

1 **Effect of the particlesize distributiononthe heattransfermechanismsandthe**
2 **heatstoragecapacityin ceramic inserts made by alkaline activation.**

3 **Keywords:** ceramic insert, improved hearth, geopolymers, alkali-activation, environment,
4 thermal behaviour, combustion, particle size analysis, microstructure, storage capacity,
5 thermal tests

6 **1. Introduction**

7 The market for ceramic inserts is experiencing a significant growth. This is due to the fact that
8 ceramic inserts are very economical in relation to the amount of charcoal, which further
9 contributes to the decline in deforestation. However, it should be noted that during and after
10 their manufacture, many problems arise, in particular the losses of inserts due to their
11 fragility, their low performance and the lack of energy for cooking. These shortcomings
12 testify to the need to move towards other, more productive alternatives to strengthen the fight
13 against deforestation. Moreover, the development of the science of geopolymers based on the
14 reaction of an aluminosilicate with an alkaline, sodium or potassium solution and applicable
15 in several fields seemed to us to be an excellent asset in improving their performance,
16 increasing their resistance and reducing the cooking energy. Geopolymerization and alkaline
17 activation of aluminosilicates constitute a possible alternative to meet these technical and
18 environmental challenges [1]. This involves the exploitation of co-products from other
19 industries (fly ash, blast furnace slag, etc.) and materials with a low environmental impact
20 (metakaolin, pozzolans) [2], the implementation of these new materials is now being realized
21 around the world through various and innovative applications. In addition to concrete and
22 building materials, their properties make them suitable for use in thermal insulation,
23 aeronautics, ceramics, coatings, etc. After discreet beginnings in the 70s and 80s, research
24 around alkali-activated geopolymers and binders is accelerating steadily, leading to a better
25 knowledge of the specificities of their manufacture and use [3, 4]. The number of theses,
26 articles and patents attests to the growing interest in these materials among researchers as well
27 as industrialists, which makes it possible to predict a promising market for the coming years
28 [5,6] Great importance has therefore been reserved for the characterization of the raw
29 materials and for understanding their influence on the reaction mechanisms and the
30 structuring of the cured material by focusing on degradation by exposure to drying, the
31 performance of selected formulations is compared with existing inserts according to different
32 indicators. The objective is to define the main degradation mechanisms present and to allow
33 the designation of the most suitable compositions according to the conditions of use.

34 **2. Materials and Methods**

35 **2.2 Presentation of Thiéky clays**

36 The Thiéky clay deposit is in the Ndiass horst, 4 km south of the Dakar-Kaolack National
37 Road. Between Sindia and Popenguine [7], an area of clay hills extends from Thiéky to this
38 road. The Thiéky sector belongs to the Maastrichtian age formations of the Ndiass horst
39 which constitutes the eastern part of the Cape Verde peninsula. These are sandstone, clayey
40 formations with some sandy and lateritic pasts. These formations of the Cape Verde peninsula
41 are also found in the western part of the Senegalo-Mauritanian basin whose base sinks slightly
42 from East to West to a depth of 6000 m vertically Dakar.

43 **2.3 Presentation of Sébikhotane clays**

44 It is a gray clay forming a thin veneer, with a fairly significant extension in the direction of
45 Lake Tamna. In Sébikhotane, clay appears between the national road and the railway. It is
46 used by a small artisanal brick and pottery factory. In Gandoul, gray-colored clay has been
47 extensively prospected with a view to a cement plant. At first glance, the reserves are quite
48 large, but their exploitation could possibly interfere with the Gandoul radio-satellite antenna.
49 The Sébikhotane deposit consists of two layers of clay: a surface layer of gray blue color and
50 a lower layer of yellow color. Preliminary tests have provided the following results :

51 ❖ The surface layer

- 52 • Vintage appearance: gray, blackish, semi-oily
- 53 • Drying shrinkage : 4.5 %
- 54 • Cooking time : 7 %
- 55 • Baked appearance : brick red, orange
- 56 • Weight of water absorbed : 16.4 g
- 57 • Workability : very good
- 58 • Observation : can be worked directly

59 ❖ The bottom layer

- 60 • Vintage appearance : very dark brown
- 61 • Drying shrinkage : 7 %
- 62 • Cooking time : 1 %
- 63 • Baked appearance : dark red
- 64 • Weight of water absorbed : 12 g
- 65 • Workability : very good

- 66 • Observation : can be worked directly

67 **2.4 Presentation of Paki-Toglou**

68 Cranes These are the Maastrichtian sandstones, sub-outcrops in the Ndiass massif where they
69 are covered by lateritic formations whose power can exceed 10 m. The Paki-Toglou deposit,
70 which includes almost all the sandstone operations, is located at 50 km from Dakar to the
71 West of Paki village, on the road to Diamniadio Mbour. The material is a pinkish sandstone
72 with siliceous cement and fine grains. The standard Deval tests carried out on samples taken
73 at the level of the hill of Paki gave the results which are recorded in Table I

74 Table 1: Results of the Deval Standard tests.

Place of collection	Standard Deval Coefficient
Hillside	2,2
Hillside	9,7
Hillside well	16,6
Well at the top of the hill	12,5
Well at the top of the hill	8,9

75

76 These results show the heterogeneity of the deposit which is represented by an alternation of
77 hard banks and soft banks. "LALEYE, 1965" has carried out several wells which have made
78 it possible to estimate very approximately the reserves of the Paki sandstone deposits.

79 Table 2: The reserves of the Paki sandstone deposits

Paki deposit	300000 t
Toglou deposit	150000 t
Mbang deposit	3000000 t
Total	3450000 t

84 **2.5 Implementation of solutions**

85 During our experiment, we used sodium hydroxide as an activator in the form of a 98% pure
86 solid grain. The reason for our choice, beyond the fact that sodium is an alkali metal, is its

87 availability on the market, its low cost and its reactivity. Sodium hydroxide in different
88 masses is mixed with distilled water to obtain solutions of different concentrations:

- 89 \diamond Formula C1 for the solution of molar concentration= 2 moles or 80 g NaOH/ liter
90 of solution.
- 91 \diamond Formula C2 for the solution of molar concentration= 6 moles or 240 g NaOH/ liter
92 of solution.

93 For the two solutions we used the same amount of distilled water of 10 liters. The distilled
94 water makes it possible to preserve the purity of the reaction and the mass of sodium
95 hydroxide is determined from the formula below:

$$m_i = C_i \cdot M_i \cdot V$$

96 With m_i = mass of sodium hydroxide of the solution C_i (i= 1, 2) (in grams); C = desired NaOH
97 concentration (mol/liters); M =molecular molar mass of sodium hydroxide (40 g/mol) and V
98 volume of distilled water (10 liters) Which allows us to obtain $m_1 = 800g$, and $m_2 =$
99 $24000g$ [8].

100 **2.6 Implementation of ceramic inserts**

101 To make our inserts, we chose the one that weighs 4600 g for the manufacture of the Jambar
102 stove [9].

103 Thus, we have:

- 104
 - 50% of Sebikhote clays.
 - 30% of Thiéky clays.
 - 20% of Toglou stoneware, it facilitates the recovery of the insert in the mold.

107 For the Sebikhote clays, we used the 500-micron sieve passers and the same particle size
108 for the Thiéky clays;however, for the Toglou sandstones, the 1600-micron sieve passers are
109 used. The choice of particle size is very important and allows us to standardize our materials
110 well.

111 After this step, the implementation consists in using the caustic solution as wetting water
112 based on the results of the Proctor test [10]. Indeed, on the one hand it required a certain
113 amount of alkaline solution to reach the reaction of formation of the geopolymers and on the
114 other hand it was imperative not to exceed the Proctor optimum of our material because the
115 caustic solution is obtained from water.

116 In total we have made 10 inserts including 5 inserts for each solution and each weigh 4600 g.

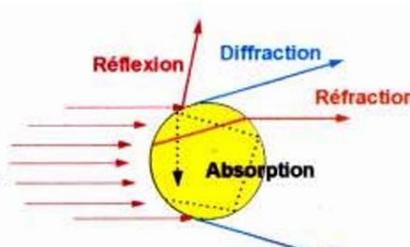
117 Table 3 : Summary of the mixing volumes and the quantities of materials used for the insert
118 the values will thus be presented in the table

	Solution C1	Solution C2
Volume used for the 5 inserts in liters	12,25	14,4
Quantity used for the 5 g inserts	23000	23000

119

120 **2.7 Description of the Laser granulometer**

121 **2.7.1. Objective**

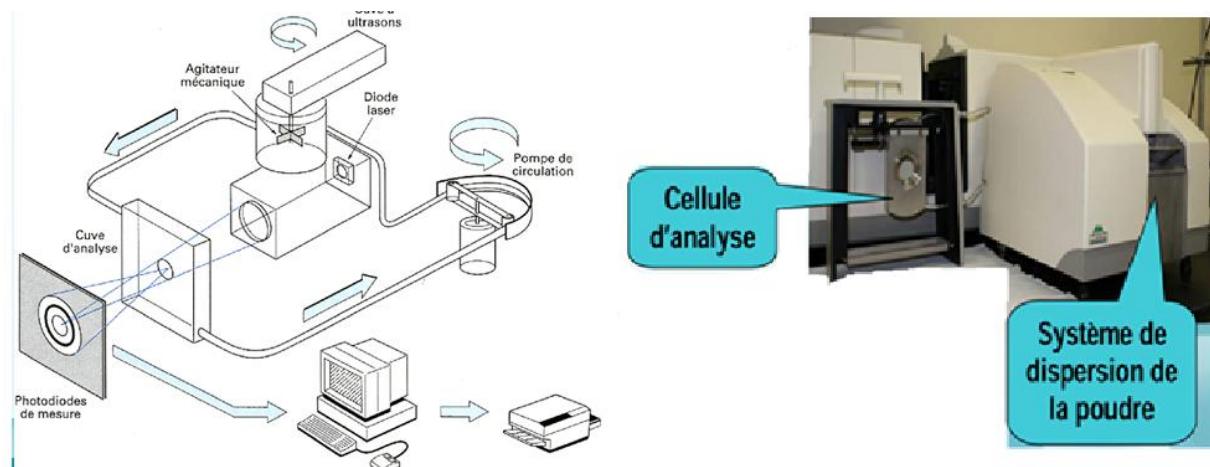

122 The particle size distribution is deduced from the interaction between a set of particles and the
123 incident laser beam by analyzing the beam diffraction spot with 2 dispersion modes: dry or
124 wet

125 **2.7.2. Principle: international standard ISO 13320**

126 The Cilas 990 is a particle size analyser based on laser diffraction (laser diffraction). This
127 principle is based on the diffraction of light by the particles:

- 128
- A laser beam passes through a cloud of scattered particles.
 - The particles deflect (diffraction) the light at different angles depending on their size.
 - A detector measures the intensity of the diffracted light at various angles.
 - A software converts these signals into a distribution of particle sizes by volume or
132 number, often expressed by statistical values such as D10, D50, D90.

133 This principle is based on the theories of Mie and Fraunhofer, which make it possible to
134 model the laser diffraction mathematically according to the size of the particles


135

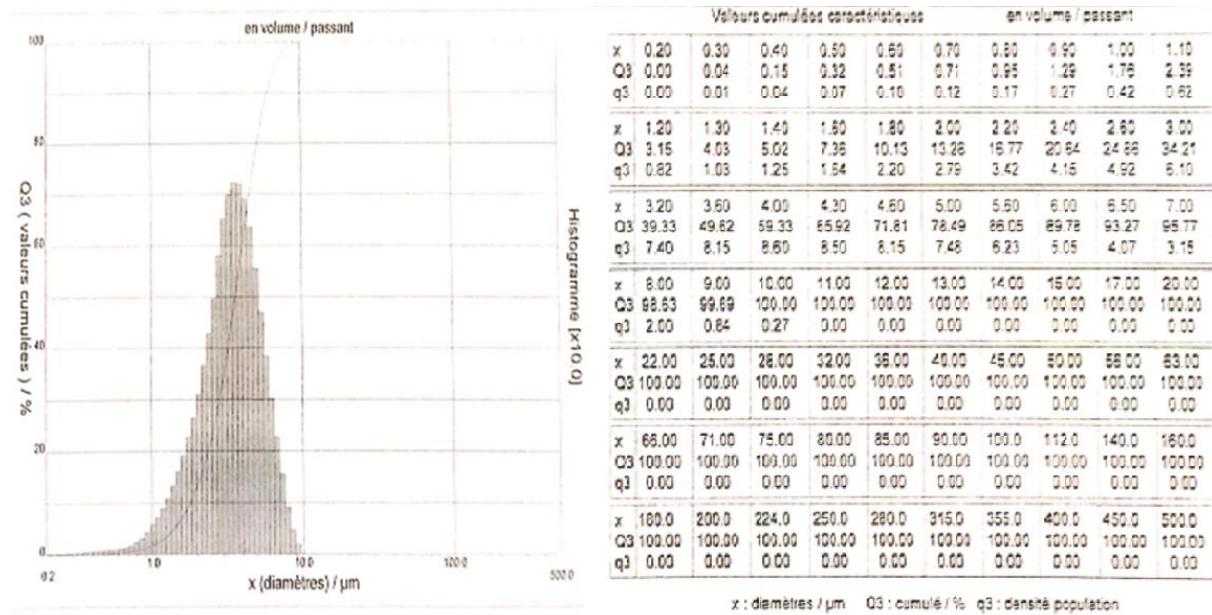
136 Figure 1: Interaction between incident light and Particle

137 A laser granulometer typically consists of five subsets:

- 138 • A powder dispersion system
- 139 • A system for circulating the powder
- 140 • An electronic assembly for amplifying the measurement signals an optical bench a
- 141 microcomputer

142

143


Figure 2: Devices and system for analysing the Laser granulometer

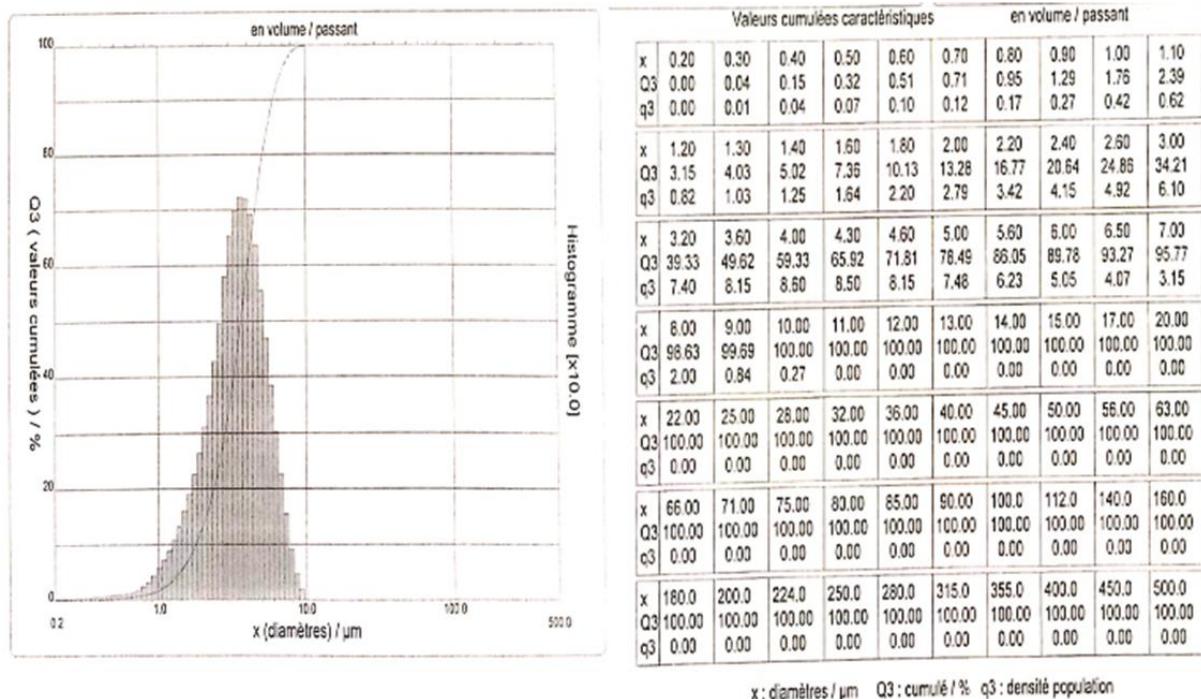
144 3. Results and discussion

145 3.1. Particle size analysis of Sebikhotane clays

146 The figure 1 shows the particle size distribution of the sebikhotane clays produced on a laser
147 analyzer. The histogram of the particle size distribution of the Sebikhotane clays highlights a
148 distribution dominated by fine fractions (clays $< 2 \mu\text{m}$) characteristic of clayey materials rich
149 in phyllosilicate minerals, with a secondary proportion of fine silts, reflecting an overall very
150 fine texture and a high specific surface area ; this particle size organization is closely linked to
151 the thermal behavior of the material, because the increase in temperature induces progressive
152 physico-chemical transformations which preferably affect the finest particles. Indeed, at low
153 temperatures ($\leq 100-200^\circ\text{C}$), the elimination of adsorbed and interfoliar water occurs
154 without major modification of the apparent distribution, while at intermediate temperatures
155 ($400-700^\circ\text{C}$), the dehydroxylation of clay minerals (in particular kaolinite and illite) favors
156 the agglomeration of fine particles, which may result in a relative displacement of the particle
157 size classes towards coarser sizes on the histogram ; at higher temperatures ($>800-900^\circ\text{C}$),
158 the phenomena of sintering and vitrification reinforce this tendency, reducing the ultrafine
159 fraction and increasing the structural cohesion of the material. Thus, the observed particle size
160 distribution constitutes a relevant indicator of the thermal sensitivity of Sebikhotane clays and
161

162 their suitability for uses requiring mechanical and thermal stability, such as ceramics or
163 building materials, in accordance with observations widely reported in the literature on the
164 thermal behavior of natural clays [11].

165

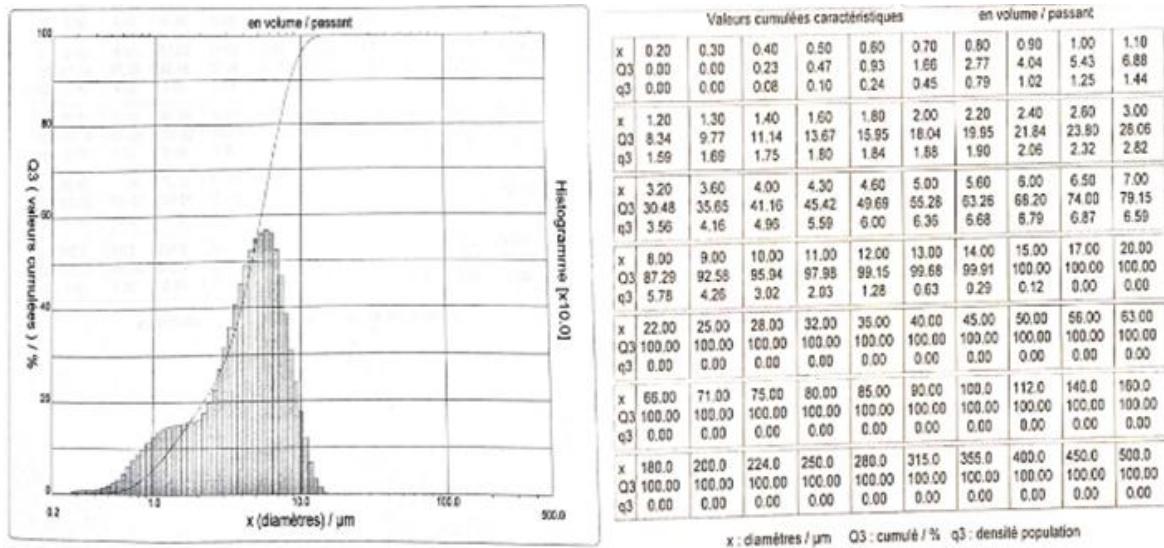

166 Fig3: Particle size analysis of Sebikhotane clays

167

168 3.2. Particle size analysis of Thiéky clays

169 The figure 2 shows the particle size distribution of the Thiéky clays produced on a laser
170 analyzer. The histogram of the particle size distribution of Thiéky clays highlights a marked
171 dominance of fine fractions (clays < 2 μm), associated with a secondary proportion of silts,
172 which reflects a highly plastic material rich in clay minerals. This fine particle size
173 distribution is decisive for the thermal behavior of the clay : when the temperature rises, the
174 high specific surface area of the fine particles first favors the loss of adsorbed and interfoliar
175 water at low temperature (< 200 ° C.), then the progressive dehydroxylation of the clay
176 minerals (in particular kaolinite and / or illites) between 400 and 700 ° C., resulting in an
177 irreversible modification of the crystalline structure. At higher temperatures (> 800 ° C.), the
178 predominance of fine fractions accentuates the phenomena of sintering and vitrification,
179 leading to a reduction in porosity and an increase in the density and mechanical strength of
180 the material, unlike coarser materials which require higher temperatures to reach a state
181 comparable. Thus, the relationship highlighted by the histogram between fine particle size and
182 temperature confirms that Thiéky clays have a high thermal sensitivity, with a behavior
183 adapted to ceramic uses or construction materials fired at moderate temperature, which is

184 consistent with the classical models linking particle size fineness, thermal transformations and
 185 final properties of clays [12].


186
 187 Fig4: Particle size analysis of Thiéky clays

188 3. 3. Particle size analysis of Paki-Toglou Sandstone

189 The figure 3 shows the particle size distribution of the sebikhoteane clays produced on a laser
 190 analyzer.

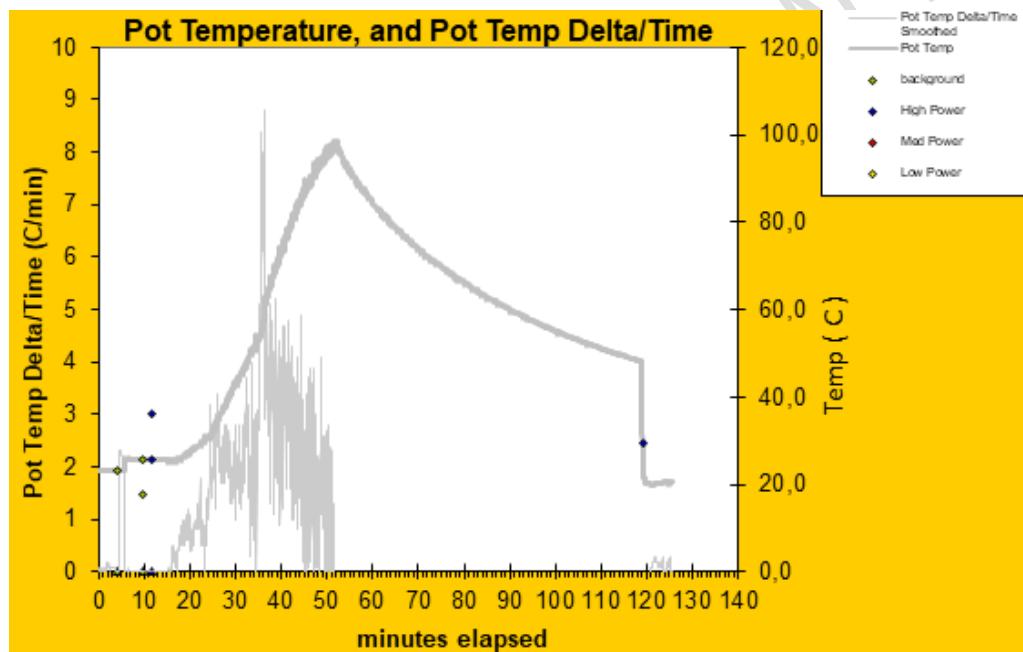
191 The histogram of granulometric distribution of the Paki-Toglou sandstones highlights a
 192 dominance of medium to coarse sandy fractions, reflecting a relatively good sorting and a
 193 high deposition energy, characteristics of a sedimentary environment with sustained
 194 dynamics, such as a fluvial or shallow coastal context; this distribution suggests that the initial
 195 texture of the sandstone strongly determines its subsequent thermal response, because the size
 196 and organization of the grains control both the intergranular porosity and the thermal
 197 conductivity of the material. Indeed, when the temperature increases, in particular under
 198 conditions of thermal diagenesis or experimental heat treatments, sandstones with a coarser
 199 and better sorted particle size generally exhibit better heat diffusion, limiting the internal
 200 thermal gradients, while the differential expansion of the quartz grains and the cements can
 201 induce progressive microcracks, affecting the mechanical cohesion and the physical properties
 202 of the rock. Thus, the observed relationship between the dominant grain size of the Paki-
 203 Toglou sandstones and the temperature reflects a texture thermal behavior coupling, where a
 204 relatively homogeneous sandy grain size favors a more stable thermal response at low and

205 medium temperature, but can become a weakening factor at high temperature by
 206 accumulation of thermal stresses at grain-grain contacts [20].

207

208 Fig 5: Particle size analysis of the Paki-Toglou Sandstone

209 3. 4. Evaluation of the heat absorption and restitution potential of the inserts


210 The objective of this test is to evaluate the potential for absorption, storage and restitution of
 211 the heat of the inserts through the water boiling test [13] by analyzing the evolution of the
 212 temperature of the water and of the insert stove system during the heating and cooling phases.
 213 This test makes it possible to quantify the ability of the inserts to absorb the thermal energy
 214 produced, to conserve it [14], then to restore it in a delayed manner, highlighting their thermal
 215 efficiency, their thermal inertia and their contribution to improving energy efficiency and
 216 reducing heat losses in clean cooking applications. The potential of absorption and restitution
 217 of the heat of the inserts was evaluated using the boiling water test [15].

218 The evaluation of the absorption, storage and heat recovery potential of the inserts was carried
 219 out using the boiling water test, a method widely used for the characterization of the thermal
 220 performance of cooking systems and materials with high thermal inertia. The experimental
 221 protocol was structured in two successive phases: a heating phase and a controlled cooling
 222 phase.

223 The heating phase consists of placing the insert inside the stove, subjected to active
 224 combustion for a period of 30 minutes. A container containing a mass of water initially at
 225 room temperature is positioned above the hearth. The water temperature is measured at
 226 regular intervals using a calibrated thermometer, making it possible to follow the kinetics of
 227 temperature rise. This phase aims to evaluate the ability of the insert to absorb the thermal

228 energy produced, to transfer it to the container and to contribute to the rise in the temperature
229 of the water, a direct indicator of the efficiency of the heat transfer of the system.

230 At the end of the heating phase, the combustion is interrupted by the complete emptying of
231 the stove, in order to eliminate any active source of heat. The system is then left in natural
232 cooling for a period of 1 hour, without additional energy input. During this phase, the
233 evolution of the temperature of the water and or of the insert is recorded in order to analyze
234 the progressive restitution of the stored heat. The observed thermal decrease makes it possible
235 to characterize the thermal inertia of the insert, as well as its ability to restore the stored
236 energy after the combustion has stopped. The joint analysis of the data from the heating and
237 cooling phases thus makes it possible to quantify the overall thermal behavior of the inserts,
238 in particular their suitability for thermal storage and their potential contribution to improving
239 energy efficiency and reducing heat losses in clean cooking systems.

240

241

Fig 6: Temperature variation curve for C1

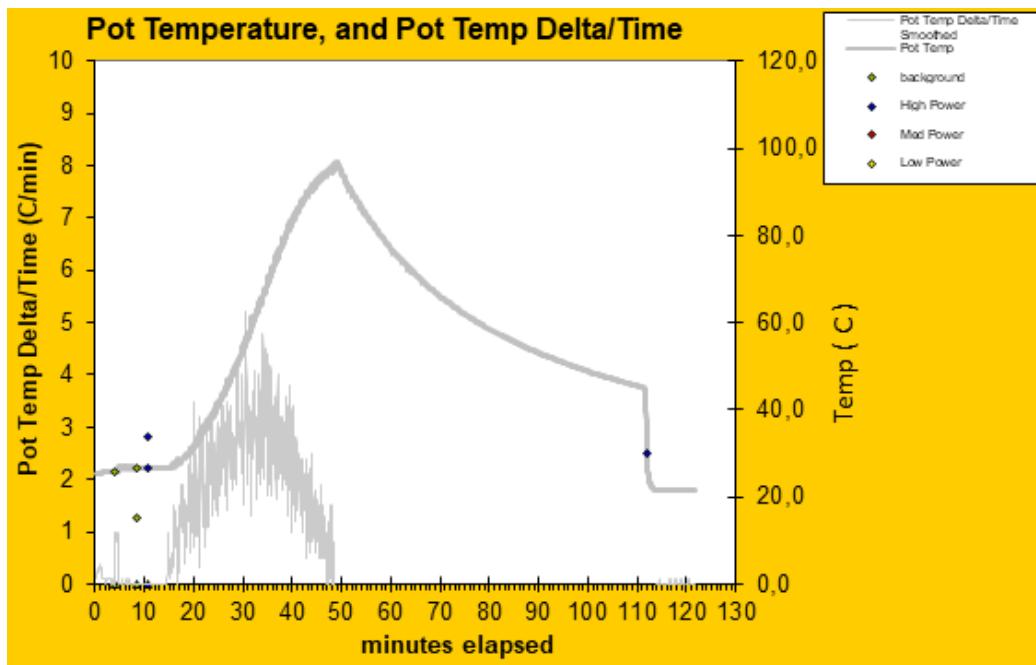


Fig 7 : Temperature variation curve for C2

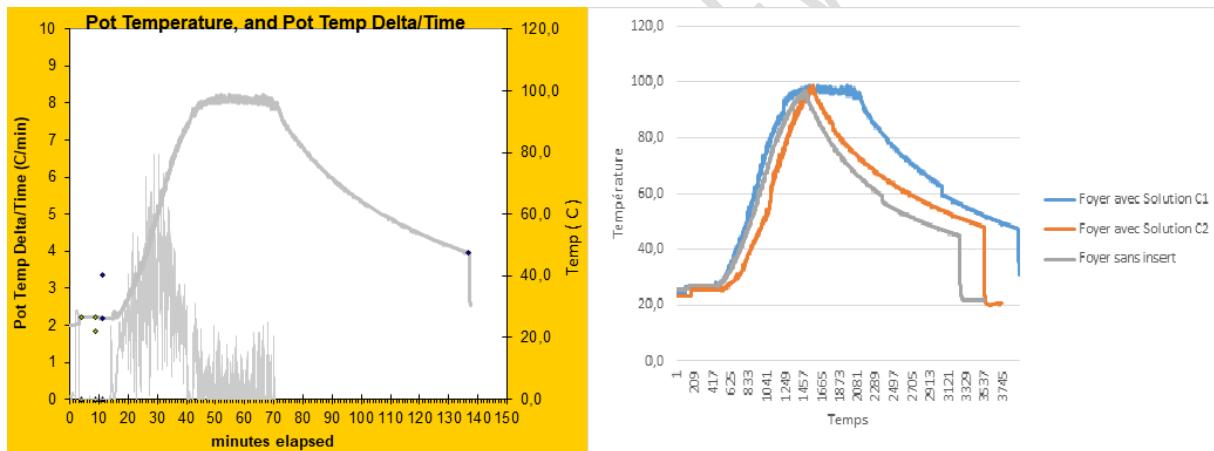


Figure 8: Curve of variation of the temperature as a function of time

247

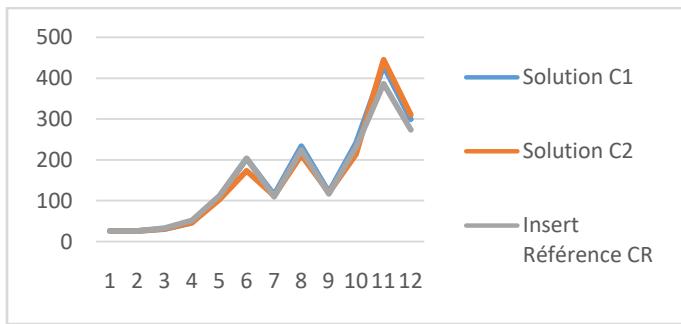
248 The temperature curves as a function of time highlight the compared thermal behavior of
 249 three stove configurations: a stove without insert, a stove equipped with the C1 solution and a
 250 stove equipped with the C2 solution. Overall, the three systems have a similar thermal
 251 dynamic characterized by a rapid temperature rise phase, a plateau close to the maximum
 252 temperature, then a decrease phase corresponding to the cooling of the system after extinction
 253 or reduction of the source of chaleur. La heating phase shows a gradual increase in
 254 temperature up to a maximum close to 95-100 ° C. However, the stove with the C1 solution

255 reaches this maximum more quickly and maintains a longer thermal plateau than the other
256 two configurations. This behavior reflects a better heat absorption and redistribution capacity,
257 generally associated with a higher thermal mass and with an adapted thermal conductivity of
258 the ceramic insert. Conversely, the stove without insert has a slightly less efficient rise and an
259 earlier onset of decay, suggesting greater heat losses to the environment. During the cooling
260 phase, the differences between the systems become more marked. The stove without inserts
261 cools quickly, with a sudden drop in temperature, which indicates a low thermal retention
262 capacity and limited thermal inertia. The stove equipped with the C2 solution shows a
263 moderate improvement, with a more gradual decrease, reflecting a partial retention of heat.
264 On the other hand, the C1 solution has the lowest cooling slope and retains high temperatures
265 for a longer period, which testifies to a higher thermal inertia and a better thermal storage
266 efficiency. These results confirm that the integration of ceramic inserts significantly improves
267 the thermal behavior of the fireplaces, in particular in terms of temperature stabilization and
268 prolongation of heat recovery after the combustion phase. The C1 solution thus appears as the
269 most efficient configuration, optimizing both the temperature rise and the thermal retention
270 capacity. This behavior is consistent with previous work showing that increasing the thermal
271 mass and optimizing the thermophysical properties of materials (conductivity, heat capacity)
272 make it possible to reduce energy losses and improve the overall efficiency of improved
273 stoves intended for domestic cooking

274 **3.5. Combustion test results**

275 The objective of this test is to evaluate the thermal behavior of ceramic inserts as well as their
276 energy performance, in particular their ability to reduce solid fuel consumption [16]. This
277 approach makes it possible to determine whether the inserts optimize the heat transfer while
278 minimizing the amount of charcoal necessary to maintain a stable temperature [17]. To do this,
279 each insert was carefully weighed in order to determine its initial weight, in accordance with
280 standard protocols for characterizing thermal cooking devices. Subsequently, a constant
281 quantity of charcoal of 1 kg was deposited on each insert in order to ensure the reproducibility
282 of the tests. The fuel was then ignited, and the following measurements were carried out at
283 regular intervals:

- 284 • Temperature of the insert, making it possible to evaluate its storage and heat recovery
285 capacity.
- 286 • Temperature of the metal casing, in order to study the thermal losses towards the
287 outside.


- Total weight of the fireplace plus charcoal, in order to quantify the decrease in fuel over time and to estimate the energy efficiency of the insert.

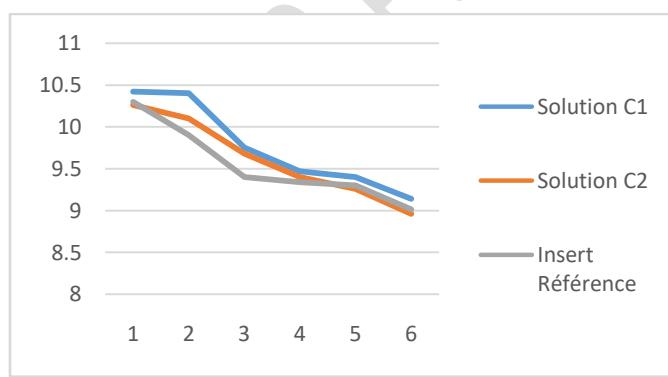
290 This methodology makes it possible to establish a correlation between the particle size
291 distribution of the constituent materials of the insert, their thermal behavior and energy
292 consumption, thus offering indications on the optimization of ceramic inserts for domestic or
293 industrial applications

294 The results of Table 4 were noted every 30 minutes.

Table 4: Results of the combustion tests

	Insert of the C1 solution	Insert of the C2 solution	Insert Reference
Initial weight: insert+ charcoal	10,42 kg	10,26 kg	10,30 kg
Envelope temperature	26 °C	26 °C	26 °C
Insert temperature	26 °C	26 °C	26 °C
Weight after 30 minutes	10,40 kg	10,10 kg	9,9 kg
Envelope temperature	30,6 °C	31,1 °C	33,4 °C
Insert temperature	46,6 °C	46,1 °C	52 °C
Weight after 1 hour	9,75kg	9,68 kg	9,4 kg
Envelope temperature	109,5 °C	103,1°C	111,9 °C
Insert temperature	202,6 °C	172,9 °C	204 °C
Weight after 1h30mn	9,47 kg	9,4 kg	9,34 kg
Envelope temperature	114,6 °C	112,2 °C	110 °C
Insert temperature	233,2 °C	212 °C	224, 3 °C
Weight after 2 hours	9,4 kg	9,26 kg	9,30 kg
Envelope temperature	121 °C	119,6 °C	116,5 °C
Insert temperature	241 °C	214,3 °C	231,2 °C
Weight after emptying the insert	9,14 kg	8,96 kg	9,013 kg
Insert temperature	430 °C	445 °C	386 °C
Insert temperature 5 minutes after emptying	299 °C	310 °C	273 °C

298 **Fig 9 : Curve of variation of the temperature as a function of time**


299 The curves C 1, C 2 and CR present a globally similar thermal evolution, characterized by
 300 three distinct phases : an initial phase of gradual temperature rise, a rapid rise phase leading to
 301 a thermal peak, then a decrease phase. During the first phase (0 to approximately 0.5 h), the
 302 temperature increases slightly for all the samples, reflecting an initial thermal inertia linked to
 303 the progressive absorption of thermal energy and to the calorific capacity of the materials.

304 Between 0.5 h and 2 h, a more marked increase is observed, with a relatively comparable
 305 slope for the three curves, indicating a quasi-stationary heating regime dominated by the heat
 306 conduction and accumulation mechanisms. However, slight differences appear : the C1
 307 sample has slightly higher temperatures than those of C2 and CR, suggesting a Fig7 : Curve
 308 of variation of the temperature as a function of time

309 The curves C 1, C 2 and CR present a globally similar thermal evolution, characterized by
 310 three distinct phases : an initial phase of gradual temperature rise, a rapid rise phase leading to
 311 a thermal peak, then a decrease phase. During the first phase (0 to approximately 0.5 h), the
 312 temperature increases slightly for all the samples, reflecting an initial thermal inertia linked to
 313 the progressive absorption of thermal energy and to the calorific capacity of the materials.

314 Between 0.5 h and 2 h, a more marked increase is observed, with a relatively comparable
 315 slope for the three curves, indicating a quasi-stationary heating regime dominated by the heat
 316 conduction and accumulation mechanisms. However, slight differences appear : the C1
 317 sample has slightly higher temperatures than those of C2 and CR, suggesting a better thermal
 318 conductivity or a higher storage capacity efficace. The third phase, centered around 2.5 h,
 319 corresponds to a pronounced thermal peak, with maximum temperatures of approximately
 320 450 °C. for C1, 420 °C. for C2 and 380 °C. for CR. This maximum temperature difference
 321 highlights the influence of the physico-thermal properties of the materials (porosity, density,
 322 particle size or mineralogical composition) on the heat accumulation and restitution capacity.
 323 Finally, the decrease observed after the peak reflects the beginning of a cooling regime,

324 dominated by thermal losses by convection and radiation. The faster decay of the curve CR
 325 suggests a lower thermal inertia, while C1 retains a relatively higher temperature, indicating
 326 better thermal retention. Overall, these results show that, although the three materials are
 327 subjected to the same thermal conditions, their behaviors differ significantly in terms of
 328 maximum temperature reached and cooling kinetics. These differences are decisive for
 329 applications such as inserts or improved fireplaces, where a high temperature combined with
 330 good thermal retention is sought to optimize energy efficiency and heat recovery. Better
 331 thermal conductivity or a higher storage capacity efficace. The third phase, centered around
 332 2.5 h, corresponds to a pronounced thermal peak, with maximum temperatures of
 333 approximately 450 °C. for C1, 420 °C. for C2 and 380 °C. for CR. This maximum
 334 temperature difference highlights the influence of the physico-thermal properties of the
 335 materials (porosity, density, particle size or mineralogical composition) on the heat
 336 accumulation and restitution capacity. Finally, the decrease observed after the peak reflects
 337 the beginning of a cooling regime, dominated by thermal losses by convection and radiation.
 338 The faster decay of the curve CR suggests a lower thermal inertia, while C1 retains a
 339 relatively higher temperature, indicating better thermal retention. Overall, these results show
 340 that, although the three materials are subjected to the same thermal conditions, their behaviors
 341 differ significantly in terms of maximum temperature reached and cooling kinetics. These
 342 differences are decisive for applications such as inserts or improved stove, where a high
 343 temperature combined with good thermal retention is sought to optimize energy efficiency
 344 and heat recovery.

346 **Fig 10: Curve of variation of the weight as a function of time**

347 The Figure shows the evolution of the mass of the inserts C 1, C 2 and of the reference CR
 348 over time, over a period of approximately 2.5 hours. For all the formulations studied, the
 349 curves show a monotonous decrease in weight, reflecting a continuous process of mass loss,
 350 typically associated with the evaporation of free and bound water, as well as with the possible

351 decomposition of certain volatile phases under the effect of temperature. In the initial phase
352 (0-0.5 h), a rapid loss of mass is observed for the three inserts, more marked for C1 and C2
353 than for the reference CR. This step conventionally corresponds to the elimination of the
354 water physically adsorbed in the most accessible pores. The higher slope for C1 suggests a
355 greater initial porosity or a higher water content, favoring a faster mass release. Conversely,
356 the CR formulation has a more moderate decrease, indicating a probably denser structure or a
357 particle size distribution limiting the diffusion of moisture.

358 Between 0.5 and 1.5 h, the curves tend to become less steep, reflecting a phase of relative
359 stabilization of the rate of mass loss. This intermediate zone is generally attributed to the
360 elimination of capillary and partially bound water, a process controlled by internal diffusion
361 and the microstructure of the material [18]. It is observed that the insert C2 retains a slightly
362 lower mass than that of C1, which can be interpreted as a better evacuation of internal
363 moisture, potentially linked to a more favorable particle size or to a better connectivity of the
364 pores.

365 At the end of the test (1.5-2.5 h), the three curves converge towards similar values, with a
366 slightly higher final mass for C1, followed by CR, while C2 has the lowest residual mass.
367 This convergence indicates the achievement of a quasi-hygroscopic equilibrium, where the
368 major part of the volatile species has been eliminated. The lower residual mass of C2 suggests
369 a lower content of volatile phases or water, which may constitute an advantage for thermal
370 applications requiring increased dimensional and mass stability during repeated heating cycles
371 [19].

372 Overall, the comparative analysis shows that the solutions C1 and C2 have a faster mass loss
373 kinetics than the reference CR, reflecting notable microstructural differences induced by the
374 formulation. Among the two solutions, C2 appears to be the most stable in the long term, with
375 a lower final mass and more regular kinetics, which could be favorable for inserts intended for
376 storage or thermal recovery applications, where repeatability and durability are essential
377 criteria

378 **4. Conclusion**

379 This study highlighted the decisive influence of the particle size distribution on the heat
380 transfer mechanisms and the heat storage capacity of ceramic inserts made by alkaline
381 activation, with a view to reducing the firing temperature. The results show that the particle
382 size strongly determines the final microstructure of the material, by acting on the

383 compactness, the porosity and the continuity of the alkalinely activated matrix, key
384 parameters governing the thermal conductivity and the thermal inertia of the inserts. An
385 optimized particle size distribution, combining fine and coarse fractions, promotes better
386 reactivity during alkaline activation and effective densification at lower processing
387 temperatures than those required for conventional ceramics. This microstructural structuring
388 makes it possible to improve the heat transfer during the heating phase while ensuring an
389 increased storage capacity and progressive heat recovery, despite the decrease in the cooking
390 temperature. Conversely, uncontrolled particle size distributions lead either to excessive
391 porosity, limiting thermal conductivity, or to structural heterogeneity likely to degrade
392 thermal and mechanical performance. Alkaline activation thus appears as a relevant
393 technological alternative to traditional high-temperature ceramic processes, by making it
394 possible to obtain thermally efficient inserts at reduced firing temperatures. This approach
395 contributes not only to improving the energy efficiency of the inserts, but also to reducing
396 energy costs and the environmental footprint associated with their manufacture.

397

398

399

400 **BIBLIOGRAPHIC REFERENCES**

- 401 [1] J. Davidovits, "Geopolymers: new inorganic polymer materials", J. Therm. Anal., vol. 37,
402 pp. 1633-1656, 1991 Journal of Thermal Analysis and Calometry
- 403 [2] "J. Davidovits, « The need to create a new technical language for the transfer of basic
404 scientific information," in Transfer and exploitation of scientific and technical information,
405 1982, pp. 316-320 "
- 406 [3] "J. Wastiels, X. Wu, S. Faingnet and G. Patfoort, "Mineral polymer based on fly ash", J.
407 Resour. Manag. Technology., vol. 22, issue 3, pages 135-141, 1994 "
- 408 [4] "J. Davidovits, "Mineral polymer and manufacturing methods," U.S. Pat.No. 4,349,386
409 A, 1982"
- 410 [5] "H. Rahier, B. Van Mele and J. Wastiels, « Aluminosilicate glasses synthesized at low
411 temperature-Part I - Low temperature reaction Stoichiometry and structure of a model
412 compound", J. Mater. Sci., vol. 31, issue 1, pages 80-85, 1996 "

- 413 [6]."A_CHERKI-EL-IDRISSI J. Mater. Sci., vol. 3131, number 11, pages 80-85, 1996. [10]
414 H. Rahier, B. Van Mele and J. Wastiels, "Aluminosilicate synthesized at low temperature July
415 24. 201 them.hal. Science9"
- 416 [7] "J. Davidovits and P. J. Davidovits,"30 Years of successes and failures in geopolymers
417 applications market trends and potential breakthroughs" in Geopolymer Conference, 2002, pp.
418 1-16
- 419 [8] "Geopolymers: artificial rock geosynthesis and the results... 1 -2.1988. Page 16.
420 Geopolymer 2002 Conference, October 28-29, 2002 ... "in Conference on Geopolymers,
421 2002, pp. 1-16"
- 422 [9] BELLION. Yes, GUIRAUD.R (1984) "Mineral Plan of the Republic of Senegal" 273p
- 423 [10] FAYE P. B. " 2012) "Treatment by alkaline activation of aluminum phosphate
424 exploitation co-products for its use in road geotechnics, End of study thesis for obtaining the
425 degree of design geologist engineer at the Institute of Earth Sciences (IST) of Cheikh Anta
426 Diop University"
- 427 [11] PERACOD (2011) "Technical data sheet for the manufacture of Jambar wood and
428 charcoal improved stoves. Program for the Promotion of Rural Electrification and Domestic
429 Fuel Supply".
- 430 [12] GAYE A. "1996) "Determination of the optimal water content with a view to a compact
431 road sand concrete. Thesis for the end of studies for obtaining the degree of design engineer at
432 the Polytechnic School of Thies (EPT), 133p, July ".
- 433 [13] "Grim, 1968 ; Velde, 1995 ; Reed, 1995 Interactions natural clays tributaries dyers Tea
434 Al Science".
- 435 [14] "WBT ISO-19867 Reference number ISO 19867-1 :2018(E)"
- 436 [15] "Incropera, F. P., DeWitt, D. P., Bergman, T. L., and Lavine, A. S. (2011). The results
437 were published in 2011. Fundamentals of Heat and Mass Transfer. 7th ed., John Wiley and
438 Sons"
- 439 (2012). Pollutant emissions and energy efficiency under controlled conditions for domestic
440 biomass stoves. Environmental Science and Technology, 46(19), 10827-10834"

441 [16] "Bergman, TL, Lavine, AS, Incropera, FP and Dewitt, DP (2011) Fundamentals of heat
442 and mass transfer. 7th Edition, John Wiley and Sons, Inc., 455-459"

443 [17] Çengel, AA, and Ghajar, AA (2020). The results of the study were published in 2015.
444 Heat and mass transfer: Fundamentals and applications (6th ed.). McGraw-Hill Education"

445 [18] Introduction to ceramics. Front cover. W. David Kingery, H. K. Bowen and Donald R.
446 Uhlmann. John Wiley & Sons, May 4, 1976-Technology and Engineering - 1056 pages.

447 [19] "Callister Jr., David G. Rethwisch. This is the first edition of the book. January 2018. 992
448 pages. Read an excerpt Index (PDF)Table of Contents (PDF)Chapter 01 (PDF). Product ... "