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In this paper, several methods forsynchronization of chaotic systems 

are explained and compared. The idea is based on drive-response 
systems synchronization. The methods include: active Control, 

recursive control, adaptive control, and partial linearizationmethod 

which are implemented and applied to a Lorenz chaotic system. The 

partial linearization method is used to synchronize a subset of states of 

the system to synchronize other states as well. Active control and 

rebound control methods are used when the system parameters are 

known while adaptive control method is used when some of the 

parameters of the system are unknown. 

Inthesemethods,synchronization is based on Lyapunov stability theory. 

Three methods, namely, adaptive, active and recursive and are 

implemented on a T system successfully. A newmatrix method has 
been presented for synchronization based on the theory of 

Lyapanovkrakfskytheory and linear matrix inequality (LMI).This 

method has been implemented to a Rösslersystem with delay. 

Comparingto classical methods used to synchronize chaotic system the 

matrix method seems the best because of easy design of input, suitable 

for synchronization of chaotic systems with delay, simple calculations, 

no need to find aLyapunov function for stability. 
 

Copy Right, IJAR, 2016,. All rights reserved. 

…………………………………………………………………………………………………….... 

Introduction:- 
Over the years, scientists have tried to invent with different methods, in order to make complex control systems 
stable and efficient. In this regard, one of the best methods has been proposed by scientists and Russian 

mathematician, Lyapunov.Lyapunovintroduced a quasi-energy function model for nonlinear systems and then 

concluded that, if the system energy is constantly reducing, energy finally will finish and the system will be stable. 

In this paper, we have investigated the synchronization of chaotic systems. Several methods for synchronization of 

chaotic systems, namely active control, recursive control, and adaptive control arereviewed and a special matrix 

method is proposed for designof chaotic system synchronization observer. 

 

The remaining parts of this paper consist of four sections as follows: Inspection 2, an overview of the phenomenon 

of chaos in the systems is presented with some practical examples of chaotic systems. In section 3, the 

synchronization of chaotic systems is expressed. Conclusions are expressed in section 4. 
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Chaos phenomenon:- 
Chaos literally means anarchy, confusion and disorder. In chaotic systems, long-term behavior is not possible to 

predict. This characteristic is the result of high sensitivity of these systems to their initial condition. Chaotic 

behavior is not random behavior; it is deterministic.[1] But from the view of an observer unaware of the structure 

and function of chaotic system, the signal cannot be distinguished from a random signal using statistical tests. Since 

the signal can be measured only with limited precision, even if the chaotic signal generator is completely known, 
because of uncertainty in initial conditions, the output precision is constantly decreased[1].Therefore, the future of 

signal, especially in the long-term cannot be predicted and thus, the behavior of signal seems random. Due to 

sensitivity to initial conditions, a small uncertainty in initial conditions will lead to huge amounts of uncertainty in 

long term, therefore the system is unpredictable [2].Examples of the chaotic systems include: Burning a neon lamp, 

the point of incidence and magnitude of earthquakes, the trajectory of the fluid in a tube, population growth 

organisms, lightning in the sky, and the chain of random numbers generated by computer. [1, 2, 3].The chaotic 

systems are studied in several fields of science such as mathematics, astronomy, physics, medicine, meteorology, 

engineering, mechanics, construction, pharmaceutical and aerospace and even in the fields of psychology, sociology, 

and management [2, 3]. 

 

The study of chaos has a lot of applications including: 

 Ability to explain many events and natural phenomena, ability to predict disasters and avoid risks of accidents 
and reduce injuries 

 Control of behavior of the systems in the desired direction 

 Understanding the process leading to chaos in certain areas and under controlled conditions to achieve optimal 

conditions[2] 

 Developing algorithms and logic of measurement, computing, administrative and operational 

 Diagnose the cause of some irregularities, the correction of the laws of science and discovery of new laws[2] 

Due to the complex and unstable dynamics control, chaos control seems impossible but chaotic systems are 

capable of self-control and various control objectives are introduced as below: 

 Remove chaotic behavior and sustainability point of balance 

 stabilization of unstable alternate routes (creation of sustainable Limit Cycle) 

 synchronization of two chaotic systems 

 iPod control chaos (chaos-chaotic anti-control off) 

 Control of bifurcation 

 

Synchronization:- 

Is this paper synchronization of two chaotic systems is examined as follows. It is synchronization of changes in two 

systems so that they show the same behavior. For example, data transmission in telecommunication systems, both 

client and transmitter have access to a carrier signal forsynchronization. In 1990, Pecorrat, Carroll showed that in 

specific circumstances two chaotic systems can become synchronized by applying error signal to systems 

[1].Assume two identical copies of the dynamical system[2] 

X = f(x),    xϵRn       (1) 
 

For example, two identical oscillators with different initial conditions. One of these systems is called drive and 

another one is called response. 

Drive System:   
Zd
 = Z(Zd , yd )

Yd
 = Z(Zd , yd )

     (2) 

Response System:   
Zr
 = Z(Zr , yr )

Yr
 = Z(Zr , yr )

     (3) 

 

In equations (2) and (3), Zdand Yd  are drive system’s state variables andZr ، yr are state variables is the answer 

system. 

Synchronization condition is defined as follows: 

limt→0 Zd t 
 -  Zr (t) → 0         (4) 

limt→0 yd t 
 -  yr (t) → 0         (5) 
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Dynamic equations of error signal will be:- 

 
ez = fo(ez , t)

ey = f1(ez , ey , t)
           (6) 

Whereez = zd − zrandey = yd − yr . 

 

Theorem [4]: Suppose for every initial conditions zd(0)andzr (0)andyd(0), responses zd(t)andyd (t)in the interval 

are extremely large and equilibrium point ez = 0inez = fo(ez , t)is asymptotically stable in general and uniform.[3] 

ey = f1(ez , ey , t)is stable. The purpose of synchronization is met then for any initial condition. 

There are other methods for synchronization, including synchronization with the passive-based, ActiveX control, 

recursion, adaptive control, partial linearization, and particular matrix methods.[1] 

 

ActiveX control Methods:- 

This method is used to synchronize two systems which are identical (T) in parameters. A system (T) in general is as 

follows:[5] 

T system:  
x = a y − x 

y =  c − a x − axz
z = −bz + xy

         (7) 

 

When the coefficients a = 2.1 and b = o.6 and chaotic system is c = 30 is selected. Synchronization process is as 

follows. Consider the drive and response systems: 

Drive system:  
x 1 = a y1 − x1 

y 1 =  c − a x1 − ax1z1

z 1 = −bz1 + x1y1

        (8) 

Response system:  

x 2 = a y2 − x2 + u1 t 

y 2 =  c− a x2 − ax2z2 + u2 t 

z 2 = −bz2 + x2y2 + u3 t 

      (9) 

The error for the systems is define as: 

e1 = x2 − x1وe2 = y2 − y1وe3 = z2 − z1     (10) 

 

The error dynamic equations are obtained as:- 

 

e 1 = a e2 − e1 + u1 t 

e 2 =  c − a e1 − a x2z2 − x1z1 + u2 t 

e 3 = −be3 + x2y2 − x1y1 + u3 t 

      (11) 

 

Thenu1andu2andu3 are defined control functions for active control like below, error in the dynamic, non-linear 
segments are eliminated and will be only a function of e. 

 

u1 t = v1(t)                                              

u2 t = a x2z2 − x1z1 + v2 t 

u3 t = −x2y2 + x1y1 + v3 t 

       (12) 

 

e 1 = a e2 − e1 + v1 t 

e 2 =  c − a e1 + v2 t 

e 3 = −be3 + v3 t 

 →  
e 1
e 2
e 3

 =  
−a a 0

c− a 0 0
0 0 −b

  

e1

e2

e3

 +  

v1

v2

v3

   (13) 

 
Now, it is sufficient to calculate the control vector v, depending on the state variables so that the error is diminished. 

Thatise = −ethe response of the equation is e−t . That is theerrors approach zero when t → ∞[16] 

The matrix A is chosen so that the eigenvalues of matrix A are -1. 

 

v1

v2

v3

 = A  

e1

e2

e3

 → A =  
a − 1 −a 0
a − c −1 0

0 0 b − 1
       (14) 

 
e 1 = −e1    

e 2 = −e2

e 3 = −e3

 ⟶

e1 t = c1e−t

e2 t = c2e−t

e3 t = c3e−t

        (15) 
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The initial values for the simulation are:- 

x1 0 = 0.1 ، x2 0 = 2.4،y1 0 = −0.3 ، y2 0 = −3.3، z1 0 = o. = z2 0 و 2 14.5 

Figure (1) shows the changes ofx1and x2where Figures (2) and (3) showy1and y2 and z1and z2 respectively. Figure 

(4) presentse1,e2ande3versus time [7]. 

 

 
Figure 1:-signals𝑥2and 𝑥1 . 

 

 
Figure 2:-.Signals 𝑦1 and 𝑦2 

 

 
Figure 3:- Signals 𝑧1and𝑧2 
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Figure 4:-  signals𝑒1,𝑒2 and 𝑒3 

Synchronization by adaptive control 

 

In particular situations, some parameters of the system are unknown. [9] 

Once again there where the dynamic equations error as follows: [10] 

 

𝑒 1 = 𝑎 𝑒2 − 𝑒1 + 𝑢1 𝑡 

𝑒 2 =  𝑐 − 𝑎 𝑒1 − 𝑎 𝑥2𝑧2 − 𝑥1𝑧1 + 𝑢2 𝑡 

𝑒 3 = −𝑏𝑒3 + 𝑥2𝑦2 − 𝑥1𝑦1 + 𝑢3 𝑡 

       (16) 

 

A positive definite Lyapunov function is defined as:- 

𝑣 𝑒1 ,𝑒2 , 𝑒3 ,𝑎 ,𝑏 , 𝑐  = (
1

2
)(𝑒1

2 + 𝑒2
2 + 𝑒3

2 + 𝑎 2 + 𝑏 2 + 𝑐 2)    (17) 

 

Where𝑎 = 𝑎 − 𝑎1  ،𝑏 = 𝑏 − 𝑏1 ،𝑐 = 𝑐 − 𝑐1𝑎𝑛𝑑𝑎1 ,𝑏1 ,𝑐1are the estimated values of the unknown parameters a, b, c.  
we assume control functions as: 

 

𝑢1 𝑡 = −𝑎1 𝑒2 − 𝑒1 

𝑢2 𝑡 = − 𝑐1 − 𝑎1 𝑒1 + 𝑎1(𝑥2𝑧2 − 𝑥1𝑧1)         

𝑢3 𝑡 = (𝑏1 − 1)𝑒3 − 𝑥2𝑦2 − 𝑥1𝑦1

      (18) 

 

The updating rules Are:- 

 

𝑎 1 = −𝑒1
2 − 𝑒2(𝑥2𝑧2 − 𝑥1𝑧1)                                           

𝑏 1 = −𝑒3
2

𝑐 1 = 𝑒1𝑒2

     (19)  

 

Then, the derivative of the Function v:- 

𝑣 𝑒1 ,𝑒2 , 𝑒3 ,𝑎 ,𝑏 , 𝑐  = 𝑒1
2 − 𝑒1

2 − 𝑒1
2 < 0      (20) 

 

The signals𝑥2and𝑦2and𝑧2are from response system, while 𝑥1and𝑦1and𝑧1 are synchronized drive system 

variables.[10] 

 

The initial values for the simulation are as follows:- 

𝑥1 0 = 0.1  ، 𝑥2 0 = 2.4 ، 𝑦1 0 = −0.3  ، 𝑦2 0 = −3.3  ، 𝑧1 0 = 𝑜. 2  ، 𝑧2 0 = 14.5 = 𝑎1 0 و   𝑏1 0 =
𝑐1 0 = 0.1 
Figure (5) shows𝑥1- 𝑥2, Figure (6) shows𝑦1 − 𝑦2, Figure (7) shows𝑧1- 𝑧2, and Figure (8) shows𝑒1and𝑒2and 𝑒3versus 

time. 
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Figure 5:- .for𝑥1- 𝑥2 

 

 
Figure 6:- .𝑦1 − 𝑦2 

 

 
Figure 7:-.𝑧1–𝑧2 
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Figure 8:- .𝑒1,𝑒2and 𝑒3 

 

Synchronization by backstopping:- 

This method is efficient for up to two parameters in the design of the system (T) [11]. The dynamical equation of 

system error is: 

 

𝑒 1 = 𝑎 𝑒2 − 𝑒1 + 𝑢1 𝑡 

𝑒 2 =  𝑐 − 𝑎 𝑒1 − 𝑎 𝑒1𝑒3 + 𝑥1𝑒3 + 𝑒1𝑧1 + 𝑢2 𝑡 

𝑒 3 = −𝑏𝑒3 + 𝑒1𝑒2 + 𝑒1𝑦1 + 𝑒2𝑥1 + 𝑢3 𝑡 

    (21)   

 

There are three stages in backstopping, in the first step we define𝑧1 = 𝑒1, then: 

𝑧 1 = 𝑎𝑒2 − 𝑎𝑧1 + 𝑢1(𝑡)         (22) 

Considering 𝑒2 = 𝛼1(𝑧1) as a virtual controller. 

where𝛼1 𝑧1 is designed to stabilize the 𝑧1in (22), Then𝑣1is chosen as aLyapunov function: 

𝑣1 =
𝑧1

2

2
           (23) 

𝑣 1 = 𝑧1𝑧 1 = −𝑎𝑧1
2 + 𝑎𝑧1𝛼1 + 𝑢1(𝑡)𝑧1      (24) 

 If 𝑢1 𝑡 = 0and𝛼1 = 𝑧1 −
𝑧1

𝑎
 then𝑣 1will be negative.  

𝛼1(𝑧1)is a virtual control function.𝑧2is defined as: 

𝑧2 = 𝑒2 − 𝛼1          (25) 

 
𝑧 1 = 𝑎𝑧2 − 𝑧1

𝑧 2 =  𝑐 − 𝑎 𝑧1 − 𝑎 𝑧1𝑒3 + 𝑥1𝑒3 + 𝑧1
2 −  1 −

1

𝑎
  𝑎𝑧2 − 𝑧1 + 𝑢2(𝑡)

  (26) 

 

In the next step, thesecondLyapunov function is defined: 

𝑣2 = 𝑣1 +
𝑧2

2

2
          (27) 

The derivation to of 𝑣2 will be: 

𝑣 2 = −𝑧1
2 − 𝑧2

2 < 0         (28) 
 

The functions are chosen as𝛼2 𝑧1 , 𝑧2 = 0 and𝑢2 = −𝑧2 − 𝑐𝑧1 + 𝑎𝑧1
2 +  1−

1

𝑎
  𝑎𝑧2 − 𝑧1  then: 

 

𝑧 1 = 𝑎𝑧2 − 𝑧1

𝑧 2 = −𝑎𝑧1 − 𝑧2 − 𝑎 𝑧1 + 𝑥1 𝑧3

𝑧 3 = −𝑏𝑧3 + 𝑧1𝑦1 +  𝑧1 + 𝑥1  𝑧2 + 𝑧1 −
𝑧1

𝑎
 + 𝑢3 𝑡 

     (29) 

 

 

To thirdLyapunovfunction is𝑣3: 

𝑣3 = 𝑣2 +
𝑧3

2

2
          (30) 

 

The derivative of𝑣3 will be: 
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𝑣 3 = −𝑧1
2 − 𝑧2

2 − 𝑎 𝑧1 + 𝑥1 𝑧2𝑧3 + 𝑧3𝑚      (31) 
Where 

𝑚 =  −𝑏𝑧3 + 𝑧1𝑦1 +  𝑧1 + 𝑥1  𝑧2 + 𝑧1 +
𝑧1

𝑎
 + 𝑢3 𝑡      (32) 

 

 

If 𝑢3 𝑡 =  𝑏 − 𝑎 𝑧3 − 𝑧1𝑦1 +  𝑧1 + 𝑥1   𝑎 + 1 𝑧2 + 𝑧1 −
𝑧1

𝑎
 𝑎𝑛𝑑𝛼2 = 0, then𝑣 3 < 0hence the equilibrium point 

(0,0,0) is asymptotically stable. By taking 𝑧1 = 𝑒  ، 𝑧2 = 𝑒2 − 𝛼1 𝑧3 و  = 𝑒3 − 𝛼2 𝑧1 , 𝑧2 it is observed that 𝑒1  ، 

𝑒2and𝑒3asymptotically approach zero, that means the synchronization between the systems.The initial values for the 

simulation are as follows: 

𝑥1 0 = 0.1 ، 𝑥2 0 = 2.4، 𝑦1 0 = −0.3 ،𝑦2 0 = −3.3 ، 𝑧1 0 = 𝑜. 2 ، 𝑧2 0 = 14.5 

Figures (9) to (12) show the variables𝑥1- 𝑥2, 𝑦1 − 𝑦2,𝑧1–𝑧2and errors 𝑒1, 𝑒2and 𝑒3respectively [6,7,11]. 

 

 
Figure 9:-𝑥1- 𝑥2 

 

 
Figure 10:- 𝑦1 − 𝑦2 
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Figure 11:- 𝑧1–𝑧2 

 

 
Figure 12:- errors 𝑒1and𝑒2and 𝑒3 

 

Synchronization using the particular matrix:- 

This method assumes unknown delay [14]. The equations are as follows for drive and response systems: 

 

𝑥 1 𝑡 = −𝑥1 𝑡 − 𝑥2 𝑡 + 𝑎1 𝑥1 𝑡 − 𝜏1  + 𝑎2 𝑥2 𝑡 − 𝜏2  

𝑥 2 𝑡 = 𝑥1 𝑡 + 𝛽1𝑥2 𝑡 

𝑥 3 𝑡 =  𝑥1 𝑡 − 𝛾 𝑥3 𝑡 + 𝑥1 𝑡 𝑥3 𝑡 + 𝛽2

   (33) 

 

𝑦 1 𝑡 = −𝑦1 𝑡 − 𝑦2 𝑡 + 𝑎1 𝑦1 𝑡 − 𝜏1  + 𝑎2 𝑦2 𝑡 − 𝜏2  − 𝑢1 𝑡 

𝑦 2 𝑡 = 𝑦1 𝑡 + 𝛽1𝑦2 𝑡 − 𝑢2 𝑡 

𝑦 3 𝑡 =  𝑦1 𝑡 − 𝛾 𝑦3 𝑡 + 𝑦1 𝑡 𝑥3 𝑡 − 𝛽2𝑢3 𝑡 

   (34) 

 

The equations in the form of a matrix can be written as follows:- 

 

𝑥 1 𝑡 

𝑥 2 𝑡 

𝑥 3 𝑡 
 =  

0 −1 −1
1 𝛽1 0

𝑥3 0 𝑥1 𝑡 − 𝛾
  

𝑥1 𝑡 

𝑥2 𝑡 

𝑥3 𝑡 
 +  

𝑎1 𝑎2 0
0 0 0
0 0 0

  

𝑥1 𝑡 − 𝜏1 

𝑥2 𝑡 − 𝜏2 

𝑥3 𝑡 − 𝜏2 
 +  

0
0
𝛽2

   (35) 

 

𝑦 1 𝑡 

𝑦 2 𝑡 

𝑦 3 𝑡 
 =  

0 −1 −1
1 𝛽1 0

𝑦3 𝑡 0 𝑦1 𝑡 − 𝛾
  

𝑦1 𝑡 

𝑦2 𝑡 

𝑦3 𝑡 
 +  

𝑎1 𝑎2 0
0 0 0
0 0 0

  

𝑦1 𝑡 − 𝜏1 

𝑦2 𝑡 − 𝜏2 

𝑦3 𝑡 − 𝜏2 
 +  

0
0
𝛽2

 −  

𝑢1 𝑡 

𝑢2 𝑡 

𝑢3 𝑡 
  (36) 

 

The values 𝜏1 ، 𝜏2and𝜏3are delay parameters 𝑜𝑓𝑡ℎ𝑒 system. 
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According to data provided by the design of the control input Theorem 1 in [13], obtained control values as 

follows:- 

𝑢 𝑡 =  
𝜁1 0 −1 + 𝑥3 𝑡 
0 𝜁2 0
0 0 𝜁3

  

𝑒1 𝑡 

𝑒2 𝑡 

𝑒3 𝑡 
       (37) 

 

The system error equation is obtained as follows:- 

 

𝑒 1 𝑡 

𝑒 2 𝑡 

𝑒 3 𝑡 
 =  

𝜁1 −1 −𝑥3 𝑡 

1 𝛽1 − 𝜁2 0

𝑥3 𝑡 0 𝑦1 𝑡 − 𝜁3 − 𝛾
  

𝑒1 𝑡 

𝑒2 𝑡 

𝑒3 𝑡 
 +  

𝑎1 𝑎2 0
0 0 0
0 0 0

  

𝑒1 𝑡 − 𝜏1 

𝑒2 𝑡 − 𝜏2 

𝑒3 𝑡 − 𝜏2 
  (38) 

 

According to Theorem 1 in [14] system error dynamic equations for asymptotic stability will be making the 

following conditions. 

 

−𝜁1 + 2 𝑎1 +  𝑎2 < 0

𝛽1 − 𝜁2 +  𝑎2 < 0

𝑦1 𝑡 − 𝛾 − 𝜁3 < 0

      (39) 

 

The initial values for the simulation are as follows:- 

𝑎1 = 0.2  ، 𝑎2 = 0.5 ، 𝛽1 = 𝑜. 2  ، 𝛽2 = 0.2  ، 𝛾 = 5.7  ، 𝜏1 = 0.2  ، 𝜏2 = 0.1  ، 𝜁1 = 1  ، 𝜁2 = 1  ، 𝜁3 = 𝑦1 𝑡  

، 𝑥1 0 𝑥2 0 𝑥3 0  =  −2 −4 10 ، 𝑦1 0 𝑦2 0 𝑦3 0  =  1 2 1  
 

Figures (13) to (16) show𝑥1- 𝑦1, 𝑥2- 𝑦2, 𝑥3- 𝑦3and errors𝑒1,𝑒2and 𝑒3respectively [15]. 

 
Figure 13:-𝑥1- 𝑦1 

 
Figure 14:- 𝑥2- 𝑦2 
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Figure 15:-𝑥3- 𝑦3 

 
Figure 16:- errors 𝑒1and𝑒2and 𝑒3 

 

linear method Details:- 

In this method, the synchronization of one stateconcludes synchronization of all other states. Integrated system is 

considered with the following equations: 

 

𝑥 1 =  25𝜃 + 10  𝑦1 − 𝑥1 

𝑦 1 =  28 − 35𝜃 𝑥1 − 𝑥1𝑧1 +  29𝜃 − 1 𝑦1

𝑧 1 = 𝑥1𝑦1 −
8+𝜃

3
𝑧1

      (40) 

 

The system will be up for θ = 0, θ = 0.8 and θ = 1, respectively Lorenz chaotic system, Lu and Chen. 

Considering the equation (40) as the actuator and the equation (41) as the system's response: 

 

𝑥 2 =  25𝜃 + 10  𝑦2 − 𝑥2 

𝑦 2 =  28 − 35𝜃 𝑥2 − 𝑥2𝑧2 +  29𝜃 − 1 𝑦2

𝑧 2 = 𝑥2𝑦2 −
8+𝜃

3
𝑧2

 + 𝑢     (41) 

 

The error for the system is defined: 

𝑒1 = 𝑥2 − 𝑥1و𝑒2 = 𝑦2 − 𝑦1و𝑒3 = 𝑧2 − 𝑧1     (42) 

 

Error dynamic equations will be obtained as follows: 

 

𝑒 1 =  25𝜃 + 10  𝑒2 − 𝑒1 

𝑒 2 =  28 − 35𝜃 𝑒1 +  29𝜃 − 1 𝑒2 − 𝑒1𝑒3 − 𝑧1𝑒1 − 𝑥1𝑒3 + 𝑢

𝑒 3 = 𝑒1𝑒2 + 𝑥1𝑒2 + 𝑦1𝑒1 −
8+𝜃

3
𝑒3

   (43) 
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So that the control vector u we is chosen as a linear Relationship:- 

𝑢 =  35𝜃 − 28 𝑒1 − 29𝜃𝑒2 + 𝑒1𝑒3 + 𝑧1𝑒1 + 𝑥1𝑒3    (44) 

𝑒 2 = 𝑒2    (45) 

 

According to Theorem 1 in [13]. Implementation wishes to simulate this technique to the Lorenz system as 

follows:- 

 

𝑒 1 = 10 𝑒2 − 𝑒1 
𝑒 2 = 28𝑒1 − 1 𝑒2 − 𝑒1𝑒3 − 𝑧1𝑒1 − 𝑥1𝑒3 + 𝑢

𝑒 3 = 𝑒1𝑒2 + 𝑥1𝑒2 + 𝑦1𝑒1 −
8

3
𝑒3

    (46) 

𝑢 = −28𝑒1 + 𝑒1𝑒3 + 𝑧1𝑒1 + 𝑥1𝑒3    (47) 

 

The initial values for the simulation are as Follows:- 
 𝑥1 0 𝑦1 0 𝑧1 0  =  10 10 10  
 𝑒1 0 𝑒2 0 𝑒3 0  =  −5 −10 10  

 

Figure (17) to (20) show𝑥1- 𝑥2, 𝑦1 − 𝑦2, 𝑧1–𝑧2and errors e1, e2and e3respectively[15]. 

 
Figure 17:- forx1- x2 

 
Figure 18:- y1 − y2 
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Figure 19:-z1–z2 

 
Figure 20:- errors e1ande2and e3 

Conclusion:- 
In this paper we dealt with the history of chaos, chaos theory and synchronization of chaotic systems. 

Synchronization methods used in this paper areActive control, backstopping control, adaptive control, partial 

linearization matrix method, which is based on synchronization systems with a delay. All these methods are based 

on Lyapunov theory. 

 

SIMULINK environment of MATLAB software has been utilized for simulation of synchronization of chaos 
systems. The methods designed for easy synchronization of chaotic systems introduce suitable methods for 

synchronization of delayed chaotic systems, with simple calculations, and no need to calculations of Lyapunov 

function for stability in contrast to the classical methods. 
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