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We have stimulated the electronic properties of wurtzite Indium 

Nitride by using density functional theory (DFT). The energy gap is 

size dependent at which Eg increase with decreasing the size of InN 

nanocrystals. Also the lattice constant behaves in the same way as 

energy gap do. The cohesive energy is also calculated for the InN 

nanocrystals for 4, 8, 32 and 64 core atoms. Results shows that the 

cohesive energy values become larger as the size of core atoms 

increases and we predict that when we go for larger sizes the value of 

the cohesive energy will tend to be the same value of bulk InN.  
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Introduction:-  
One of the most important classes of the III-nitrides group semiconductor materials are InN, AlN and GaN with 

their alloys, where they are used for optoelectronic applications such as blue light emitting diodes (LED’s) and 

lasers [1]. Indium Nitride (InN) is the least explored nitride, due to difficulties in synthesizing high quality single 

crystal. Very recently, these problems have been overcome and some of the key band parameters have been 

conclusively determined [2, 3]. The progress in the fabricating of high performance mobility high electron mobility 
transistors and light-emitting diodes [4]. Recent successes in the growth of high quality wurtzite InN [5-7], have 

resulted in substantial interest in the use of InN in the fabrication of high performance high electron mobility 

transistors and light-emitting diodes [8]. These types of binary and ternary semiconductor nanocrystals have been 

studied extensively by many academic workers [9-11]. Confinement of electrons in these nanostructures gives rise 

to quantum effects, so recent researches concentrated on nanostructures in one dimension (1D), two dimensions 2D 

and three dimensions 3D leading to quantum well, quantum wires and quantum dot respectively. Many codes have 

been established to predict the behavior of nanostructures and so many adding to the main programs have been done 

to be suitable and applicable to find the properties of them. In this work we focused on some of the important 

properties of indium nitride (InN) semiconductor using the density functional theory (DFT). Periodic boundary 

condition (PBC) [12] was considered to choose the nanocrystal structure of InN. We also selected the generalized 

gradient approximation (GGA) for the exchange functional in conjunction with accurate expressions for the 
correlation functional have led to numerous applications in which density-functional theory (DFT) provides 

structures, bond energies, and reaction activation energies in excellent agreement with the most accurate ab-initio 

calculations and with the experiment.  
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Theoretical background:- 
The large unit cell method is a kind of supercell method that was suggested and first applied for the investigation of 

the electronic band structure of semiconductors [13]. The LUC alters the size and the shape of the unit cell so that 

the symmetry points in the original Brillouin zone at a wave vector k become equivalent to the central symmetry 

point in the new reduced zone. The number of atoms in the central cell ( k = 0) is increased to match the real number 

of nanocrystal atoms [14]. LUC coupled with DFT (LUC-DFT) saves the computational time to calculate the 

electronic properties of the nanocrystal. density functional theory is a ground-state electronic energy which is 

determined completely by the electron density ρ(r) [15]. In 1927, Thomas-Fermi put the concept of DFT based on 

the uniform electron gas [16]. They proposed the following functional for the kinetic energy: 

 

 

 

 
The basic variable in DFT is the single-particle density ρ(r), where for an N-particles system [17, 18], 

 

 

 

DFT formulated by P. Hohenberg and W. Kohn in 1964 [19] with the central idea to replace the many-body problem 

with an equation for the electron density. Hohenberg and Kohn stated and proved that; 

 

1
st
 Lemma: The density of ground state ρ(r), uniquely determines the external potential V(r), within an additive 

constant. The total energy can be found as: 

 

 
 

 

 

FHK[ρ] is a universal functional of ρ(r), which is represent the kinetic energy of the electrons T[ρ]and coulomb 

interactions energy between electrons-electrons Ve-e[ρ]. Ve-n[ρ] is coulomb interactions energy between electrons-

nuclei. 

2
nd

 Lemma: The ground-state energy can be obtained variationally; the density that minimizes the total energy is the 

exact ground state density ρo(r). That is, for a trial electron density ρt(r); 

 

 

 

W. Kohn and L. J. Sham [20] developed the Hohenberg-Kohn theorems to calculate the ground-state energy by 

consider a non-interacting particles system that generate the same density as any given system of interacting 

particles [21]. Thus, a general Kohn–Sham energy EKS[ρ] formulation of DFT is [22], 
 

 

 

 

where, Ts[ρ] is the kinetic energy of the non-interacting system, J[ρ] is the classical coulomb repulsion energy, and 

Exc[ρ] is the exchange-correlation energy. The most commonly used of this category is the exchange-correlation 

energy functional of Perdew, Burke and Ernzerhof (PBE) [23], which is called the generalized gradient 

approximation (GGA). GGA is usually written as an integral over an exchange-correlation energy density, 

 

 

 
 

where xc
GG is the exchange-correlation energy per electron of an electron gas with homogeneous spin densities 

ρ↑(r) and ρ↓(r)in addition to the density gradients ρ↑(r) and ρ↓(r)[24]. All above equations are evaluated by using 
Gaussian 03w code [25]. 
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Results and Discussion:- 
The InN wurtzite (Fig. 1a) nanocrystal has been studied using the well-known density functional theory coupled 

with the large unit cell (Figs. 1b-1e) formalism (DFT-LUC).  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 1:-  a)  the wurtzite InN structure , and some of LUCs; b) 4 atoms, c) 8 atoms, d) 32 atoms, and e) 64 atoms 

per LUC. 

 

The DFT is applicable for the ground state of the system, so we have to find the minimum energy which can be 
considered as the equilibrium point at a distant called the optimized lattice constant. The equilibrium position is to 

be found for all core atoms 4, 8, 32 and 64 that is the distant at which both the attractive and the repulsive forces are 

equal. Fig.(2) shows the minimum energy for 32 core atoms. The optimized lattice constant was found around 

(0.341nm). The same procedure done for 4, 8 and 64 core atom with correspondence optimized lattice constants 

(0.371, 0.347 and 0.340 nm) respectively.  The lattice constant’s behavior with the number of core atoms is 

illustrated in Fig. (3). 

 

 

 

 
 

 

 

 

 

 

 

 

 Figure 3:- the relationship between the lattice 

constant and the core of atoms of InN. 
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Figure 2:- the optimized lattice constant of InN 

nanocrystal for 32 core atoms. 
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One of the most important parameter that is a main characteristic for materials is the energy gap. The energy gap is 

mainly controlled by the nanoparticle’s shape, size and composition [26-28]. The energy gap is decreasing as the 

size of the nanocrystal become large. This result is consistent with the experimental and theoretical results [29]. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

Theoretical calculations show that the intrinsic bandgap of InN is ≈ 0.65 eV [30], while Wu et al. [31] have pointed 

out that the intrinsic bandgap wurtzite-structured InN grown on sapphire substrates by molecular-beam epitaxy to be 

0.7-0.8 eV which is  much lower than the commonly accepted value of 1.9 eV. We have reported here the energy 

gap lies in the infrared region (Fig. 4) while the experimental result by K. Sardar et al. found that the energy gap lies 

near the infrared region and was around 0.7 eV using a new chemical route [32]. 

 

The cohesive energy was found using the following formula[33, 34]: 

 

 
 

 

where n and m are the number of atoms due to In and N in the core, respectively. Efree is the free atom energy, and Eo 

represents the correction to the cohesive energy for thevibration energy at ground-state (zero-point). Fig. (5) shows 

that the cohesive energy for InN nanocrystal for 4, 8, 32 and 64 core atoms, the values Ecoh lies between 4.834 and 

8.439 eV per atom. The theoritical value found by M. Fuchs et al. using full potential linear augment plane wave 

(FP-LAPW) is 7.35 eV [35] while the experimental value was 7.172 eV [36]. The values we got is very close to the 

experimental and theoritical values in Ref. [37]. It is clear that the value of Ecoh for InN nanocrystals tends to be 

almost same value for bulk InN. 
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Figure 5:- the cohesive energy of In N nanocrystal as a 

function of  number of core atoms. 

Figure 4:- energy gap of InN wurtzite nanocrystal as a 

function of the number of atoms per LUC. 
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The electron affinity (χe) of InN nanocrystal lies between 3.199 eV and 6.33 eV and the ionization potential (IP) is 

between 3.109 eV and 6.319 eV for 4 - 64 atoms. These values in good agreement with the results obtained by Jol 

w. ager et al. [37]. The electron affinity and the ionization potential as a function of number of core atoms is shown 

in Figs. (6) and (7), respectively. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

We can notice the fluctuation and disparate behavior of the electron affinity and the ionization potential with 

variation the core of atoms. This behavior returns to the shape effect of the structure [12, 14], where the LUC of 4 

and 32 atoms have hexagonal multiples structure while LUC of 8 and 64 atoms have orthorhombic multiples 

structure. This behavior is noted in many studies [38]. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. (8) illustrate the density of states (DOS) as a function of orbital energy. The degeneracy of states has been 

maximum of 1 for 4 core atoms and 4 for 64 core atoms respectively for considered nanocrystals. Highly degenerate 

states seen in the core reflects high symmetry, equal bond lengths and angles in perfect structure. Finally, table (1) 

summarized the structural and electronic properties of InN wurtzite nanocrystal for many different LUCs. 

 

 

 

 
 

 

 

 

Figure 7:- the ionization potential as a function of the 

number of core atoms 
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Figure  6:- shows the electron affinity as a function of 

the number of core atoms. 



ISSN: 2320-5407                                                                                Int. J. Adv. Res. 4(10), 1493-1500 
 
 

1498 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1:-  structural and electronic properties of InN  wurtzite nanocrystal. 

 

Conclusion:- 
We can conclude that many of the physical properties will be changed when the size of particle become several 

nanometer because of the quantum confinement effect which can be observed when the size of the particle is too 
small to be comparable to the wavelength of the electron. All the studied properties are different from the bulk InN. 

The energy gap, lattice constant and energy gap are size dependent. 
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Core atoms 

of LUC 

a 

(nm) 

c 

(nm) 

Eg 

(eV) 

χe 

(eV) 

IP 

(eV) 

Ecoh 

(eV/atom) 

4 0.371 0.59731 0.089 3.199 3.109 4.834 

8 0.347 0.55867 0.007 5.508 5.501 7.317 

32 0.341 0.54901 0.004 4.542 4.537 8.245 

64 0.340 0.54740 0.011 6.330 6.319 8.439 

Figure 8:- Density of states of (a) 4 and (b) 64 atoms of 

core part of InN nanocrystals. Valence band is shown with 

blue lines while conduction band is shown with red lines. 
The energy gap is shown between the two bands. 
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