

1 **A Case of Fever with Diagnostic Dilemma**

2

3 **Introduction**

4

5 Infective endocarditis (IE) is a potentially life-threatening microbial infection
6 involving the endocardial surface of the heart, most commonly affecting the
7 cardiac valves, but occasionally involving the mural endocardium or implanted
8 intracardiac devices (1). Despite significant
9 advances in diagnostic techniques, antimicrobial therapy, and surgical management,
10 IE continues to be associated with high morbidity and mortality worldwide,
11 with reported in-hospital mortality ranging from 15–30% (1). The disease
12 represents a complex interaction between host factors, microbial virulence, and
13 hemodynamic conditions within the heart.

14 The pathogenesis of IE involves transient or sustained bacteremia or fungemia,
15 allowing microorganisms to adhere to damaged endocardial surfaces or
16 prosthetic material (1,2). Endothelial injury leads to deposition of platelets and
17 fibrin, forming sterile
18 thrombotic vegetations that provide an nidus for microbial colonization and needs
19 prolonged duration antibiotic therapy. Subsequent proliferation
20 of organisms within these vegetations results in persistent
21 infection, embolization, and immune-
22 mediated phenomena (1). A wide variety of microorganisms can cause IE, including
23 bacteria and fungi; however, streptococci, staphylococci, and enterococci
24 remain the most common causative agents (2,3).

25 Clinically, infective endocarditis exhibits a highly variable spectrum, ranging
26 from an indolent subacute illness characterized by low-grade fever, malaise,
27 and weight loss, to a rapidly
28 progressive acute disease with severe sepsis and cardiovascular collapse (1,3). Common
29 clinical manifestations include fever, cardiac murmurs, signs of heart
30 failure, embolic events, and immunologic phenomena such as
31 glomerulonephritis and vasculitis (1). The diagnosis of IE is often challenging
32 due to its protean manifestations and relies on an integrated approach
33 incorporating clinical findings, blood culture results, and echocardiographic
34 evidence, as
35 outlined in the modified Duke's criteria (4).

36 The epidemiology of infective endocarditis varies significantly between
37 developed and developing countries. In high-income nations, IE is increasingly
38 associated with degenerative
39 valvedisease, prosthetic valves, intracardiac devices, and healthcare-

40 associated infections (3,5). In contrast, developing countries like India continue
41 to report a high burden of IE related to rheumatic heart disease (RHD), younger
42 patient populations, delayed presentation, and limited access to advanced
43 healthcare facilities (5,6). Additionally, widespread empirical antibiotic use
44 before hospital admission contributes to a high incidence of culture-
45 negative endocarditis, complicating diagnosis and management (6).
46 Given the changing epidemiological patterns, microbiological profile, and
47 persistent high complication rates, infective endocarditis remains a major clinical challenge in the Indian
48 setting. Case reports continue to play an important role in highlighting unusual
49 presentations, diagnostic difficulties, and management strategies, thereby
50 contributing to improved understanding and outcomes of this complex disease.
51

52

53 **Case Presentation**

54

55 **Patient Information**

56

57

58 A 70 year old female patient presented to ER with complaints of Dyspnea and
59 palpitation associated with generalized weakness for the last 4 days. It was
60 also associated with a history of one week intermittent high grade fever
61 associated with chills and malaise. The reported dyspnea was progressive on
62 exertion (NYHA II). It was insidious in onset and gradually progressive and
63 had no relieving factor. There was no associated chest pain and any history
64 of syncopal attacks. It was not associated with any seasonal or diurnal variation. There
65 was no history of chest pain, palpitations, PND.

66

67

68 She was a known case of CKD Stage 5D on MHD (3/week), hypertension and
69 hypothyroidism and on regular medication. She underwent a dental extraction
70 four weeks prior to symptoms without antibiotic prophylaxis. There was no
71 history of intravenous drug use.

72 **Clinical Findings on Examination:**

73

74 On Examination:

75 Patient was alert, conscious, co-
76 operative well oriented to time,
77 place and person. Temperature:
78 102 degree F
79 Pulse: 108/mi
80 n, regular. BP:
81 106/70
82 mmHg.

83
84
85 In General Survey, there was conjunctival congestion present without itching or
86 watering of eyes.
87

88 Respiratory examination revealed tachypnoea and
89 cardiovascular examination revealed a
90 high pitched pansystolic murmur
91 best heard at the apex, radiating
92 to the axilla with bibasal
93 crepitations denoting heart
94 failure.
95 There was no focal neurological deficit. Examination of other systems were
96 unremarkable.
97
98

99 Later, by the ophthalmoscopic examination, Roth's Spot with conjunctival haemorrhages were confirmed by the Ophthalmologist .
100

101 Treatment was started immediately after admission of the patient, initially with
102 moist O₂ and
103 Nebulization with Salbutamol. Foley's catheterization and i.v. cannulation
104 was done. Inj Ceftriaxone - 1 gm in twice daily (APST) was administered with
105 intravenous injection paracetamol, i.v. fluid 0.9%, Normal Saline, Injection PPI
106 and ondansetron. ABG was done. Blood
107 Culture send with three sets of sample and as per IE protocol.
108

109
110
111 Other blood investigations were sent for:
112 Complete Blood Count, Random Blood
113 Sugar, urea, creatinine, Sodium, Potassium, LFT, CRP, Procalcitonin. Fever profile
114

115 was also sent with MP Slide and dual Antigen, NS1 antigen,Typhi Dot
116 M,Urine for RE/CS.

117

118 InRadiologicalinvestigation,Chest-x-raydoneinPAview revealing cardiomegaly
119 with hilar congestion,Echocardiogram-2Ddone,ECGwas done.Laboratory
120 Investigation showed:

121 Haemoglobin

122 -9.0g/dl TLC

123 - 18600/mm³

124 CRP-Elevatedmarkedly.

125

126 Bloodcultureswerenegative.

127

128 Patientwaspreviouslyadmittedinanotherhospitalfortwodaysbeforecoming to
129 this hospital.

130 Inechocardiography,therewas‘Alargemovablemass(26x14mm)attachedtoposte
131 rior mitral annulus in LA side’.with moderate MR, mild TR and Pulmonary
132 arterial hypertension with normal ejection fraction.(**Fig 1**)

133 TransoesophagealEchocardiography(TEE)couldnotbeperformedduetosomelimit
134 edresources and financial issues.

135

136

137 **Diagnosticcriteria:**

138

139 Major criteria: Echo cardiograph’s evidence

140 of vegetation. Minor criteria: Fever, vascular

141 and immunological phenomenon.

142 **Therapeutic Intervention:**

143 The patient was diagnosed as IE and started with Injection Ceftriaxone(1g) iv
144 twice daily (APST), Injection Gentamicin(80 mg) once in every 48
145 hours(APST). She was also given Injection vancomycin (500mg.) post-
146 Haemodialysis.(All antibiotics were given after renal dose
147 adjustment)Supportive care included antipyreticsand close monitoring. A
148 multidisciplinary Endocarditis team, including cardiologist and
149 cardiothoracic surgeon evaluated the patient. Surgical intervention was not
150 indicated due to clinical improvement, ,controlled infection and lack of
151 embolic events.Patient started to respond with diuretics, oxygen and
152 antibiotics with gradual normalization of Total leukocyte count and
153 Procalcitonin. The patient was referred to higher Centre for TEE after three
154 days in a clinically and hemodynamically stable condition.All the reports of
155 fever profile were negative, including blood culture due to prior antibiotics
156 use.USG whole abdomen revealed no abnormality.

157

158 **Discussion:**

159 The clinical profile of infective endocarditis in India differs significantly from
160 that observed in Western countries. Several Indian studies have demonstrated
161 that native valve endocarditis accounts for the majority of cases, with
162 rheumatic heart disease being the most common
163 underlyingcardiac abnormality(5–
164 7).The mitral valve is most frequently involved,followed by the aortic valve,
165 reflecting the high prevalence of rheumatic valvular lesions (5,7).
166 Prolonged fever remains the most common presenting symptom, while heart failure is
167 the most frequent and serious complication, often determining prognosis (7,8).
168 Embolic complications involving the central nervous system, spleen, and
169 kidneys are also commonly reported, particularly in patients with large
170 vegetations and delayed diagnosis (6,8). These findings underscore the
171 importance of early recognition and intervention.
172 Blood culture remains the cornerstone of etiological diagnosis; however,
173 Indian studies report culture positivity rates of only 50–60%, with culture-
174 negative endocarditis occurring in up to 40%of cases(6,8). Prior antibiotic

175 exposure is the most important factor contributing to culture negativity. Recent
176 Indian data suggest a shift in microbiological trends, with *Staphylococcus*
177 *aureus* emerging as the most common causative organism, replacing *viridans* group
178 *streptococci*, and reflecting an increase in healthcare-associated infections (9).
179 Echocardiography is indispensable in the diagnosis and management of IE.
180 While transthoracic
181 echocardiography is widely available and serves as the initial imaging modality, trans
182 esophageal echocardiography offers superior sensitivity for detecting
183 vegetations, abscesses, and prosthetic valve involvement (10). Management
184 requires prolonged intravenous antimicrobial therapy tailored to
185 microbiological findings whenever possible. Early surgical intervention in
186 patients with heart failure, uncontrolled infection, or high embolic risk has
187 been shown to significantly improve outcomes in Indian studies (7,8).

188 **Conclusion:**

189
190 Infective endocarditis remains a serious and potentially fatal disease in India, characterized
191 by native valve involvement, a high prevalence of rheumatic heart
192 disease, frequent culture-
193 negative cases, and significant complication rates. Early diagnosis using modified Duke's
194 criteria, prompt echocardiographic evaluation, appropriate antimicrobial
195 therapy, and timely surgical intervention are crucial in reducing morbidity and
196 mortality. Awareness of
197 evolving microbiological trends is essential for guiding empirical therapy and improving
198 patient outcomes.

200 **References:**

- 202 1) Sexton DJ, Chu VH. Infective endocarditis. In: Goldman L, Schafer A
203 I, editors. Cecil Textbook of Medicine. 26th ed. Philadelphia:
204 Elsevier; 2020. p. 1898–1912.
- 205 2) Bennett JE, Dolin R, Blaser MJ, editors. Mandell, Douglas, and Bennett's
206 Principles and Practice of Infectious Diseases. 9th ed. Philadelphia:
207 Elsevier; 2020. p. 1025–1059.
- 208 3) Fauci AS, Braunwald E, Kasper DL, et
209 al., editors. Harrison's Principles of Internal Medicine. 21st ed.
210 New York: McGraw-Hill; 2022. p. 945–956.
- 211 4) Li JS, Sexton DJ, Mick N, et al. Proposed modifications to
212 the Duke criteria for the diagnosis of infective endocarditis. Clin Infect Dis.
213 2000;30(4):633–638.
- 214 5) Garg N, Kandpal B, Tewari S, et al. Characteristics of infective endocarditis in a
215 developing country. Indian Heart J. 2017;69(3):301–306.
- 216 6) Senthilkumar S, Menon T, Subramanian G. Epidemiology of infective endo

217 rditis in India. Indian J Med Res. 2010;132:124–130.

218 7) Math
219 RS, Sharma G, Kothari SS, et al. Prospective study of infective endocarditis
220 from a developing country. J Assoc Physicians India. 2011;59:3–8.

221 8) Balakrishnan KG, Tharakan J, Titus T, et al. Infective endocarditis in India
222 : a changing profile. Indian Heart J. 1995;47(2):121–126.

223 9) Khalid IA, Khan KA, Shahid M, et al. Changing trends in the microbiolog
224 ical profile of infective endocarditis. Indian Heart J. 2018;70(Suppl
225 3):S353–S357.

226 10) Bansal M, Kasliwal RR. Echocardiography in infective endocarditis. I
227 ndian Heart J. 2013;65(3):299–307.

228 **Conflicts of interest**-None
229 **Source of Funding**-Nil

230
231

UNDER PEER REVIEW IN IJAR

232

233 Fig 1: Mitral valve vegetation on Echocardiography

234

235 a