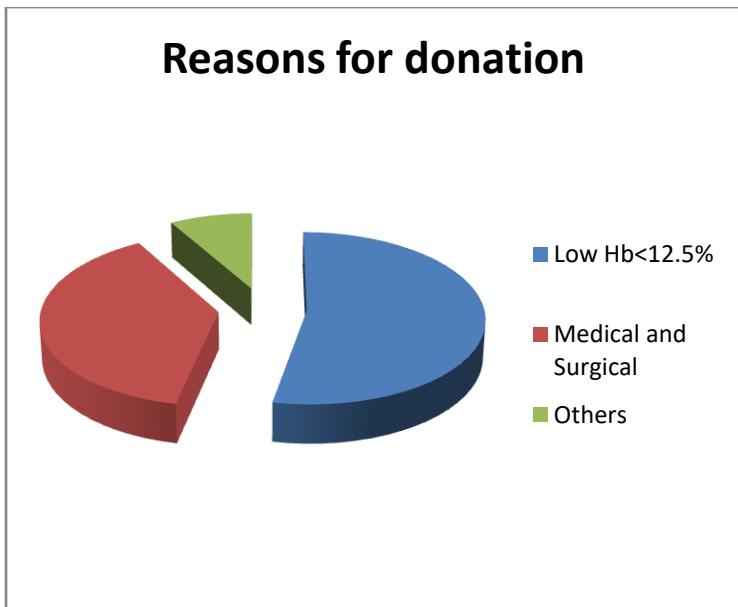


Figure 6

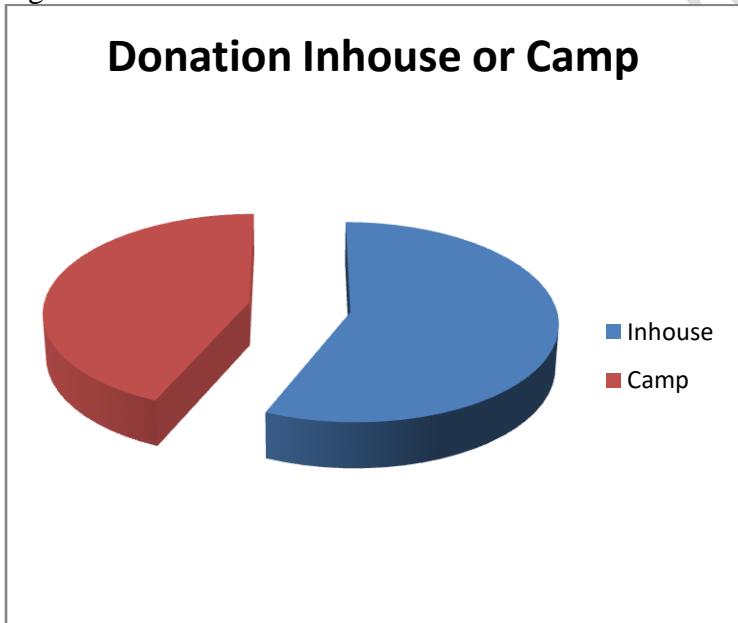


Figure 7

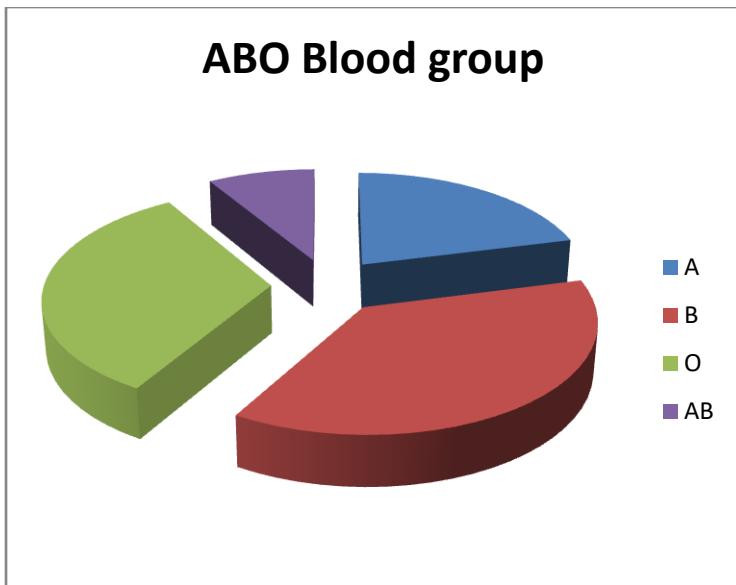


Figure 8

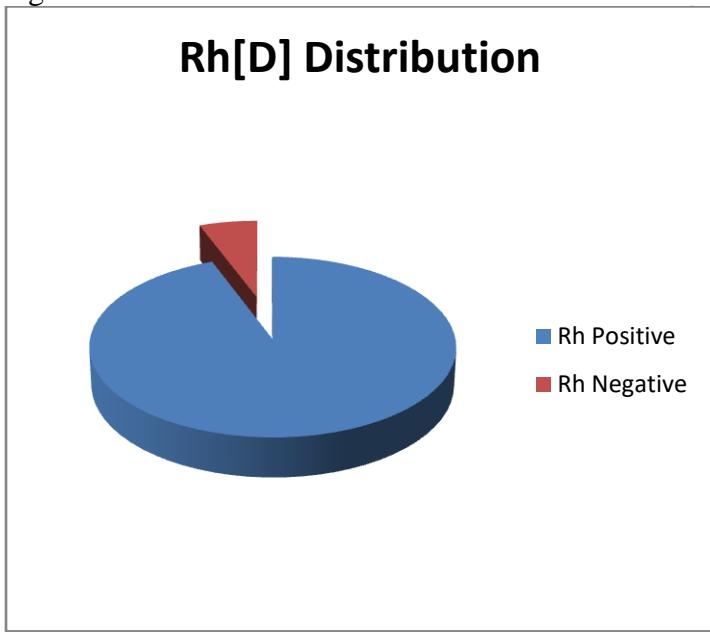
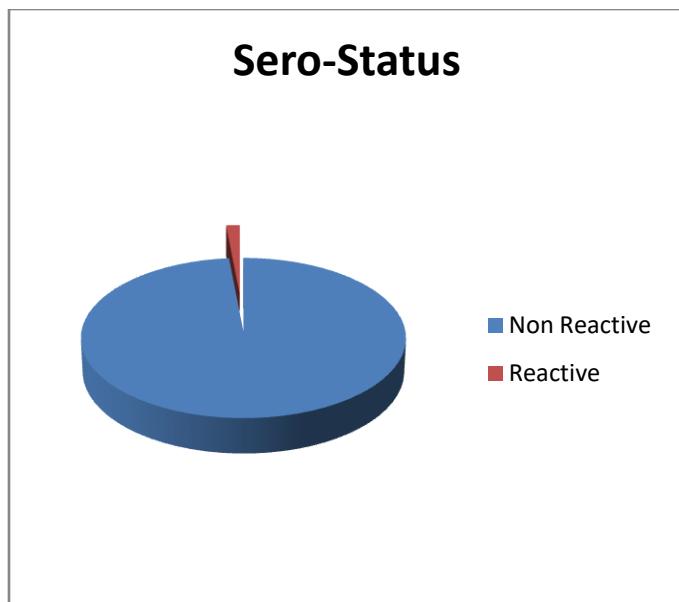



Figure 9

165

166

167

168

169

Discussion-

170 Transfusion of blood and blood products plays a vital role in modern medicine, particularly in
 171 emergency settings where timely blood transfusion can be life-saving for patients. However,
 172 while blood donation is an essential component of healthcare, the process must be carried out in
 173 a manner that ensures the safety and well-being of both the donor and the recipient[7].

174 The primary goal of safe donor selection is to protect the donor from harm during the donation
 175 process and to ensure that the collected blood is safe for transfusion. Comprehensive pre-
 176 donation assessment—including medical history, physical examination, and risk evaluation—
 177 helps identify individuals who are suitable to donate and excludes those with potential health
 178 risks, thereby safeguarding public health. Safe donor selection is widely recognized as the first
 179 and one of the most crucial steps towards ensuring safe transfusion services.”

180 The results of this study highlight several trends that can inform effective donation strategies in
 181 the region. In our study, the majority of donors were men (93.12%) compared to women
 182 (6.87%). These findings are similar in direction but show a slightly higher male predominance
 183 compared to previous studies. For example, Al Shaer et al. reported 95.89% male and 4.1%
 184 female donors[8], Birjandi et al. found 95.6% male and 4.4% female donors[9], and
 185 Unnikrishnan et al. observed 95.13% male and 4.8% female donors[10]. These studies
 186 collectively indicate a marked gender disparity in blood donation, with women consistently
 187 underrepresented.

188 Targeted awareness campaigns and improved access to donation sites are evidence-based
 189 approaches that can help overcome barriers unique to women, thereby increasing their
 190 participation in blood donation.[11]

191 In our study low hemoglobin 134cases (53.17%) which leads to anemia is being reported as the
 192 main cause of temporary deferral in males and females followed by medication history 97cases
 193 (38.49%). Low hemoglobin was the commonest cause of deferral in most of studies by Charles
 194 et al. and Agnihotri N. [12,13]. The minimum cut-off hemoglobin level for blood donation is
 195 >12.5 gm% irrespective of sex. In many studies it is observed that the most common cause for

196 deferral is anemia, even in western studies. In Canada, 2% of all blood donors do not meet
197 minimum hemoglobin standard, whereas in developing countries the number is more as pointed
198 by this study (more than 21%) [14].

199 In our study distribution of ABO blood groups showed that group B was the most frequent370
200 (37.41%), followed by O 325 (32.86%), A 208 (21.03%), and AB 86 (8.69%). Rhesus (Rh)
201 factor analysis revealed that 932 (94.23)% of donors were Rh positive, and 57(5.76 %) were Rh
202 negative. Approximately 96% of donors were Rh-positive and 4% were Rh-negative. These
203 findings align with studies by Garg et al. in Maharashtra [15], Chandra and Gupta in North India
204 [16], Singh et al. [17], Kaur et al. [18] and Haldar et al. [19].

205 In our study we found 15 (1.51%) out of 989 donors serostatus reactive for transfusion-
206 transmissible infections.

207 A total of 1241 participants registered for blood donation during the study period, of whom 1066
208 (85.89%) were males and 175 (14.10%) were females. Chi-square analysis showed a statistically
209 significant difference in donor registration between males and females ($p < 0.05$). Among the
210 registered donors, 145 (13.65%) males and 107 (61.14%) females were deferred from donation.
211 The association between gender and donor deferral status was found to be statistically significant
212 on chi-square testing ($p < 0.05$), indicating a significantly higher deferral rate among female
213 donors. Regarding causes of donor deferral, anemia ($Hb < 12.5$ g/dL) was the predominant
214 cause, accounting for 134 cases (53.17%), followed by a history of medication use in 97 cases
215 (38.49%). Chi-square analysis demonstrated a statistically significant association between gender
216 and causes of donor deferral, with anemia being the leading cause in both sexes ($p < 0.05$). The
217 distribution of ABO blood groups among donors showed that blood group B was the most
218 frequent (370; 37.41%), followed by group O (325; 32.86%), group A (208; 21.03%), and group
219 AB (86; 8.69%). The variation in ABO blood group distribution was found to be statistically
220 significant using the chi-square test ($p < 0.05$). Out of 989 eligible donors, 15 (1.51%) were
221 found to be seroreactive for transfusion-transmissible infections. Chi-square analysis showed no
222 statistically significant association between donor gender and seroreactivity status ($p > 0.05$).
223
224

225 Conclusion-

226 This study provides a comprehensive profile of blood donors at our blood center. The donor
227 population was predominantly male, with a marked gender imbalance, and the most common
228 blood group observed was “B,” followed by “O,” “A,” and “AB.” The vast majority of donors
229 were Rhesus positive. Deferral due to anemia and other temporary causes highlights ongoing
230 challenges in donor eligibility. These findings underscore the importance of targeted awareness
231 and recruitment strategies — particularly to increase female participation and improve donor
232 retention. Understanding donor demographics, blood group distribution, and reasons for deferral
233 can help inform effective planning, inventory management, and outreach interventions to ensure
234 a safe, diverse, and sustainable blood supply for the region.

235

236 REFERENCE-

- 237 1. H Gajjar, F R Shah, N R Shah, C K Shah. Whole blood donor deferral analysis at General
238 hospital blood bank – A retrospective study. NHL Journal of Medical Sciences
239 2014;3(2):72-76.

2. Nanik J, Vinit G, Geeta P, Shruti A, Neena K, G Ali. Analysis of predonation blood donor deferral characteristics in Ajmer (Rajasthan) region . International Journal of Medical Science and Public Health 2016;5(12):2436-42.

3. Preeti B A, Divyesh G, Sajjan S S, Sujanani S. Pre-donation Deferral of Blood Donors in Tertiary Care Hospital Attached to Medical College in Southern Rajasthan. J Pharm Biomed Sci 2016;06(07):460–463.

4. M Vimal, S Sowmya, A Nishanthi and G Ramya. Evaluation of Blood Donor Deferral Causes: A Retrospective Study from South India. Annals of Pathology and Laboratory Medicine 2016;3(6):605-11.

5. Annual Report on Blood Donation in India. National AIDS Control Organization (NACO). 2023.

6. Standard operating Procedures based on the Directorate General of Health Services

7. Amit S, Prarthana J, Grishama B A, Kamlesh J S. A study on analysis of blood donation deferral during blood donation camp at tertiary-care teaching hospital in south Gujarat region. International Journal of Medical Science and Public Health 2016;5(5):894-97.

8. Al Shaer L, et al. J Blood Med. . 2017;8:55. doi: 10.2147/JBM.S135191. [DOI] [PMC free article] [PubMed] [Google Scholar]

9. .Birjandi F, et al. Arch Iran Med. . 2013;16:657. [PubMed] [Google Scholar]

10.Unnikrishnan B, et al. Australas Med J. . 2011;4:379. doi: 10.4066/AMJ.2011.641. [DOI] [PMC free article] [PubMed] [Google Scholar]

11. Women blood donation drive in 21st century: a theme 'so near yet so far' for world blood donors day Radheshyam Meher¹PMID: 4075256DOI: 10.1016/j.tracli.2025.07.004

12 Charles KS, Hughes P, Gadd R, et al.: Evaluation of blood donor deferral causes in the Trinidad and Tobago National Blood Transfusion Service. Transfus Med. 2010; 20(1):11–14. [PubMed]

13 Agnihotri N: Whole blood donor deferral analysis at a centre in Western India. Asian J Transfus Sci. 2010; 4(2):116–22.

14. Ali AM, Goldsmith CH, McAvoy AT, Ali MA, Blajchman MA. A prospective study evaluating the lowering of hemoglobin standards for blood donors. Transfusion. 1989;29(3):268–72. [PubMed]

15. Garg P, et al. J Clin Diagn Res. . 2014;8:FC16.. doi: 10.7860/JCDR/2014/9794.5355. [DOI] [PMC free article] [PubMed] [Google Scholar]

16.Chandra T, et al. J Blood Disord Transf. . 2012;3:132. doi: 10.4172/2155-9864.1000132. [DOI] [Google Scholar]

17.Singh A, et al. J Fam Med Prim Care. . 2016;5:631. doi: 10.4103/2249-4863.197319. [DOI] [PMC free article] [PubMed] [Google Scholar]

278 18..Kaur D, et al. Int J Community Med Public Health. . 2016;3:2806. doi: 10.18203/2394-
279 6040.ijcmph20163365. [DOI] [Google Scholar]

280 19..Haldar D, et al. Int J Community Med Public Health. . 2017;4:3899. doi: 10.18203/2394-
281 6040.ijcmph20174271. [DOI] [Google Scholar]

282

283

284

285

286

287

UNDER PEER REVIEW IN JOURNAL