

1

Project Title: Investigating the Role of 2 Traditional Indian Diets in Diabetes 3 Risk.

4

5

ABSTRACT

6

7 India is witnessing a swift increase in type 2 diabetes mellitus (T2D), highlighting the
8 imperative to examine dietary patterns that influence glycemic responses. This review aimed
9 to evaluate the relationship between traditional Indian dietary patterns and the risk of Type 2
10 Diabetes (T2D) by employing the concepts of glycemic index (GI) and glycemic load (GL),
11 with a particular emphasis on dietary transitions towards modern, high-glycemic diets. A
12 systematic literature review was conducted using peer-reviewed clinical trials, national
13 nutrition surveys, and food composition databases to assess the glycemic index and glycemic
14 load profiles of traditional and modern Indian diets. Studies indicate that traditional diets
15 abundant in millets, pulses, legumes, and foods processed through fermentation or parboiling
16 are associated with diminished postprandial glycemic responses and increased insulin
17 sensitivity. On the other hand, eating more processed cereals, sugary drinks, and fried snacks
18 is always linked to a higher dietary glycemic load and a higher risk of type 2 diabetes. The
19 results show that the Indian diet is changing a lot. People are eating less of the protective,
20 low-glycemic index staples and more of the highly processed, high-glycemic load foods. The
21 review contends that reintegrating traditional low-GI foods into modern Indian diets is a
22 culturally pertinent and biologically beneficial strategy for reducing T2D risk. Public health
23 programs should focus on teaching people about GI- and GL-oriented nutrition, encourage
24 people to eat whole grains like millets, and make rules that combine old ways of eating with
25 new ways of eating.

26

Keywords

- 27 • Type 2 Diabetes Mellitus (T2DM)
- 28 • Traditional Indian Diets
- 29 • Millets and Coarse Grains
- 30 • Dietary Transition in India
- 31 • Insulin Resistance

39
40
41
42
43
44
45

46 **Introduction**

47 Type 2 diabetes (T2D) is one of the fastest-growing public health challenges worldwide,
48 accounting for the majority of diabetes cases. According to the International Diabetes
49 Federation (IDF), an estimated 589 million adults aged 20–79 years were living with diabetes
50 globally in 2025, a figure projected to rise sharply in the coming decades.¹ In India, the
51 burden is particularly severe, with about 89.8 million adults in the same age groups were
52 affected as of 2024. This increase is alarming because it reflects not only the country's
53 genetic susceptibility but also the rapid lifestyle and dietary transitions that have
54 accompanied urbanization.³ Among these factors, dietary patterns have emerged as the most
55 critical modifiable determinant of risk, setting the stage for a closer examination of lifestyle
56 and nutrition in the Indian context.³

57 Rapid lifestyle changes and genetic predisposition are the two principal factors influencing
58 the rise of T2D in India, with the latter playing a substantial role.³ Sedentary occupations and
59 rapid urbanization have significantly reduced levels of daily physical activity, while
60 motorized transport has further curtailed mobility.⁴ At the same time, dietary practices have
61 shifted away from coarse grains and traditional staples toward refined rice, wheat, processed
62 foods, fried snacks, and sugar-sweetened beverages.⁵ These changes have contributed to
63 more frequent postprandial glucose spikes and long-term metabolic stress.⁵ Additional risks
64 are imposed by irregular sleep, elevated stress, and extended working hours, while cultural
65 habits such as the addition of sugar to tea and routine fried snacks further exacerbate the
66 burden.³ Collectively, these trends diverge from World Health Organization dietary
67 recommendations, underscoring diet as the most important modifiable determinant in
68 addressing India's growing diabetes epidemic.⁶

69 Diet is the most important factor in the management of type 2 diabetes, as it represents the
70 most modifiable lifestyle determinant.³ The nutritional composition of contemporary Indian
71 diets plays a decisive role in shaping both the risk and prevention of diabetes.³ National
72 surveys show that modern Indian diets are increasingly dominated by refined staples such as
73 white rice and polished wheat flour, while the consumption of traditional coarse grains and
74 millets has sharply declined.^{4,5,7} These dietary patterns, along with widespread intake of
75 potatoes, fried snacks, sweets, and the routine addition of sugar to tea, contribute to high
76 glycemic loads, repeated blood glucose spikes, and insulin resistance.⁴ At the same time,
77 protective foods and practices remain embedded within Indian traditions. Millets, legumes,

78 and pulses are long-standing plant proteins that slow glucose absorption, while spices,
79 sprouting, and fermentation preparation methods enhance nutrient bioavailability and lower
80 the glycemic impact of meals.³ This coexistence of harmful and protective dietary elements
81 highlights the paradox of Indian diets and underscores the need to leverage protective
82 traditions for culturally appropriate diabetes prevention strategies.³

83 **Scope**

84 This review focuses on the relationship between traditional Indian dietary patterns and the
85 risk of type 2 diabetes, with particular attention to populations that have a genetic
86 predisposition. It examines both the risk-enhancing and protective components of Indian diets
87 and considers their implications for culturally appropriate prevention strategies.

88 **Objectives**

- 89 • To assess the prevalence and dietary risk factors of type 2 diabetes in India.
- 90
- 91 • To evaluate the nutritional and glycemic properties of common traditional staples and
92 their role in diabetes risk.
- 93
- 94 • To compare traditional dietary practices with World Health Organization dietary
95 guidelines.
- 96
- 97 • To highlight protective dietary components and discuss feasible modifications that
98 can support diabetes prevention in the Indian context.

99 **Types of Diabetes and the Role of Glycemic Index**

100 Diabetes mellitus represents a group of metabolic disorders characterized by chronic
101 hyperglycemia resulting from defects in insulin secretion, insulin action, or both. The
102 condition manifests in multiple forms that vary in etiology and pathophysiology but share
103 a common consequence: impaired glucose regulation and long-term metabolic
104 complications. Among these forms, type 2 diabetes mellitus (T2DM) has emerged as the
105 most prevalent and impactful, warranting focused study in the Indian context.

106

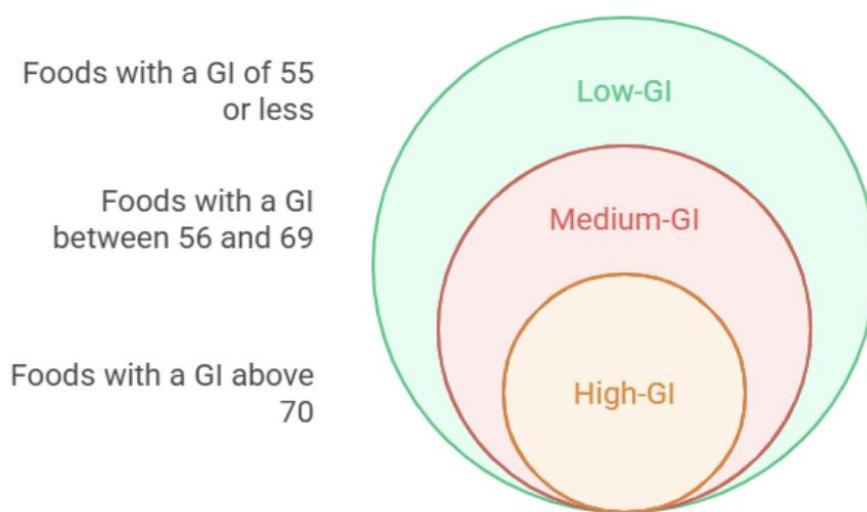
107 **Type 2 Diabetes Mellitus**

108 Type 2 diabetes mellitus is characterized by insulin resistance combined with a relative
109 deficiency in insulin secretion. In this condition, body cells fail to respond effectively to insulin,
110 while the pancreas produces insufficient insulin to maintain normal glucose levels. Genetic
111 susceptibility, sedentary behavior, obesity, and dietary patterns are key contributing factors.
112 Chronic hyperglycemia associated with T2DM can lead to complications affecting multiple organ
113 systems, including cardiovascular, renal, and ocular complications. Given its high prevalence and
114 significant public health impact, this research primarily focuses on type 2 diabetes, examining its
115 causes, risk factors, and management strategies.

116 **Prediabetes**

117 Prediabetes is a metabolic state in which blood glucose levels are elevated above the normal
118 range but do not meet the criteria for T2DM. Individuals with prediabetes are at increased risk of
119 progressing to type 2 diabetes and developing related complications. Early interventions,
120 including lifestyle modifications and, when necessary, medical management, can effectively
121 reduce the likelihood of progression.

122 **Type 1 Diabetes Mellitus**


123 Type 1 diabetes mellitus is an autoimmune condition in which the body's immune system attacks
124 and destroys insulin-producing beta cells in the pancreas, resulting in absolute insulin deficiency.
125 Lifelong insulin therapy is required to maintain glycemic control. Although it is most commonly
126 diagnosed in children and young adults, type 1 diabetes can occur at any age.

127 **Gestational Diabetes**

128 Gestational diabetes is a form of glucose intolerance first recognized during pregnancy. While it
129 often resolves after childbirth, individuals with gestational diabetes face a higher risk of
130 developing type 2 diabetes later in life.⁸

131 **Glycemic Index**

132 Understanding the glycemic index (GI) is essential for analyzing how dietary transitions
133 contribute to the increasing diabetes burden in India. The glycemic index is a quantitative
134 measure that ranks carbohydrate-containing foods based on the speed at which they elevate blood
135 glucose levels after consumption. It was developed to enhance understanding of glucose
136 metabolism and to support the management of impaired glucose tolerance, particularly in
137 diabetes. The GI concept builds upon the dietary fiber hypothesis proposed by Burkitt and
138 Trowell, which suggested that foods digested and absorbed more slowly can provide metabolic
139 benefits and reduce the risk of chronic diseases such as diabetes and coronary heart disease. In the
140 Indian context, where traditional diets rich in coarse grains, legumes, and millets are increasingly
141 replaced by refined carbohydrates, the glycemic index offers a valuable framework for assessing
142 the impact of dietary changes on postprandial glucose levels and long-term metabolic stability.⁹

143 **Fig. 1. Classification of Glycemic Index**

144 **Glycemic Load**

145 The concept of glycemic load (GL) was later introduced by Salmeron et al. at Harvard
146 University in 1997 to account for the contribution of not only the type of carbohydrate (i.e.,
147 glycemic index) but also the amount of available carbohydrates per serving to the overall
148 glycemic response. The GL of a food is defined as the product of the GI value of the food and
149 the amount of available carbohydrates in grams per serving of that food. It is important to
150 note that serving size is variable based on dietary and cultural factors. Therefore, a food with
151 a higher GL is expected to raise the serum glucose and insulin response per serving size to a

152 greater extent than that of a food with a lower GL. A glycemic load value of 10 or less is
153 considered low, 11–19 is considered medium, and 20 or more is considered high.¹⁰

154 **Determinants of Glycemic Index and Glycemic Load in Indian Diets**

155 **1. Effect of Cooking on Starch Digestibility**

156 Cooking alters starch structure through gelatinization, increasing enzymatic accessibility
157 and thereby raising the glycemic index. Prolonged boiling, pressure cooking, and
158 overcooking—common in modern Indian households—break down starch granules more
159 completely than minimal cooking, resulting in faster glucose absorption and higher
160 postprandial glycemic responses.^{16,18}

161 **2. Amylose–Amylopectin Ratio**

162 The glycemic response of cereals is strongly influenced by starch composition. Foods rich
163 in amylose digest slowly and exhibit lower GI values, whereas amylopectin-dominant
164 grains digest rapidly and produce higher glucose excursions. Traditional Indian staples
165 such as millets, pulses, and parboiled rice contain higher amylose and resistant starch
166 content than polished white rice and refined wheat flour, contributing to their protective
167 metabolic effects.^{9,10,22}

168 **3. Retrogradation and Cooling of Cooked Starches**

169 Cooling cooked carbohydrate foods leads to starch retrogradation, a process in which
170 gelatinized starch re-crystallizes into resistant starch that is less digestible. In Indian
171 dietary contexts, the consumption of cooled or reheated rice, refrigerated idlis, or leftover
172 rotis can therefore result in a lower glycemic response compared to freshly cooked
173 equivalents.^{15,10}

174 **4. Role of Food Processing and Refinement**

175 Mechanical processing such as polishing, milling, and refining removes the bran and
176 germ layers of grains, reducing fiber, micronutrients, and resistant starch. This accelerates
177 digestion and increases both GI and dietary GL. The widespread shift from whole grains
178 and millets to polished rice and refined wheat flour has therefore significantly increased
179 glycemic load in modern Indian diets. ^{10,23}

180 5. Portion Size and Glycemic Load

181 While GI reflects carbohydrate quality, glycemic load accounts for the quantity
182 consumed. Large portion sizes of even moderate-GI foods—such as polished rice or
183 refined wheat rotis—substantially elevate glycemic load, increasing cumulative
184 postprandial glucose exposure over the day. This is particularly relevant in Indian
185 diets, where cereals form the bulk of caloric intake. ^{9,12}

186 6. Mixed Meals and Macronutrient Interactions

187 In real-world eating patterns, carbohydrates are rarely consumed in isolation. The
188 presence of protein, fat, and dietary fiber delays gastric emptying and glucose
189 absorption, thereby lowering the effective glycemic response of a meal. Mixed meals
190 typical of Indian cuisine—such as dal–roti, curd rice, or idli–sambar—significantly
191 reduce postprandial glycemic excursions even when the cereal component alone has a
192 high GI. ^{11,15}

193 7. Traditional Processing Techniques

194 Traditional preparation methods such as fermentation, sprouting, and parboiling reduce
195 glycemic impact by increasing fiber, enhancing protein availability, and preserving
196 resistant starch. These techniques also improve micronutrient bioavailability and insulin
197 sensitivity, offering metabolic advantages over modern high-heat and deep-frying
198 practices. ^{19,20,21,22}

199 **Relevance of Glycemic Index and Glycemic Load in the Management of**
200 **Diabetes**

201 The glycemic index (GI) and glycemic load (GL) play a pivotal role in the management
202 of diabetes. The GI approach is widely employed to evaluate the clinical benefits of
203 dietary interventions in both glycemic and lipid control. It serves as a valuable tool for
204 assessing the effects of various carbohydrate-containing foods on blood glucose levels.
205 Complementing this, glycemic load integrates both the quality and quantity of
206 carbohydrates, providing a practical framework for regulating postprandial blood sugar.
207 Consequently, GL is an essential consideration in dietary planning for individuals with
208 diabetes, facilitating improved glycemic management and the prevention of related
209 complications [11, 12].

210 **Commonly consumed food staples across India are**

211 **Rice**

213 Rice remains the primary staple across most regions of India, with each state cultivating distinct
214 varieties that differ in taste, aroma, and cooking properties. Common varieties include basmati,
215 black, brown, and red rice. Biryani, pulao, bhakri, and pongal are just a few of the traditional
216 dishes that use rice as a base.

217 **Wheat**

218 Wheat is another versatile staple, widely cultivated across India. It is processed into different
219 textures, including coarse flour, fine atta, and rawa. Wheat flour is used in preparing diverse
220 dishes such as rotis, parathas, and halwa, making it a central component of daily meals.

221 **Maize (Corn)**

222 Maize is both a staple and a snack ingredient in several regions, particularly in Karnataka,
223 Maharashtra, Madhya Pradesh, Rajasthan, and Punjab. Its adaptability to various cuisines ensures
224 its continued relevance in regional diets.

225 **Jowar (Sorghum)**

226 Sorghum, a drought-resistant millet, is predominantly consumed in Karnataka and Maharashtra. It
227 is commonly used to make rotis and bhakris, providing a nutrient-rich alternative to rice and
228 wheat.

229 **Bajra (Pearl Millet)**

230 Bajra is a nutrient-dense millet widely consumed in Tamil Nadu, Rajasthan, and Gujarat. It serves
231 as a base for traditional preparations such as dosas, rotlas, and rotis.

232 **Ragi (Finger Millet)**

233 Ragi, often considered a superfood, is extensively cultivated in South India, including Tamil
234 Nadu, Karnataka, and Uttarakhand. It is incorporated into diverse dishes like rotis, dosas,
235 porridge, and gruels, valued for its high nutritional content.

236 **Lentils and Legumes**

237 Legumes and lentils are fundamental to Indian cuisine, providing protein, fiber, and essential
238 nutrients. Commonly consumed varieties include chickpeas, masoor dal (red lentils), mung beans,
239 kidney beans, and urad dal (black gram). These ingredients contribute to both the flavor and
240 nutritional quality of traditional meals.

Nutritional Composition of Common Indian Staples (per 100 g)

Serial No.	Food	Calories (kcal)	Protein (g)	Carbohydrates (g)	Fat (g)	Fiber (g)
1	Wheat Flour (Whole Wheat)	360	13.2	72	2.5	10.7
2	Daliya / Broken Wheat (uncooked)	12	75	1.5	18	
3	Semolina	360	12	72	1	3.9
4	White Sugar	-	0	100	0	0
5	Sago / Sabudana	350	0.2	87	0.1	0.9
6	Potatoes (boiled)	87	2	20	0.1	2.2
7	Poha / Flattened Rice	350	6-7	76	1	2
8	Jaggery	383	0.4	98	0.1	0
9	Rice (White, uncooked)	360	7	80	0.6	1.3
10	Basmati Rice	345	7	78	0.5	1.2
11	Maize / Corn (uncooked)	365	9	74	4.7	7.3
12	Jowar (Sorghum)	339	11	72	3.3	6.7
13	Bajra (Pearl Millet)	361	12	68	5	11
14	Ragi (Finger Millet)	328	7.3	72	1.5	3.6
15	Chickpeas	364	19	61	6	17
16	Masoor Dal (Red Lentils)	353	25	60	1.1	11
17	Mung Beans	347	24	62	1.2	16
18	Kidney Beans	337	24	60	1.2	25
19	Urad Dal (Black Gram)	347	25	60	1.6	18

242

243 [7] **Source:** Indian Council of Medical Research – National Institute of Nutrition (ICMR–NIN), 2020.
 244 Diet and Nutritional Status of Population and Prevalence of Hypertension, Diabetes, Dyslipidemia,
 245 and Obesity in India. Hyderabad: ICMR–NIN.

246

247

Glycemic Index (GI) Chart for Common Foods

Food	Glycemic Index (GI) - Typical Range
Wheat Flour (Whole Wheat)	~45
Daliya / Broken Wheat (cooked)	~41–48
Semolina (Suji)	~60–70
White Sugar (Sucrose)	~65
Sago / Sabudana	~70 (High)
Potatoes (Boiled)	~50–90 (Common ref: ~78)
Poha / Flattened Rice	~38–64
Jaggery	~80–85 (High)
Rice (White, cooked)	~48–92 (Common ref: ~64)
Basmati Rice	~50–70 (Common ref: ~55–60)
Maize / Corn (cooked)	~52
Jowar (Sorghum)	~50–60
Bajra (Pearl Millet)	~50–60 (Common ref: ~54)
Ragi (Finger Millet)	~54 to Very High (prep dependent)
Chickpeas (Boiled)	~28 (Low)
Masoor Dal (Red Lentils, Boiled)	~15–30
Mung Beans (Whole)	Low — Mung noodles ~45
Kidney Beans (Boiled)	~24–35 (Low)
Urad Dal (Black Gram)	~40–45 (Low–Moderate)

248
249

[14]Source: ICMR–NIN Expert Committee (2024).

250 1. Cooking Methods and Glycemic Index

251

252 The method of preparation—whether boiling, steaming, roasting, frying, or fermenting—can
253 significantly alter the glycemic index (GI) of foods by changing starch structure, fiber
254 integrity, and nutrient bioavailability.

255

256 **Boiling and Steaming**

257 Simple, moist-heat cooking methods such as boiling or steaming generally maintain lower GI
258 values because they preserve resistant starch and limit fat absorption. For example, steamed
259 rice or boiled lentils produce a more moderate glucose response than fried or pressure-cooked
260 versions.^{15, 16}

261 **Frying and Deep-Frying**

262 Frying adds fat and can temporarily reduce the glycemic index by delaying gastric emptying;
263 however, long-term consumption of fried foods contributes to insulin resistance and obesity.
264 Common examples include pooris, pakoras, and bhujias, which are associated with high
265 caloric density and poor lipid profiles.¹⁷

266 **Pressure Cooking and Overcooking**

267 Excessive cooking, such as repeated reheating or pressure cooking of rice, breaks down
268 starch granules into simpler carbohydrates, increasing glycemic load. Overcooked rice and
269 soft wheat rotis thus contribute to rapid postprandial glucose spikes.¹⁸

270 **Fermentation and Sprouting**

271 Traditional methods like fermenting (idli, dosa, and dhokla) and sprouting (mung sprouts and
272 chana sprouts) lower the glycemic index by enhancing enzymatic activity, increasing fiber
273 and protein content, and improving nutrient bioavailability. These processes also increase the
274 content of beneficial bioactive compounds such as B vitamins and antioxidants.^{19,20}

275 **Roasting and Parboiling**

276 Dry-heat techniques like roasting (bajra roti, jowar bhakri) or parboiling rice help retain
277 resistant starch, which lowers glycemic response. Parboiled rice, common in South India, has
278 a significantly lower GI ($\approx 50-60$) compared to white polished rice ($\approx 70-90$).²¹

279 .

280 **Regional Dietary Patterns in India**

281 India's dietary landscape is remarkably diverse, shaped by geography, climate, and culture. In
282 the North, people eat mostly wheat-based foods, with chapatis and parathas being the main
283 ones. They also eat pulses and dairy. Rice is the main food in the South, and it is often
284 fermented, like in idli and dosa, which are made with rice–urad dal batter. In the East, rice
285 and fish dominate, while the West features a mixture of wheat, rice, and traditional millets
286 such as bajra and jowar. The Northeast diet centers on rice paired with meats, fish, and
287 fermented vegetables. Despite these differences, most traditional Indian diets historically
288 balanced cereals, pulses, and vegetables—offering nutritional completeness and metabolic
289 stability.¹⁴

290 **Differences in Staple Grains, Pulses, Dairy, and Meats**

291 Distinct regional preferences reveal how local agriculture drives nutrient profiles. The North
292 favors wheat and rich dairy, leading to higher carbohydrate and fat intake but improved
293 protein quality through cereal–pulse pairings. The South's rice-pulse combinations form
294 complete proteins, with fermentation enhancing nutrient absorption. The East's focus on rice
295 and fish provides lean protein and omega-3 fats, though dairy consumption is modest.
296 Western India sustains coarse grains like bajra and jowar with substantial pulse and dairy use,

297 whereas the Northeast emphasizes rice with meat and fermented vegetables, with minimal
298 dairy. These variations show regional adaptation to resources but also highlight the nutrition
299 transition—rising refined carbohydrate use and excessive fats—that increases diabetes risk. ¹⁴

300

301 **Regional Foods Protective Against Diabetes**

302 Several traditional foods demonstrate protective metabolic effects. Ragi (finger millet) from
303 South India and bajra (pearl millet) or jowar (sorghum) from Western regions have a low
304 glycemic index and high fiber content, improving glucose tolerance and insulin sensitivity. ²²
305 In contrast, heavy reliance on polished white rice, now common in many parts of India,
306 correlates with higher type 2 diabetes prevalence. ²³ Traditional practices such as using
307 parboiled or brown rice, fermented batters, and curd-based meals, as well as maintaining
308 regular pulse consumption, collectively lower postprandial glycemic response. ¹⁴ Reviving
309 these time-tested dietary patterns—rich in millets, pulses, and minimally processed grains—
310 offers a culturally grounded strategy to reduce India’s growing diabetes burden.

311

312 **Evidence Linking Traditional Diets to Diabetes Risk**

313

314 A look at the latest research (in India and around the world)

315 A significant amount of research establishes a connection between dietary intake—
316 particularly the kind and processing of carbohydrates—and the propensity for developing
317 type 2 diabetes (T2D). Studies from throughout the world suggest that meals high in
318 glycemic index (GI) and glycemic load (GL) cause blood levels of insulin and glucose to rise
319 more quickly, which can raise the risk of diabetes over time ^(9,10,11,12).

320

321 In India, national surveys and population studies have shown the same pattern. The
322 prevalence of T2D has increased dramatically due to the replacement of traditional mainstays
323 like millets and coarse grains with polished rice and refined wheat. There has been an
324 increase in fried and processed meals, sweetened drinks, and snacking habits following this
325 dietary transition ^(2,4,5,7)

326 National surveillance data from the ICMR–INDIAB study and the ICMR–NIN national
327 nutrition survey further demonstrate marked regional and urban–rural differences in diabetes
328 prevalence across India. Southern states report higher prevalence, which has been associated
329 with greater consumption of polished white rice and refined cereals, whereas rural
330 populations that retain traditional dietary patterns based on coarse grains and millets exhibit
331 comparatively lower metabolic risk. ^{3,5,7,23}

332

333 Research in food science also shows that traditional cooking and preparation methods, such
334 as fermentation, sprouting, parboiling, and the frequent use of millets, can lower the glycemic
335 effect of meals and may be beneficial for metabolic health^(21, 15,19,20,22).

336 **Foods with a higher GI and a higher risk of diabetes**

337 Meta-analyses show that those who eat a lot of white rice are more likely to get T2D,
338 especially in Asian countries where rice is eaten many times a day.²³ Foods with a high GI
339 cause blood sugar levels to rise quickly, insulin levels to rise, and, over time, stress on
340 pancreatic beta cells.^{9,12} The revised international GI tables corroborate that polished rice and
341 refined wheat flour are categorized within the medium-to-high GI range¹⁰, hence validating
342 these findings.

343 **Low-GI and Millet-Based Diets as a Way to Stay Safe**

344 Ragi (finger millet), bajra (pearl millet), and jowar (sorghum) are all types of millets that are
345 high in fiber and resistant starch. These nutrients slow down the absorption of glucose and
346 help keep blood sugar levels stable. A recent systematic review and meta-analysis indicated
347 that adding millets to the diet makes fasting glucose and insulin sensitivity better, which
348 means that millets can help prevent and treat diabetes.²² Based on this information, the
349 Dietary Guidelines for Indians 2024 suggest swapping out some refined cereals for millets
350 and pulses to lessen the overall GL of the diet.¹⁴

351 **The Indian Diet is Changing as Cities Grow**

352 India's eating habits have changed since cities are growing so quickly. City dwellers today
353 depend increasingly on refined cereals, edible oils, fried snacks, and packaged foods. This is
354 because they work sedentary jobs and rely on public transportation.⁴ The extensive ICMR–
355 INDIAB study demonstrated that the prevalence of diabetes differs among states, constantly
356 increasing with urbanization and lifestyle modifications.⁵ Reports from both the United
357 States and other countries agree with these results and recommend for big changes toward
358 healthy, cheap diets.^{2,7}

359 **Ways of cooking that affect how your blood sugar reacts**

360 Traditional cooking methods can change the glycemic effect of a food a lot. For example,
361 parboiling rice lowers its GI compared to polished white rice.²¹ Fermentation, utilized in
362 dishes like idli and dosa, along with the sprouting of legumes, both augment fiber and protein
363 levels while regulating glycemic response.^{15,19,20} Deep-frying, on the other hand, may slow
364 down digestion for a short time, but it can lead to insulin resistance and obesity over time.¹⁶
365 Cooking method matters even for root vegetables like sweet potatoes. Boiling, baking, or
366 frying can all change the GI value.¹⁶

367 **Discussion**

368 **Analyzing the Strengths and Weaknesses of Traditional Diets and the Impact of**
369 **Modernization**

370 India's Type 2 Diabetes (T2D) rates are rising quickly, so we need to take a deeper look at
371 the country's food culture. This presents a significant paradox: the coexistence of protective,
372 time-tested food traditions and modern, risk-enhancing dietary ingredients. Traditional diets
373 historically provided metabolic stability due to key strengths, chiefly derived from the
374 incorporation of low-Glycemic Index (GI) staples. Millets (Jowar, Bajra, and Ragi), legumes,
375 and pulses are foods that are strong in fiber and plant protein. These foods slow down the
376 absorption of glucose and cause a more moderate glycemic response. Also, traditional
377 cooking methods like fermenting (e.g., idli and dosa batters), sprouting (legumes), and
378 parboiling rice have been shown to lower the GI, boost enzyme activity, and make nutrients
379 more available. For example, parboiled rice has a much lower GI (50-60) than white polished
380 rice (70-90).

381

382 The main cause of the T2D epidemic is the weaknesses of contemporary Indian diets. The
383 core problem is that people are quickly moving away from traditional coarse grains and
384 toward refined staples like polished white rice and refined wheat flour, both of which are in
385 the medium-to-high GI range. This alteration, together with the fact that many people eat a
386 lot of high-GI foods like potatoes, sweets, and, most importantly, fried snacks, leads to a
387 drastically high Glycemic Load (GL), which causes blood sugar levels to rise and fall
388 repeatedly and makes it hard for the body to use insulin over time. In addition, while ancient
389 diets may have been beneficial, modern cultural behaviors like adding sugar to tea every day
390 and eating too many deep-fried snacks (which cause insulin resistance and obesity over
391 time) make the diabetes problem even worse. This change in diet, which includes a lot more
392 poor-quality carbohydrates, fats, and refined sugars, aligns exactly with the "thin-fat
393 phenotype" seen in many South Asians, making the population metabolically susceptible to
394 the consequences of this modern dietary pattern.

395

396 **Role of Modernization, Reduced Physical Activity, and Public Health Implications**

397 The role of modernization and urbanization is key to comprehending the growing diabetes
398 epidemic, since they have caused detrimental changes in how people live at the same time.
399 The large ICMR-INDIAB study showed that diabetes rates keep going up as cities grow and
400 people change their lifestyles. The change to city living has been followed by a shift to
401 sedentary jobs and a reliance on motorized transportation, which has greatly decreased
402 daily physical activity and mobility. These decreases in energy use, along with the rising
403 consumption of high-caloric, low-fiber processed meals, deep-fried snacks, and sugar-
404 sweetened beverages, make the body more likely to develop T2D. This combination of an
405 elevated dietary GL and low levels of physical exercise is the main force accelerating T2D
406 incidence.

407

408 From a public health perspective, these findings emphasize that the T2D epidemic is not
409 unavoidable but rather a rational outcome of policy and lifestyle decisions. The dependence
410 on refined grains for a significant share of daily calorie intake underscores a critical failure in
411 the alignment of agriculture and food policies with nutritional wisdom. This paper fills this gap

412 by showing how important the Glycemic Index (GI) and Glycemic Load (GL) are for planning
413 meals. A high GL speeds up the development of T2D by putting stress on beta cells over
414 time. As a result, a "nutritional re-transition" must be the main emphasis of public health
415 strategy. This intervention is difficult because of cultural and economic issues. Policies must
416 make traditional, healthful foods both easy to get and appealing to compete with cheaper,
417 extensively marketed processed alternatives.

418
419 The connection between low-GI, fiber-rich diets and better metabolic health is a clear reason
420 to make nutrition policy changes. The promotion of millets—such as Ragi, Bajra, and
421 Jowar—must be elevated to a national strategy, shifting them from regional staples to
422 national priorities. Research specifically supports the inclusion of millets in the diet, since it
423 enhances fasting glucose levels and insulin sensitivity. This is what the Dietary Guidelines
424 for Indians 2024 say: to lower the overall dietary GL, you should replace some refined grains
425 with millets and pulses. Dietary recommendations for diabetes prevention in India should
426 focus on a few key things: eating more low-GI whole grains and pulses, using protective
427 traditional cooking methods (fermentation and parboiling), and most importantly, cutting back
428 on polished rice, refined flours, added sugar, and deep-fried foods.
429

430 Lastly, the role of awareness programs is crucial for making policy changes at the household
431 level. These programs need to teach people not only what to eat but also how the way they
432 cook affects their metabolic health. By teaching people about GI and GL and showing them
433 how mild cooking methods (like boiling and steaming) are better for blood sugar than high-
434 heat procedures (like frying and roasting), awareness campaigns can help people make
435 smart decisions. To reduce the number of people with diabetes in India, successful public
436 health intervention needs a collaborative, multi-pronged approach that uses traditional
437 knowledge, changes existing food policy, and keeps people informed.
438
439
440

441 Conclusion

442 The study was done to look at the increasing prevalence of Type 2 Diabetes (T2D) in India,
443 which is often called the "diabetes capital of the world." It did this by seriously looking at the
444 role of traditional Indian diets. The main goal of the study was to use the Glycemic Index
445 (GI) and Glycemic Load (GL) to measure the quality and quantity of carbohydrate intake to
446 figure out a paradox of India's diet: the fact that protective, time-tested staples are eaten
447 alongside modern consumption patterns that increase risk. The findings corroborate the
448 primary hypothesis: a detrimental shift in diet strongly contributes to India's T2D epidemic. A
449 close look at traditional staples showed that millets (Ragi, Bajra, and Jowar), pulses, and
450 legumes have low glycemic index (GI) values and a lot of fiber. Traditional cooking methods
451 like fermentation (for idli and dosa) Research also demonstrates that parboiling rice reduces
452 the glycemic impact of meals by preserving resistant starch and increasing the availability of
453 nutrients. This has historically been a strong defense against metabolic disorders. However,
454 the evidence clearly shows that the rise in diabetes cases is linked to the quick loss of these
455 protective variables in favor of high-GL, refined carbohydrates like polished white rice and
456 refined wheat flour. This is made worse by the fact that people eat a lot of deep-fried snacks

457 and added sugar and don't move around much because they live in cities. This change has
458 caused blood sugar levels to rise after meals, insulin resistance to become permanent, and the
459 prevalence of T2D to rise faster in every part of India. Based on these results, the most
460 important thing for public health right now is a planned "nutritional re-transition." This paper
461 strongly supports a change in national policy that has many parts: First, to make millets a
462 national dietary priority instead of just a regional staple by heavily promoting them, since
463 they have been shown to lower fasting glucose and increase insulin sensitivity. Secondly, it is
464 crucial to provide unambiguous, evidence-based dietary guidance that emphasizes
465 substituting high-GL staples with whole grains and employing safe cooking practices.
466 Finally, big awareness campaigns need to be established to teach household members not
467 only what to eat but also how the way they cook affects their metabolic health. It could be
468 done to stop the T2D epidemic in India by using the knowledge that is already in India's food
469 traditions and combining it with modern glycemic science.

470

471

472

473 **Future Prospects**

474 Future research and public health campaigns must prioritize the generation of
475 context-specific evidence to mitigate India's escalating diabetes burden. It is important to
476 establish a regional glycemic index and glycemic load database for Indian cuisine, especially
477 traditional millet- and pulse-based recipes, that takes into account local ingredients and
478 cooking methods. At the same time, we need reliable scientific studies to look at how
479 traditional cooking methods like fermentation and parboiling affect metabolism and how they
480 relate to modern high-heat and fried cooking methods. Policy-oriented research should look
481 at ways to make millet more popular by lowering prices, giving out subsidies, and making it
482 easier to find millet-based goods. At the same time, culturally appropriate nutrition education
483 needs to turn GI and GL ideas into useful dietary advice for families. Finally, long-term
484 research studies are necessary to clarify the impact of continuous dietary shifts in urban and
485 peri-urban India on diabetes risk and associated metabolic consequences. Bold the heading

486

487

488

489

490 **References (Harvard Style)**

491

492
493
494

495 1. Ceriello, A. and Colagiuri, S., 2025. IDF global clinical practice recommendations for
496 managing type 2 diabetes—2025. *Diabetes Research and Clinical Practice*, p.112152.
497

498 2. Kumar, A., Gangwar, R., Ahmad Zargar, A., Kumar, R., and Sharma, A., 2024. Prevalence of
499 diabetes in India: A review of IDF diabetes atlas 10th edition. *Current Diabetes Reviews*,
500 20(1), pp.105-114.
501

502 3. Pradeepa, R. and Mohan, V., 2021. Epidemiology of type 2 diabetes in India. *Indian Journal*
503 *of Ophthalmology*, 69(11), pp.2932-2938.
504

505 4. Misra, A., Gopalan, H., Jayawardena, R., Hills, A.P., Soares, M., Reza- Albarrán, A.A. and
506 Ramaiya, K.L., 2019. Diabetes in developing countries. *Journal of Diabetes*, 11(7), pp.522-
507 539.
508

509 5. Anjana, R.M., Deepa, M., Pradeepa, R., Mahanta, J., Narain, K., Das, H.K., Adhikari, P., Rao,
510 P.V., Saboo, B., Kumar, A., and Bhansali, A., 2017. Prevalence of diabetes and prediabetes
511 in 15 states of India: results from the ICMR-INDIAB population-based cross-sectional study.
512 *The Lancet Diabetes & Endocrinology*, 5(8), pp.585-596.
513

514 6. World Health Organization, 2020. *The state of food security and nutrition in the world 2020: transforming food systems for affordable healthy diets* (Vol. 2020). Food & Agriculture Org..
515

516

517 7. Indian Council of Medical Research – National Institute of Nutrition (ICMR–NIN), 2020. Diet
518 and Nutritional Status of Population and Prevalence of Hypertension, Diabetes, Dyslipidemia,
519 and Obesity in India. Hyderabad: ICMR–NIN.
520

521 8. Cleveland Clinic (no date) *Diabetes: What it is, causes, symptoms, treatment & types*.
522 Available at: <https://my.clevelandclinic.org/health/diseases/7104-diabetes> (Accessed: 23
523 October 2025).
524

525 9. Pi-Sunyer, F.X., 2002. *Glycemic index and disease*. *American Journal of Clinical Nutrition*,
526 76(1), pp.290S–298S. Available at: <https://doi.org/10.1093/ajcn/76.1.264S> [Accessed 23
527 October 2025].
528

529 10. Atkinson, F.S., Brand-Miller, J.C., Foster-Powell, K., Buyken, A.E. and Goetzke, J., 2021.
530 International tables of glycemic index and glycemic load values 2021: a systematic review.
531 *The American Journal of Clinical Nutrition*, 114(5), pp.1625-1632.
532

533 11. Gerontiti, E., Shalit, A., Stefanaki, K., Kazakou, P., Karagiannakis, D.S., Peppa, M.,
534 Psaltopoulou, T. and Paschou, S.A., 2024. The role of low glycemic index and load diets in
535 medical nutrition therapy for type 2 diabetes: an update. *Hormones*, 23(4), pp.655-665.

536

537 12. Vlachos, D., Malisova, S., Lindberg, F.A. and Karaniki, G., 2020. Glycemic index (GI) or
538 glycemic load (GL) and dietary interventions for optimizing postprandial hyperglycemia in
539 patients with T2 diabetes: a review. *Nutrients*, 12(6), p.1561.

540

541 13. Walkikar, S. & Mishra, S., 2023. Staple food in various states of India. *International Journal of*
542 *Ayurvedic Medicine*, 7, pp.156–159. <https://doi.org/10.46607/iamj09p7022023>

543

544 14. ICMR-NIN Expert Committee, 2024. Dietary Guidelines for Indians 2024. Hyderabad: ICMR-
545 National Institute of Nutrition

546

547 15. Murillo, S., Mallol, A., Adot, A., Juárez, F., Coll, A., Gastaldo, I. and Roura, E., 2022. Culinary
548 strategies to manage glycemic response in people with type 2 diabetes: A narrative review.
549 *Frontiers in nutrition*, 9, p.1025993.

550

551 16. Allen, J.C., Corbitt, A.D., Maloney, K.P., Butt, M.S. and Truong, V.D., 2012. *Glycemic*
552 *index of sweet potato as affected by cooking methods*. *Journal of Food Science*, 77(3),
553 pp.H61–H65.

554

555 17. Qi, L., 2021. Fried foods, gut microbiota, and glucose metabolism. *Diabetes care*, 44(9),
556 p.1907.

557

558 18. Sekarmuti, A., Rimbawan, R. and Nasution, Z., 2025. Effects of Cooking Techniques on the
559 Nutritional Profile, Glycemic Index, and Sensory Evaluation of Rice: A Systematic Review.
560 *Preventive Nutrition and Food Science*, 30(5), p.419.

561

562 19. Lopes, C.D.O., Barcelos, M.D.F.P., Vieira, C.N.D.G., de Abreu, W.C., Ferreira, E.B., Pereira,
563 R.C. and de Angelis-Pereira, M.C., 2019. Effects of sprouted and fermented quinoa
564 (Chenopodium quinoa) on glycemic index of diet and biochemical parameters of blood of
565 Wistar rats fed high carbohydrate diet. *Journal of food science and technology*, 56(1), pp.40-
566 48.

567

568 20. Tao, L., Song, S., Liu, C., Huang, W., Bi, Y. and Yu, L., 2022. Fermentation reduced the in
569 vitro glycemic index values of probiotic-rich bean powders. *International Journal of Food*
570 *Science and Technology*, 57(5), pp.3038-3045.

571

572 21. Larsen, H.N., Rasmussen, O.W., Rasmussen, P.H., Alstrup, K.K., Biswas, S.K., Tetens, I.,
573 Thilsted, S.H. and Hermansen, K., 2000. Glycaemic index of parboiled rice depends on the
574 severity of processing: study in type 2 diabetic subjects. *European journal of clinical nutrition*,
575 54(5), pp.380-385.

576

577 22. Anitha, S., Kane-Potaka, J., Tsusaka, T.W., Botha, R., Rajendran, A., Givens, D.I.,
578 Parasannanavar, D.J., Subramaniam, K., Prasad, K.D.V., Vetriventhan, M. and Bhandari,
579 R.K., 2021. A systematic review and meta-analysis of the potential of millets for managing
580 and reducing the risk of developing diabetes mellitus. *Frontiers in nutrition*, 8, p.687428.

581

582 23. Hu, E.A., Pan, A., Malik, V. and Sun, Q., 2012. White rice consumption and risk of type 2
583 diabetes: meta-analysis and systematic review. *Bmj*, 344.