

PRACTICAL APPROACH TO CALCULATING PROBABILITY OF FALSE ACCEPT FOR DECISION RULES IN CONFORMITY ASSESSMENT

Manuscript Info

Manuscript History

Received: xxxxxxxxxxxxxxxx
Final Accepted: xxxxxxxxxxxxxxxx
Published: xxxxxxxxxxxxxxxx

Abstract

The decision rule, as defined in the ISO/IEC 17025 standard, is a rule that describes how measurement uncertainty is taken into account when stating conformity with a specified requirement (1). Essentially, it is a rule which is based on the idea of how much risk should be accepted when starting to use an item. In other words, the decision rule is fundamentally concerned with the question of what is the acceptable level of risk. The concept of risk here represents the probability of accepting an item that actually doesn't conform with specification (false accept) or the probability of rejecting an item that actually conforms with specification (false reject). Risk, by its nature, can never be reduced to zero, it can only be close to zero. Due to its consequences, false accept of an item is a more undesirable situation than false reject. Therefore, when a facility decides that an item is suitable for use, the acceptable level of probability of false accept which is also known as specific risk should be determined (2). This acceptable level is the facility's choice and may vary depending on the business objective.

The aim of this article is to analyze a conformity assessment of an item based on sample calibration results by using binary statement (pass-fail) decision rule, to calculate acceptable specific risk levels when starting to use an item and to serve as a supplementary document to conformity assessment documents.

Copyright, IJAR, 2024. All rights reserved.

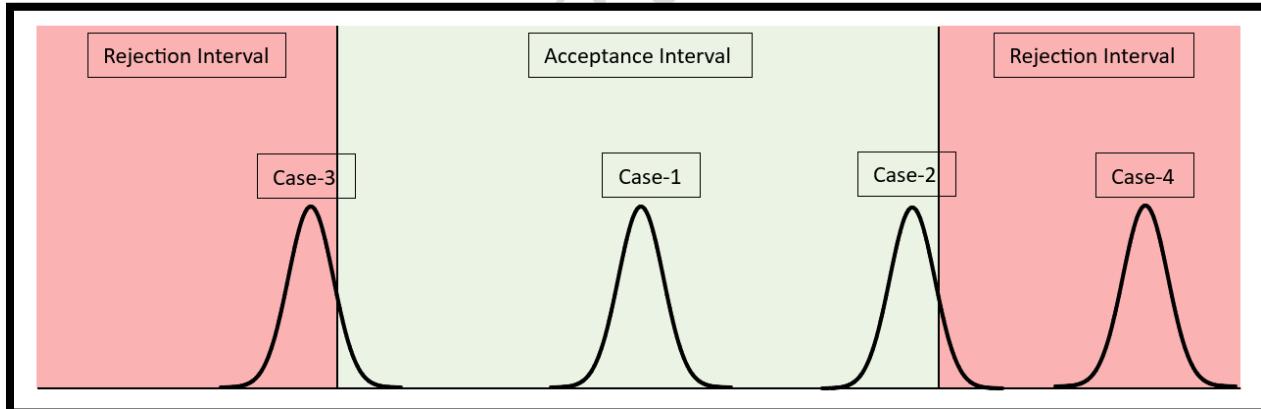
1

2 Introduction

3 Conformity assessment is an activity used in testing, inspection and calibration processes and is used to verify
4 whether products, materials, services and systems meet the expected conditions within the framework of standards,
5 regulations and legal requirements. This process, which aims to have mission of ensuring consumer confidence,
6 quality of life and safety, plays a decisive role in the global economy as it involves the acceptance or rejection of
7 items. Risk analysis has a direct impact on business decisions and financial and reputational outcomes (3).

8

9 First, the terminology used in this document must be defined. Although all conformity assessment guidance
10 documents express the same thing, different terminology is used for the same meanings. For example, the user


11 determines the lower and/or upper limit for conformity assessment. The limit here is expressed with different
12 expressions in the documents (2)(3)(4)(5)(6)(7)(8). The expressions used in the guidance documents are given in
13 Table 1.

ILAC-G8:09/2019	Tolerance Limit (Specification Limit)	Tolerance Interval (Specification Interval)	Acceptance Limit	Acceptance Interval
BIPM JCGM 106:2012	Tolerance Limit	Tolerance Interval	Acceptance Limit	Acceptance Interval
OIML G 19, 2017	Maximum Permissible Error (MPE) Limit	Conformance Zone	MPE Guard Band	Shifted Conformity Boundaries
EUROLAB. Technical Report No.01/2017	Tolerance Limit	Tolerance Interval	Acceptance Zone Limit	Acceptance Zone
UKAS LAB 48, 2021	Tolerance Limit	Tolerance Interval Specification	Acceptance Limit	Acceptance Interval
ASME B89.7.3.1-2001	Specification Limit	Specification Zone	Stringent Acceptance Zone Limit	Acceptance Zone
Eurachem/CITAC Guide, 2021	Specification Limit	Specification Zone	Acceptance Limit	Acceptance Zone

14
15 **Table 1: Terminology of Conformity Assessment Guidelines**

16 This article will use the terms “tolerance limit (specification limit), tolerance interval (specification interval),
17 acceptance limit and acceptance interval.”

18
19 If we want to evaluate the conformity of an item with a specification according to the measurement result and
20 measurement uncertainty, we should basically consider 4 types of possible situations (2)(4)(9).

21
22 **Figure 1: Conformity Assessment Criteria**

23 Based on the case shown in Figure 1, where the measurement result must be given with an expanded measurement
24 uncertainty value U ($k = 2$, interval with $\approx 95\%$ level of confidence);

25

- 26 In case 1, we can say that the item is accepted as conforming by taking measurement uncertainty into
27 account.
- 28 In case 4, we can say that the item is accepted as non-conforming by taking measurement uncertainty into
29 account.
- 30 In cases 2 and 3, we must use mathematical models to decide whether the item is accepted as conforming
or non-conforming.

32 In case 2, even if a large section of the result appears as conforming, the non-conforming section must be evaluated
33 along with the risk factor. The percentage of the non-conforming section needs to be calculated. This calculated
34 value will give us the probability of false accept which is commonly abbreviated as PFA. The facility will decide
35 whether the item is accepted as conforming or non-conforming for use based on an acceptable level of specific risk.
36 For example, if the facility's maximum target PFA value is 2 % and the calculated PFA value based on the
37 measurement result is less than 2 %, the item will be considered as conforming. Otherwise, it will be considered as
38 non-conforming.

39

40 The importance of PFA is best explained in NASA's 1342 Metrology document (10):

41 *“Certain negative consequences may arise because of false accepts. Test process false accepts can lead to reduced
42 end-item capacity or capability, mission loss or compromise, loss of life, damaged corporate reputation, warranty
43 expenses, shipping and associated costs for returned items, loss of future sales, punitive damages, legal fees, etc.”*

44

45 The calculation of the PFA value is related to the z-score which is a subject of the science of statistics (2). If we call
46 the measured value x , the arithmetic mean of the data μ and the standard deviation of the data σ ;

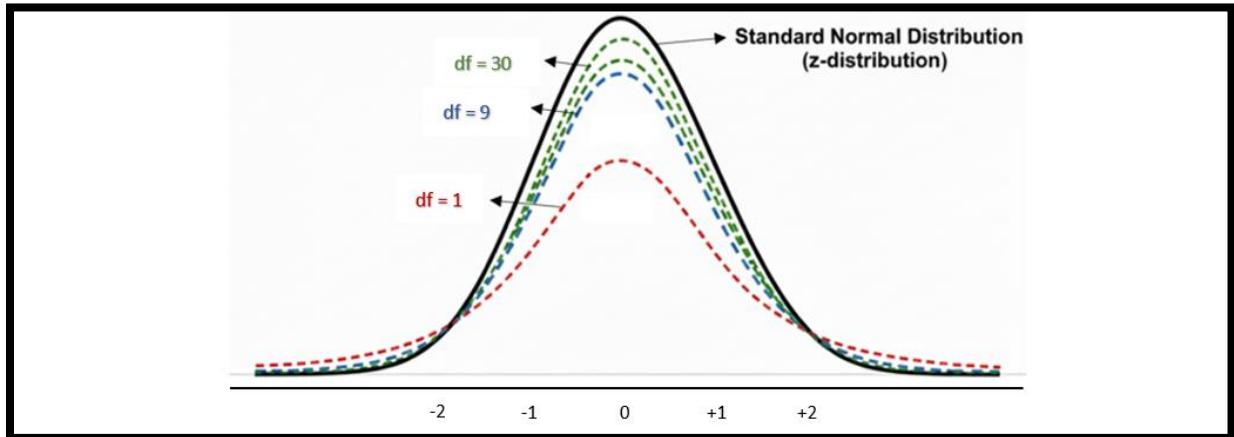
$$47 Z = \frac{x - \mu}{\sigma}$$

48 If we call our variable value x and assume it is between $-\infty$ and $+\infty$, our probability function is as follows (11):

$$49 f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$

50 To find the area under the probability curve, we use integration and this area is equal to 1 (100 %).

$$51 \int_{-\infty}^{+\infty} f(x)dx = 1$$


52 That probability density function is known as normal distribution. If we standardize that function as the arithmetic
53 mean of the data $\mu=0$ and the standard deviation of the data $\sigma=1$, then it would be called standard normal
54 distribution (also expressed as z-distribution). Standard normal distribution assumes that population standard
55 deviation is known. Based on statistics, standard deviation would be obtained if the measurement were repeated an
56 infinite number of times (11). Since it is not possible, t-distribution (also expressed as student's distribution) which
57 is based on the sample standard deviation is used.

58

59 t-distribution is a distribution which is similar to z-distribution. Basically, t approaches and gets similar to z when
60 sample size (n) rises and they are equal when n is infinite (see Figure 2)(12). When the t-distribution is used, we use
61 something called degrees of freedom ($df=n-1$). When the degrees of freedom (df) are equal to or greater than 30, t
62 gets close to z and z can be used in place of t for that sample size. While performing calibration, since we do not
63 usually take ≈ 30 repeatability measurements for one calibration point, the t-score representing the t-distribution
64 should be used rather than the z-score representing the z-distribution. However, according to metrology practices

65 and some EURAMET, DKD guidance documents (e.g. EURAMET cg-18 appendix B), 10 measurement
66 repeatability observations are accepted as sufficient reliability.

67

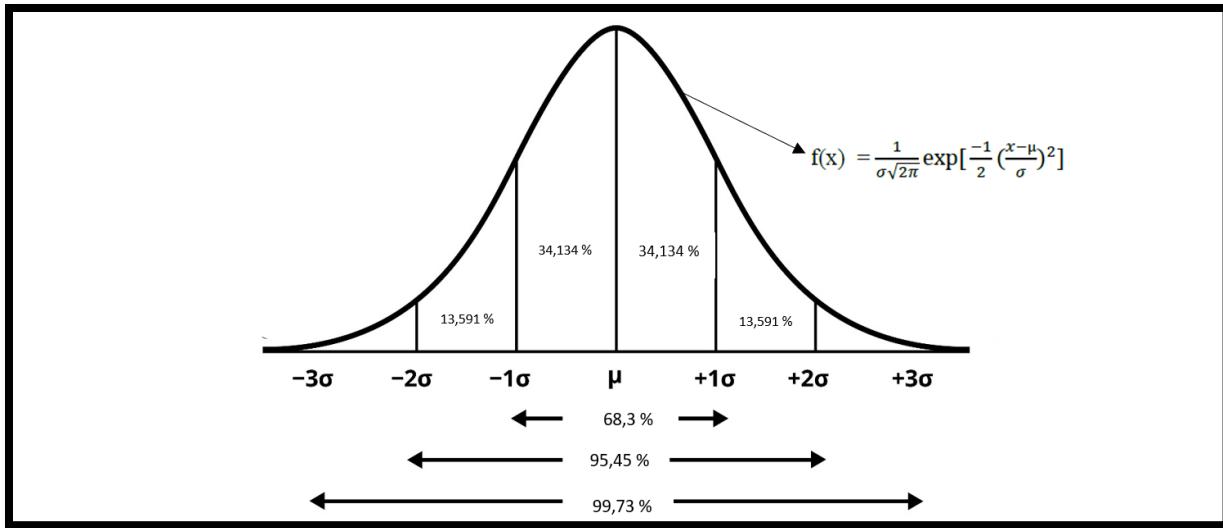
68

Figure 2: z-distribution vs. t-distribution

69

70 Sufficient reliability depends on the degrees of freedom and when the number of repeatability measurement isn't
71 less than 10, sufficient reliability can be assumed (13)(14). Therefore, we can use z-score and, in metrology world,
72 we name z-score as the coverage factor which is abbreviated as k_p . The most commonly used values are as follows
73 (11)(15):

74


- $k_p = 1$ provides an interval with a level of confidence of 68,3 %
- $k_p = 1,96$ provides an interval with a level of confidence of 95 %
- $k_p = 2$ provides an interval with a level of confidence of 95,45 %
- $k_p = 3$ provides an interval with a level of confidence of 99,73 %

78

79 As it is described in BIPM GUM guidance; in most cases, it is difficult to distinguish between an interval with a
80 level of confidence of 95 % and 96 % (11). The reason is that it is only an approximation because coverage
81 probability of 95 % means that one chance in 20 that the value of the measurand Y lies outside the interval and
82 probability of 96 % means that one chance in 25. For metrology practices, it is often adequate that taking $k_p=2$,
83 $U=2u$ which defines an interval with a level of confidence of approximately 95 %.

84

85 Interval with levels of confidence (coverage probability) associated with the coverage factors are determined (see
86 Figure 3). It is assumed that the measurement result is within the region which is calculated based on the z-score.

87
88

Figure 3: Coverage Probabilities

89 When the decision rule is applied, in other words, when we take the measurement uncertainty into account in the
90 measurement result, the probability of results that are close to the tolerance limit (specification limit) are more likely
91 to be considered as non-conforming. To prevent this, we need to subtract the value of $w = rU$ from the tolerance
92 limit value. The symbol 'w' here is considered a type of safety factor and is called the guard band. Thus, the
93 tolerance limit is replaced by the acceptance limit and the tolerance interval is replaced by the acceptance interval
94 (2)(4). In this formula, the value of r indicates how we incorporate uncertainty into the result (the ratio according to
95 uncertainty). For example, if we subtract the uncertainty from the tolerance limit by $r = 1$ ($w = U$), maximum PFA is
96 2,275 %. The maximum risk values according to the selected r value are given in Table 2.

97

98 In the UKAS LAB 48 document, the guard band is shown as $w = k_w u$. In the ILAC-G8 document, it is shown as $w =$
99 rU (4)(6). Although both essentially express the same concept, it should be noted that the coefficients differ due to
100 the approach. When the expanded uncertainty U is evaluated as two times standard uncertainty ($U = 2u$), the
101 coefficients in Table 2 can be used for the maximum PFA value.

PFA_max (%)	UKAS LAB48	ILAC-G8
0,000001%	5,6120	2,8060
0,1000%	3,0902	1,5451
1,0000%	2,3263	1,1632
2,0000%	2,0537	1,0269
2,2750%	2,0000	1,0000
2,5000%	1,9600	0,9800
4,5500%	1,6901	0,8451
5,0000%	1,6449	0,8224
10,0000%	1,2816	0,6408
20,0000%	0,8416	0,4208
30,0000%	0,5244	0,2622
40,0000%	0,2533	0,1267
50,0000%	0,0000	0,0000

102
103

Table 2: Guard Band Coefficients

104 For example, if our expanded uncertainty value is $U = 2u$ and we aim for a maximum PFA value of 5 % in our
105 measurement results according to a calibration report;

106 - We subtract $0,8224 \times U$ value (or in other way to express as $1,6449 \times u$ value) from our tolerance limits and
107 determine whether our measurement results are inside within this interval (acceptance interval). To clarify
108 something in this example; the value of $0,8224 \times U$ is equal to the guard band w . In other words, we are not
109 actually reducing the uncertainty value from $1U$ to $0,8224U$. The uncertainty value is still $1U$ but we accept
110 the guard band as $0,8224U$ to ensure a maximum PFA of 5 %. It should also be pointed out that if the
111 measurement result approaches the reference point, probability of false accept becomes lower than
112 PFAmax.

113

114 Current approaches in conformity assessment include usually simple acceptance ($w = 0$), binary statement (pass-fail),
115 and non-binary statement (pass-conditional pass-fail-conditional fail). The binary statement rule is evaluated in
116 this article. To apply the binary statement rule, the information required from the user is the tolerance value and the
117 maximum PFA value. According to this approach, statement of conformity is reported as pass if the measurement
118 result is less than acceptance limit, otherwise a fail decision is given.

119
120 *Note: In this article, probability of false accept (PFA) refers to specific risk. There is also another risk type which is
121 known as global risk. To put it simply, specific risk deals with individual measurement results, while global risk
122 deals with average measurement results. Global risk is not the subject of this article.*

123

124 Material And Method

125 We assume that the thermometer is calibrated according to Euramet cg-8 (16) and general approach on its
126 uncertainty is applied according to the BIPM GUM and EA-4/02 uncertainty documents (11)(17). An example
127 calibration certificate is given in Table 3 below. We also assume that the user has set $PFA < 2,275 \%$ and tolerance
128 $\pm 2 \text{ }^{\circ}\text{C}$. In this case, if the PFAmax value is as 2,275 %, we assume that the guard band w is equal to $1U$ according to
129 the coefficients in Table 2.

Reference	Measured	Deviation	Expanded Uncertainty ($U, k=2$)
100	101,5	1,5	0,25
200	201,5	1,5	0,5
300	301,5	1,5	1
400	401,5	1,5	1,5

130
131 **Table 3: Sample Thermometer Calibration Results (in degree Celsius)**

132 Based on the calibration results, we determine the safe zone, or acceptable interval, by subtracting the guard band
133 value from the tolerance limit value. For example, if we calculate for a reference value of $100 \text{ }^{\circ}\text{C}$;

134 ➤ Upper tolerance limit is $102 \text{ }^{\circ}\text{C}$
135 ➤ Lower tolerance limit is $98 \text{ }^{\circ}\text{C}$
136 ➤ For PFAmax of 2,275 %, the guard band w value is $1U$ (Table 2).
137 ➤ Upper acceptance limit is $102 \text{ }^{\circ}\text{C} - 1 \times 0,25 \text{ }^{\circ}\text{C} = 101,75 \text{ }^{\circ}\text{C}$
138 ➤ Lower acceptance limit is $98 \text{ }^{\circ}\text{C} + 1 \times 0,25 \text{ }^{\circ}\text{C} = 98,25 \text{ }^{\circ}\text{C}$

139 According to the calculation above, the values for the other points are given in Table 4.

Reference	Measured	Deviation	Expanded Uncertainty (U, k=2)	Lower Specification	Lower Acceptance Limit	Upper Acceptance Limit	Upper Specification
100	101,5	1,5	0,25	98,000	98,250	101,750	102,000
200	201,5	1,5	0,5	198,000	198,500	201,500	202,000
300	301,5	1,5	1	298,000	299,000	301,000	302,000
400	401,5	1,5	1,5	398,000	399,500	400,500	402,000

141 **Table 4: Tolerance Limit and Acceptance Limit (in degree Celsius)**

142

143 If we make a conformity assessment according to PFAmmax of 2,275 % and tolerance ± 2 °C;

144

- 145 The measured value for point-1 is within the acceptance interval [98,25 °C...101,75 °C]. The statement of conformity is reported as pass.
- 146 The measured value for point-2 is in acceptance limit [198,5 °C...201,5 °C]. The statement of conformity is reported as fail because there is no equality in the statement of PFAmmax of 2,275 %.
- 147 The measured value for point-3 is outside the acceptance interval [299 °C...301 °C]. The statement of conformity is reported as fail.
- 148 The measured value for point-4 is outside the acceptance interval [399,5 °C...400,5 °C]. The statement of conformity is reported as fail.

152

153 For a binary statement (pass-fail), it is sufficient to say that the measurement results are acceptable if they are within the defined acceptance interval, otherwise unacceptable. This is because we are setting an upper limit for risk according to the selected PFAmmax value. In our example, the meaning of the guard band w value of 1U is that if the measurement results are within the acceptance interval, which replaces the tolerance interval, the maximum probability of false accept is obtained as 2,275 %. In addition, if we set the guard band w value as 0,8224U instead of 1U, the maximum probability of false accept would be obtained as 5% (see Table 2). Furthermore, if we want to see the point-based PFA value in the results, we need to perform a conformance probability calculation. The conformance probability, P_C value, is calculated according to the following formula(2):

161
$$P_C = \Phi \left(\frac{(T_U - y)}{u} \right) - \Phi \left(\frac{(T_L - y)}{u} \right)$$

162 P_C = Conformance Probability, T_L = Lower Tolerance Limit, T_U = Upper Tolerance Limit, y = Measured Value, u = Standard Uncertainty ($k=1$),

164 The P_C formula is calculated using Microsoft Excel as follows:

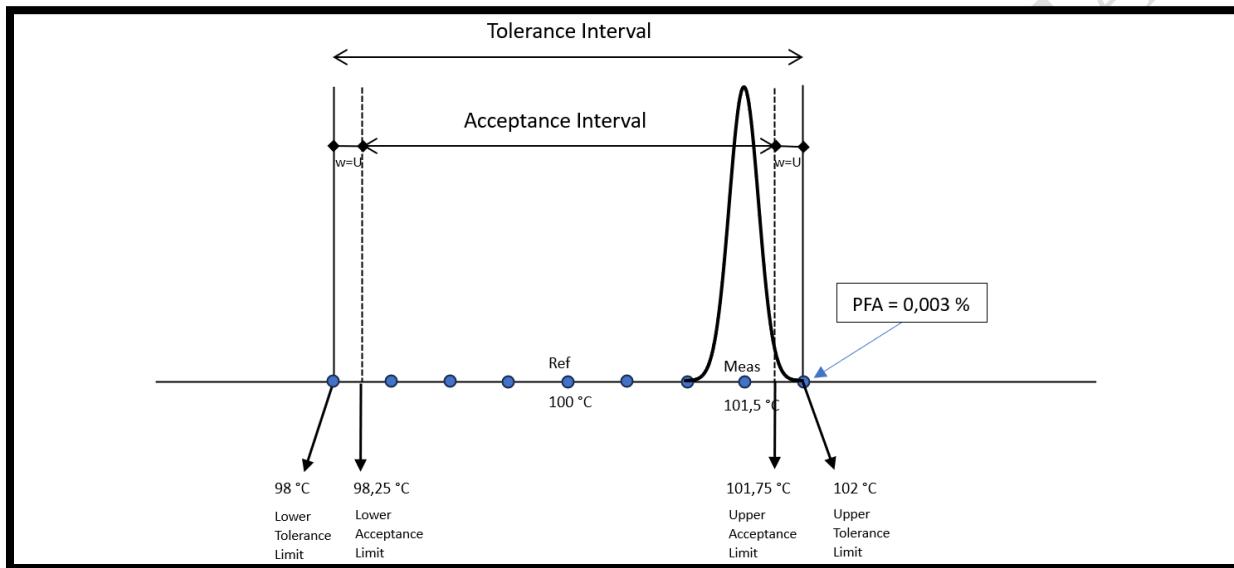
165

- 166 To find the value of $\Phi \left(\frac{(T_U - y)}{u} \right)$;

167 $=\text{NORM.DIST}(\text{upper tolerance limit } (T_U); \text{average measured value } (y); \text{combined standard uncertainty } (u, k=1); \text{TRUE})$

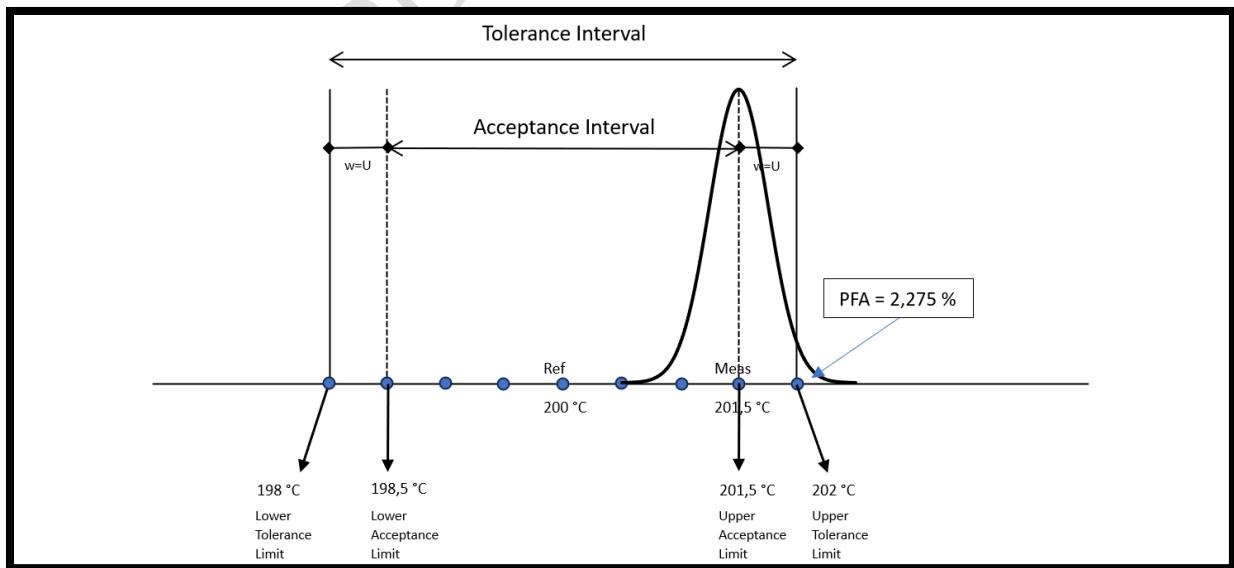
168

- 169 To find the value of $\Phi \left(\frac{(T_L - y)}{u} \right)$;

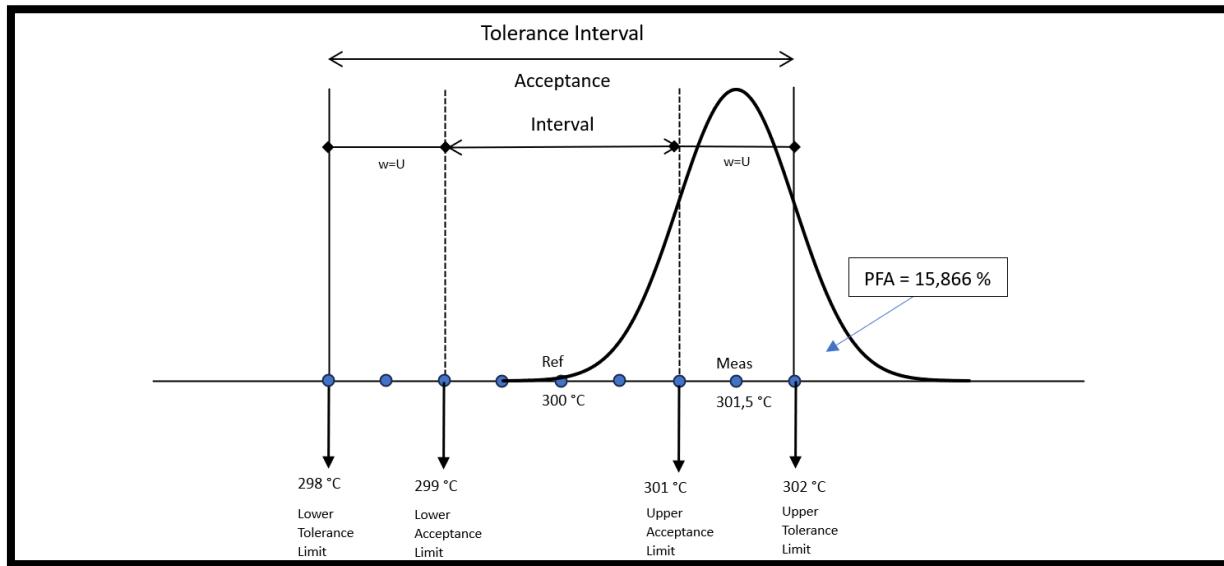

170 $=\text{NORM.DIST}(\text{lower tolerance limit } (T_L); \text{average measured value } (y); \text{combined standard uncertainty } (u, k=1); \text{TRUE})$

171 The results calculated according to the P_C formula are given in Table 5. The calibration results are visualized in
 172 Figures 4, 5, 6, and 7.

Reference	Measured	Deviation	Expanded Uncertainty ($U, k=2$)	Lower Specification	Lower Acceptance Limit	Upper Acceptance Limit	Upper Specification	Conformance Probability	Non-Conformance Probability
100	101,5	1,5	0,25	98,000	98,250	101,750	102,000	99,997%	0,003%
200	201,5	1,5	0,5	198,000	198,500	201,500	202,000	97,725%	2,275%
300	301,5	1,5	1	298,000	299,000	301,000	302,000	84,134%	15,866%
400	401,5	1,5	1,5	398,000	399,500	400,500	402,000	74,751%	25,249%


173
 174 **Table 5: Conformance Probability Results**

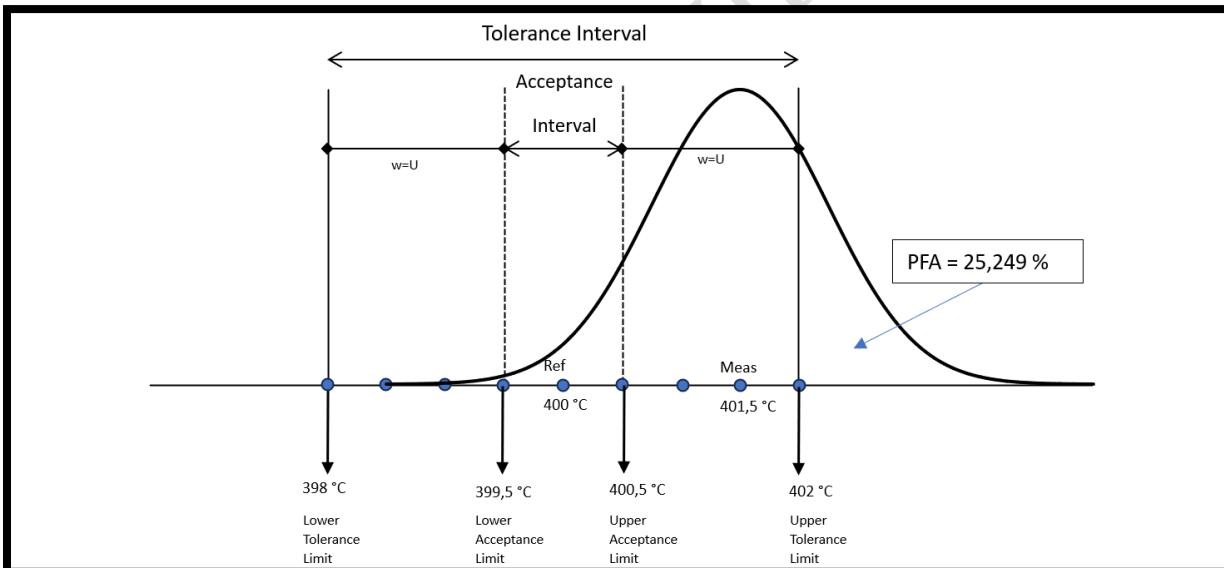
175


176
 177 **Figure 4: Calibration Point-1 Results**

178

179
 180 **Figure 5: Calibration Point-2 Results**

181



182

183

184

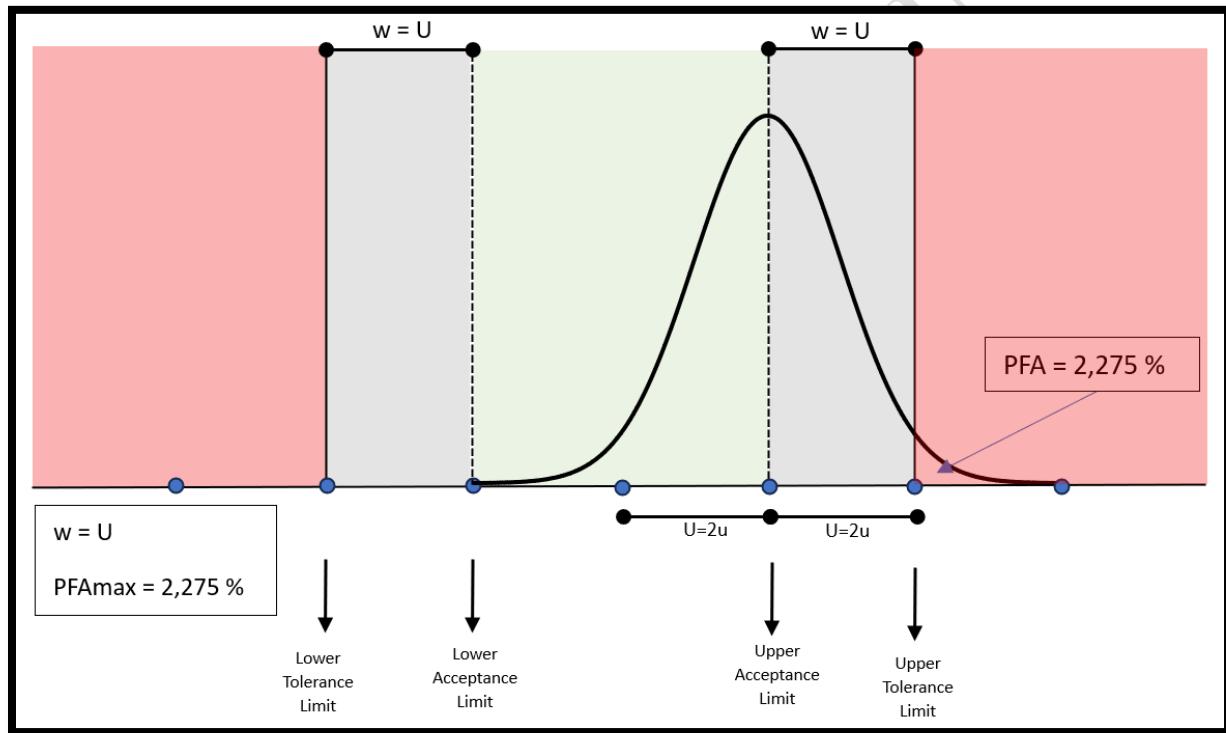
Figure 6: Calibration Point-3 Results

185

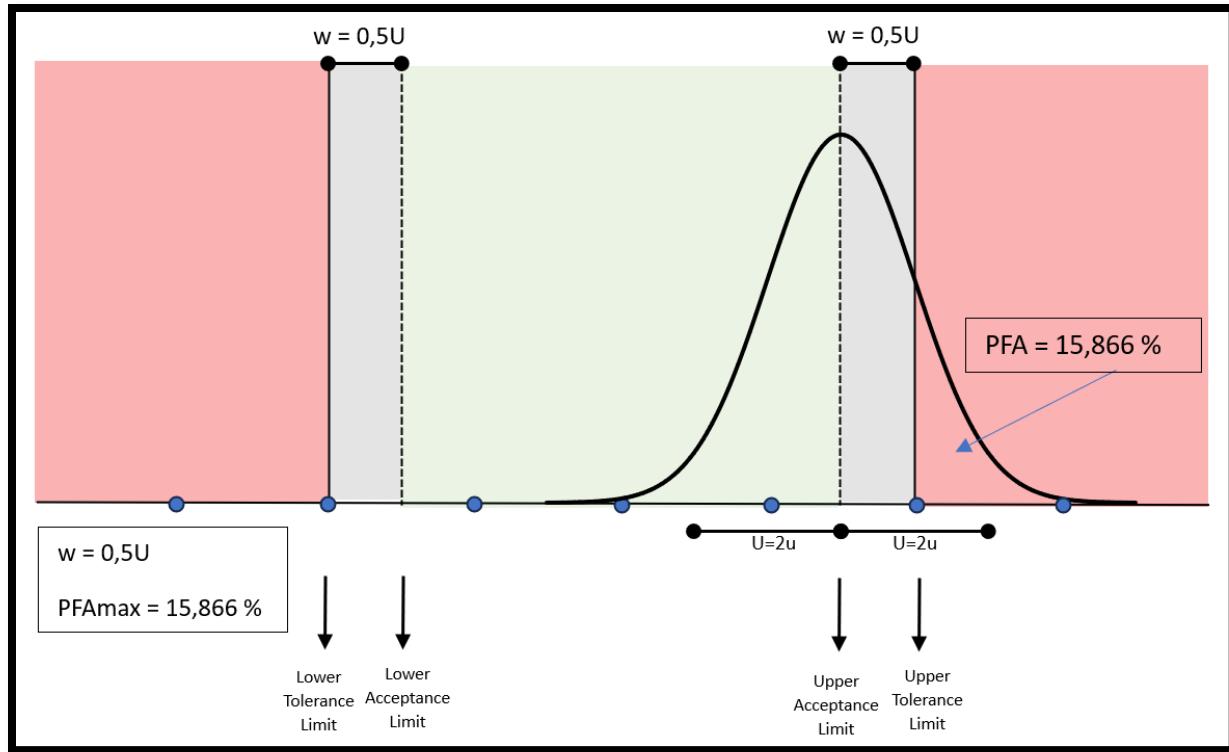
186

187

188 Discussion And Conclusion

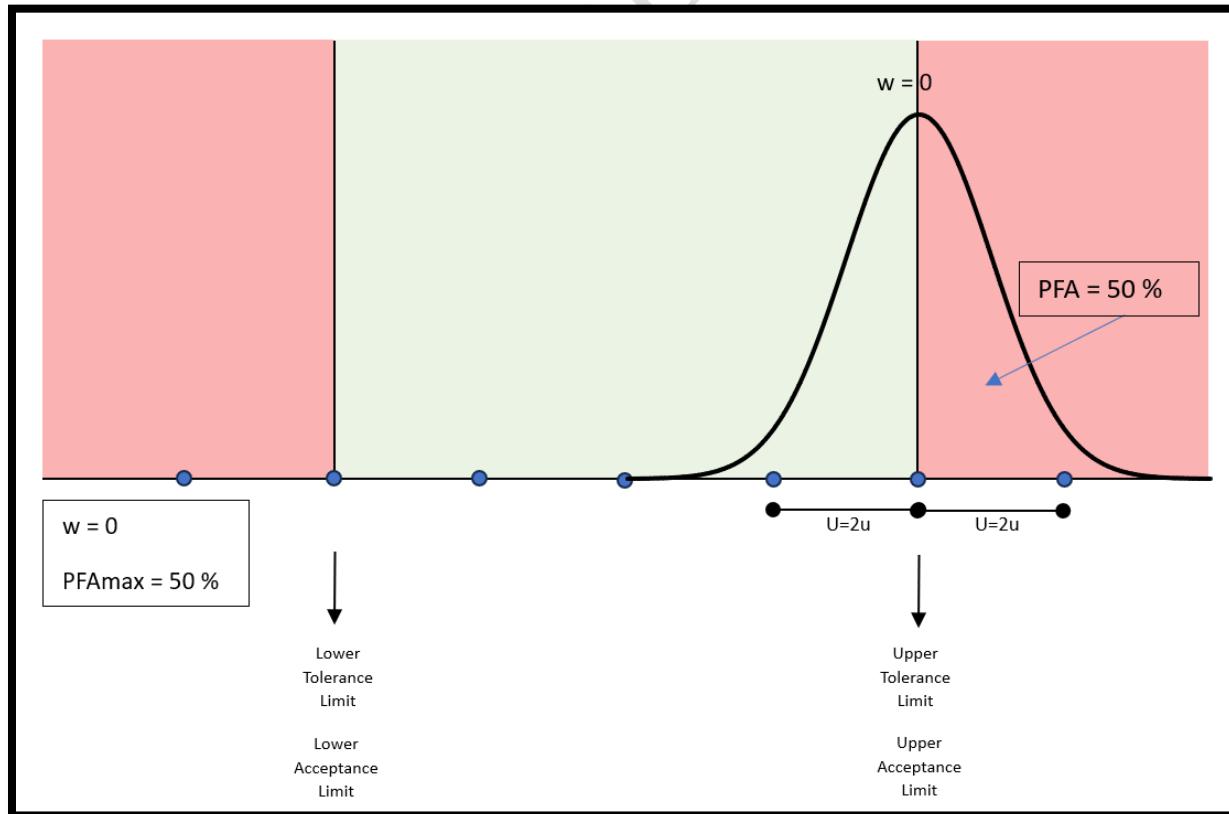

189 It is a common misunderstanding that stating only tolerance would be enough to make conformity assessment.
 190 Stating desired PFA is not often considered. For our scenario in this article, the user aims PFA < 2,275 %. As a
 191 result, the first point conforms with specification, while the other points do not. If the user aims PFA < 10 %, second
 192 point would conform with specification too. Consequently, it is obvious that the conformity assessment not only
 193 depends on tolerance but also desired PFA value.

194 ILAC-G8 tells us that guard band w is equal to $r \times U$. In this context, r is related to probability of false accept. If we
195 choose r is 1, which means $w = 1 \times U$, that would be equal to PF_{Amax} of 2,275 %. In other words, if measurement
196 values are inside of acceptance interval (specification limit minus w), the PF_{Amax} value would be 2,275 %. The key
197 point is that 2,275 % value would occur in exact acceptance limit values. If the results are less than acceptance
198 limits, risk would be lower. In addition, if we choose r is 0,5 which means $w = 0,5 \times U$, that would be equal to
199 PF_{Amax} of 15,866 % and if r is zero, PF_{Amax} value is 50 % which means measurement could be out of tolerance
200 as 50 % of probability. These situations are shown in figure 8, 9, 10.


201

202 To summarize PF_{Amax} value, if the measurement is exactly at the acceptance limit, the area outside the distribution
203 tail area will correspond exactly to the desired maximum risk (18). Again, it should be pointed out that if the
204 measurement result approaches the reference point, probability of false accept becomes lower than PF_{Amax}.

205



206
207 **Figure 8: $w = 1U$**

208
209

Figure 9: $w = 0,5U$

210
211

Figure 10: $w = 0$

212 BIPM GUM document points out that the evaluation of uncertainty is neither a routine task nor a purely
213 mathematical one(11), rather, it is fundamentally a matter of technical expertise, critical judgment, and intellectual
214 integrity.

215
216 Based on that idea, in our calibration scenario, if we evaluate the results according to only tolerance, all points
217 would be considered as conforming. The key point is that when we add the specific risk value to our equation, in
218 other words when we take measurement uncertainty into account for conformity, only the first point is considered as
219 conforming, while the others are not. Therefore, users should ask simply these questions. What is my tolerance?
220 What is my risk associated with the probability of false accept? Should my statement be binary statement (pass-fail)
221 or non-binary statement (pass-conditional pass-fail-conditional fail)? Based on these questions, results would be
222 accepted as conforming or non-conforming.

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244 **Source**

245 1. **ISO/IEC 17025:2017.** *General requirements for the competence of testing and calibration laboratories.* 2017.

246 2. **BIPM, Joint Committee for Guides in Metrology.** *JCGM 106:2012, Evaluation of measurement data – The role of measurement uncertainty in conformity assessment.* 10/2012.

248 3. **EUROLAB.** *Technical Report No.01/2017, Decision Rules Applied to Conformity Assesment.* November 2017.

249 4. **International Laboratory Accreditation Cooperation.** *ILAC-G8:09/2019, Guidelines on Decision Rules and Statements of Conformity.* s.l. : 09/2019, 09/2019.

251 5. **OIML, INTERNATIONAL ORGANIZATION OF LEGAL METROLOGY.** *OIML G 19 Edition 2017 (E), The role of measurement uncertainty in conformity assessment decisions in legal metrology.* 2017.

253 6. **UKAS.** *LAB 48, Decision rules and statements of conformity.* Edition 5 July 2024.

254 7. **The American Society of Mechanical Engineers.** *ASME B89.7.3.1-2001, GUIDELINES FOR DECISION RULES: CONSIDERING MEASUREMENT UNCERTAINTY IN DETERMINING CONFORMANCE TO SPECIFICATIONS.* March 18 2002.

257 8. **Eurachem / CITAC Guide.** *Use of Uncertainty Information in Compliance Assessment.* Second edition (2021).

258 9. **Arpacık, Hakan.** *CONFORMITY ASSESSMENT OF TEMPERATURE MEASURING DEVICES USED IN FORENSIC.* İstanbul : İSTANBUL ÜNİVERSİTESİ-CERRAHPAŞA, ADLI TIP VE ADLI BİLİMLER ENSTİTÜSÜ, June 2019.

260 10. **National Aeronautics and Space Administration (NASA).** *Reference Publication 1342, Metrology — Calibration and Measurement Processes Guidelines.* June 1994.

262 11. **BIPM, Joint Committee for Guides in Metrology.** *JCGM 100:2008 (GUM 1995 with minor corrections) Evaluation of Measurement Data - Guide to the Expression of Uncertainty in Measurement, First Edition.,* September 2008.

265 12. **Gatzeva, Mariana.** *Simple Stats Tools.*

266 13. **EURAMET.** *Calibration Guide – 18, Calibration of Non-Automatic Weighing Instruments.* 11/2015.

267 14. **Deutscher Kalibrierdienst (DKD).** *DKD-R 5-1 Calibration of resistance thermometers.* 11/2023.

268 15. **The University of Arizona.** *STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.*

270 16. **EURAMET.** *Calibration Guide – 8, Calibration of Thermocouples.* 02/2020.

271 17. **European Accreditation.** *EA-4/02, Evaluation of the Uncertainty of Measurement in Calibration.* 04/2022.

272 18. **Henry Zumbrun-Morehouse Instrument Company, Greg Cenker-Indysoft, Dilip Shah-E=mc³ Solutions.** *Decision Rule Guidance.* 04-2024.

274