

RESEARCH ARTICLE

Software to Compute Pile Load Capacity in Case of Variable Soil Stratification.

Chintan Rathod, Suraj Vaghela, Pooja Patel and Ekta Patel. Civil Engineering, Neotech Institute of Technology.

..... Abstract Manuscript Info High degree of uncertainty is associated with the geotechnical Manuscript History investigations as it is impossible to conduct the pile load test on each Received: 18 November 2016 and every pile due to their expensiveness and tedious nature. As per the Final Accepted: 19 December 2016 guidelines given by the IS 2911 (part1-section 2)-2014 considers only Published: January 2017 the granular or clavey (C or Φ soils) throughout the depth of the pile. This is not actually possible in the actual field. So it is necessary to Key words:build the software which can calculate the pile load capacity for Pile Load Test, Soil Stratification foundation soil having different soil strata, existing throughout the entire depth of pile. This software will eliminate excessive cost of investigations. We have derived a new formula based on the existing formula given in the IS code 2911 and this formula is used for computation of result in the software.

Copy Right, IJAR, 2016,. All rights reserved.

Introduction:-

Geotechnical engineering is sub-branch of civil engineering discipline that deals with the engineering behaviour of earthen materials. Geotechnical engineering also has uses and application in mining, military, petroleum and different engineering discipline. It uses the basic principles soil mechanics to investigate surface and subsurface conditions and materials. It also deals with stability of slopes, soil deposits earthwork design and foundation design. One of major geological problem of the earth's subsurface topography lies in the fact that the soil below the ground does not have uniform soil stratification. For a given smallest area of land one cannot say that the soil type and properties of the soil in this small area are uniform. These soil properties may change laterally (horizontally) as well as vertically (in depth). Soil stratification may change in type of soil, properties of soil, shear strength parameters, soil structure, permeability and porosity etc. It is therefore necessary to determine accurate soil stratification by use of modern paraphernalia which gives accurate results. The soil beneath plays a major role in the design of foundation and also the design of subsequent structure.

Accurate soil tests, results in increased life of structures, eliminating need of maintenance, if any. Geotechnical investigation only cost 1-2% of the total cost of the project but proves to be crucial.

Soil stratification is helpful in knowing the Pile Load Capacity (PLC) in case of variable soil stratification. PLC is the maximum amount of load a pile foundation can carry before failure.

In this project attempts have been made to accurately examine PLC in case of variable soil stratification with the use of the software/excel sheet.

Corresponding Author:- Chintan Rathod. Address:-Civil Engineering, Neotech Institute of Technology.

Literature review:-

4 Narayan V Nayak mentions in his book "Foundation Design manual" page number 1.81

"In a very stiff to hard clayey soils, particularly with N values of standard penetration test greater than 30, reliability of laboratory tests conducted on so called undisturbed samples is very low. In such cases dependence shall be on penetration test and/or pressuremeter tests."

This software does not require N value or SPT value as inputs. In such a case we will not input "N" value and it will be evident from the software that the software will not show the same "N" value as derived from the test.

As the "N" value is not required as main input for the software, no computation of the software data will be based on the requirement of the "N" value and the results will be accurate.

Further adding to the above contents Gopal Ranjan in his book "Basic and Applied Soil Mechanics" page number 589 wrote,

"Correlation of N value and soil parameters is available mainly for cohesionless soils. The use of N values for cohesive soils is limited, since the compressibility such soil is not reflected by N value"

Also P V Varghese mentioned that

"Even though are not considered as good measure of the strength of clays, it is used extensively as a measure of the consistency of clays. The consistency is then related to its approximate strength," in his book Foundation Engineering page 16.

Interpretation of pile load test result:-

The interpretation of results PLT plays a crucial role in deciding the failure capacity of the given pile. Also the interpretation of the PLT load test results in finding out the maximum possible load a pile can take.

This computation is very complex problem requiring very careful consideration of factors like soil profile, pile installation method, sensitivity of the structure, possibility of negative drag etc.

Fellenius in the year 1975 described eight methods of pile failure and also with examples of full scale field test showed that the interpreted smallest and largest value differed by atleast 40%.

Chin Fung Kee in the year 1977 suggested a plot of settlement per unit load as abscissa against settlement as ordinate to determine the ultimate capacity of a test pile, assuming the load- settlement relationship is hyperbolic.

Some of the well-known fundamentals of the failure load are given below:-

1.)De Beer in the year 1968 plotted the load settlement values in a log-log scale, where the values can be shown to fall on two straight lines. The intersection of the lines corresponds to the failure value of that pile.

In this the interpreted analysed values is conservative and the corresponding pile settlement is also small.

2.)Mazirkiewicz in the year 1972 proposed a method that allows the failure load to be extended even if the maximum load is smaller than the failure load.

The figure shows equal settlement lines are drawn corresponding to the load. From the junction of each load line with the load axis a 45° line is drawn to intersect the next load line which intersects the next load line. It is based on the assumption that load-settlement curve is parabolic.

Fig 2.3 LOAD V/S SETTLEMENT GRAPH

3.)Chin Fung Kee in the year 1977 suggest a graph of the settlement is divided by load versus settlement. The graph consist of 2 straight lines. During the initial loads, the ratio of settlement to load is almost constant and as pile approaches failure, the graph shows the straight line with steeper slope.

The inverse of the slope for the second straight line indicates failure corresponding to the load value of the curve.

Problem deifinition:-

1.1 Problem Justification:-

For construction of any type of building it is necessary to determine various soil parameters. These parameters includes shear strength parameters, soil stratification, SBC etc. To determine the SBC of soil it is necessary to carry out Pile Load Test (PLT). Pile load capacity test is very expensive and cannot be performed at a very large number of stations and one pile load test can take about a month to get results. As it cannot be performed at many places accurate results cannot be obtained. By the use of the software of the software we made we can accurately or near to accurate results can be obtained.

The software is open source and is user friendly which a normal person can use. It doesn't require any specialised training for operation. Any soil stratification can be computed with the use of this software on the basis of the different soils.

There are approximate 5% piles that are tested for the design of the foundation. That means there are 2-5 piles which are tested and approximately 95% are remained untested. This give high percentage of uncertainty in the design. So it is therefore necessary to test all the piles at failure to get accurate design parameters.

If you look at any international codes as well Indian standard code, engineering designs are not 100% correct because of the assumptions made in the results. So use of software decreases this uncertainty and gives the best design conditions.

Aim of the project:-

The aim of the study is to develop a software that can directly compute the pile load capacity upon the input of the certain parameters.

Objectives of the project:-

- **4** To find pile load capacity in terms of variable soil stratification.
- **4** To eliminate the need of performing too many pile load test on the sub surface.
- ↓ To further reduce the cost of geotechnical investigation.
- To provide free, user friendly and completely robust software to geotechnical engineers for the betterment of the infrastructure.

About software:-

Actually in the field, hardly pure cohesive soil or purely granular soil is available. Hence in this software an approach is made to derive the pile capacity for C- Φ soil. Many professional softwares are available to derive pile capacity for C- Φ soil. (like GEO 5, All-pile, L-pile etc)

But the professional software are having many limitations like

1) They are not user friendly

2) They are very costly (in terms of lacs of rupees)

- 3) They do not automatically accept changes of revised codal provisions.
- 4) They do not provide detail calculation as per our requirement

About our software:-

The software is totally

1) User friendly and

2) Maintenance free

Design for use, reuse and sustainability:-

(I) Design for use:-

The software designed is ready to use if required data are available like

- 1) Diameter of pile
- 2) Length of pile

3) Shear parameters of soil (cohesion and angle of internal friction)

4) Unit weight of soil etc.

These data can be obtained from the traditional soil tests.

(II) Design for reuse

The software can be reused for n number of times, for different diameter, different length and different soil parameters.

(III) Design for sustainability

The software is sustainable for n number of years provided that necessary updates are incorporated time to time.

(IV)Prototyping

It is not applicable for software. But a prototype modeling of a pile load test can be prepared to check the pile load capacity calculated from software.

(V) Test the prototype

The prototype is made showing following components

1) Soil strata

2) Pile

3) Loading arrangement

(VI) Measuring instruments

Visual observation can be made that - as the load on pile increases, the settlement of pile also increases.

(VII) Comparison of existing methods

In IS 2911, method for calculation of pile capacity is given for pure granular soil and pure cohesive soil only. But in actual field conditions, the soil is hardly pure granular or pure cohesive in nature. Hence this software is prepared in excel to determine the capacity of pile for actual field conditions having mix nature of soil (granular+cohesive) Few readymade softwares are available to calculate pile capacity for mix soil conditions, but they are very costly and not user friendly. This software is user friendly, transparent and updatable.

Derivation of the formula:-

To derive the capacity of pile, Guidelines are given in IS 2911 (Part 1 section 2) -2014 . In this code equations are given to determine ultimate capacity of pile in soil in Clause B-1 and Clause B-2 The equations are given for

1) Piles in Granular soils (Φ soil) and

2) Piles in Cohesive soils (C soil)

Limitations of the IS code:-

1 IS code 2911 assumes that same type of soil i.e pure cohesive or pure granular soil is found through-out the depth of excavation. But in real practice this case does not come into practicality.2 IS code 2911 does not consider the change in soil stratification.The formulas given in the IS code are:-

B-1 PILES IN GRANULAR SOILS

The ultimate load capacity (Q_u) of piles, in kN, in granular soils is given by the following formula:

$$Q_{\rm u} = A_{\rm p} (\frac{1}{2} D\gamma N_{\gamma} + P_{\rm D} N_{\rm q}) + \sum_{i=1}^{n} K_{\rm i} P_{\rm Di} \tan \delta_{\rm i} A_{\rm si} \dots$$

The first term gives end-bearing resistance and the second term gives skin friction resistance

where

- A_{p} = cross-sectional area of pile tip, in m
- D = diameter of pile shaft, in m;
- γ = effective unit weight of the soil at pile tip, in kN/m³;

 N_{γ} = bearing capacity factors depending upon and N_{α} the angle of internal friction, ϕ at pile tip;

- $P_{\rm D}$ = effective overburden pressure at pile tip, in kN/m² (see Note 5);
- $\sum_{i=1}^{n}$ = summation for layers 1 to *n* in which pile is installed and which contribute to positive skin friction;
 - K_i = coefficient of earth pressure applicable for the *i*th layer (*see* Note 3);

B-2 PILES IN COHESIVE SOILS

The ultimate load capacity (Q_u) of piles, in kN, in cohesive soils is given by the following formula:

$$Q_{\rm u} = A_{\rm p} N_{\rm c} c_{\rm p} + \sum_{i=1}^{n} \alpha_{\rm i} c_{\rm i} A_{\rm si} \qquad \dots (2)$$

The first term gives the end-bearing resistance and the second term gives the skin friction resistance.

where

- A_n = cross-sectional area of pile tip, in m²;
- $\dot{N_c}$ = bearing capacity factor, may be taken as 9;

 c_n = average cohesion at pile tip, in kN/m²;

- $\sum_{i=1}^{n}$ = summation for layers 1 to *n* in which the pile is installed and which contribute to positive skin friction;
 - α_i = adhesion factor for the *i*th layer depending on the consistency of soil, (see Note);

$$c_i$$
 = average cohesion for the *i*th layer, in kN/m²; and

$$A_{si}$$
 = surface area of pile shaft in the *i*th layer,
in m².

The formulas that are given in the IS code are manipulated to get the formula that is used in the software. The friction components of both the formulas are merged and end bearing components of both the formula are combined. This gives rise to the new formula.

The total friction component of the pile is given by **new formula**.

Ultimate	frictional	capacity	$(\mathbf{Q}_{\mathbf{u}})_{\mathbf{f}}$	=	[Σ	K	X	Pdi	X	tan	d	X	As]	+	[a	x	С	X	A _s]
[Granular	soil + Cohe	esive soil]																	

Veeed

The total end bearing component of the pile is given by new formula.

Ultimate	end	bearing	capacity	(Qu)b	=	[Ap(1/2	D	х	g	х	Ng	+	Pd	x	Nq)]	+	[Ap	х	Nc	X	Cp]
[Granula	r soil	+ Cohesiv	ve soil]																		

Analysis and result:-

General:-

To analyze the data we will first conduct the PLT on the actual site to obtain the soil sample. This soil sample will be taken to laboratory for further testing of the of the soil sample. Shear strength parameters (cohesion and angle of internal friction) of the soil sample are found out.

Testing of soil:-

Having collected the soil sample, the specimen is taken to the laboratory for further testing of the soil sample. Soil sample is tested for the shear strength parameters. We have collected the data from 5 different sites, whose shear strength parameters are as follows:-

Location 1:-

 Frictional capacity of pile

 Layer 1

 Location

 D

 Stem dia , cm

	Location	vasad
D	Stem dia , cm	45
L	Length of pile L1, cm	200
K	Coefficient of earth pressure	1.0
	Unit weight in kg/cm ³	0.0019
α	Reduction factor	1.0
С	Average cohesion ,kg/cm ²	0.9
	Angle of wall friction between pile and soil, degree	21

Layer 2			
	D	Stem dia , cm	45
	L	Length of pile L2, cm	350
	K	Coefficient of earth pressure	1.0
		Unit weight in kg/cm ³	0.0019
	α	Reduction factor	1.0
	С	Average cohesion ,kg/cm ²	0.3
		Angle of wall friction between pile and soil, degree	19

Layer 3			
	D	Stem dia , cm	45
	L	Length of pile L3, cm	425
	K	Coefficient of earth pressure	1.0
		Unit weight in kg/cm ³	0.0019
	α	Reduction factor	1.0
	С	Average cohesion ,kg/cm ²	0.3
		Angle of wall friction between pile and soil, degree	23

End bearing capacity of pile

D	Pile Dia in cms	45
	Effective unit weight of soil at pile tip in kg/cm ³	0.0021
Ø	Angle of internal friction around pile tip in degree	23
C _p	Average cohesion at pile tip,kg/cm ²	0.3

Location 2
Frictional capacity of pile

I I ICtional V	apacity of phe		
Layer 1			
		Location	Surat
	D	Stem dia , cm	60
	L	Length of pile L1, cm	100
	K	Coefficient of earth pressure	0
		Unit weight in kg/cm ³	0.0018
	α	Reduction factor	1.0
	С	Average cohesion ,kg/cm ²	0.4
		Angle of wall friction between pile and soil, degree	12
Layer 2			
	D	Stem dia , cm	60
	L	Length of pile L2, cm	400
	K	Coefficient of earth pressure	1.0
		Unit weight in kg/cm ³	0.00185
	α	Reduction factor	1.0
	С	Average cohesion ,kg/cm ²	0.32
		Angle of wall friction between pile and soil, degree	19
Layer 3			
	D	Stem dia , cm	60
	L	Length of pile L3, cm	350
	K	Coefficient of earth pressure	1.0
		Unit weight in kg/cm ³	0.0019
	α	Reduction factor	1.0
	С	Average cohesion ,kg/cm ²	0.36
		Angle of wall friction between pile and soil, degree	24

End bearing capacity of pile

D	Pile Dia in cms	60
	Effective unit weight of soil at pile tip in kg/cm ³	0.0021
Ø	Angle of internal friction around pile tip in degree	24
C _p	Average cohesion at pile tip,kg/cm ²	0.36

Location3

Frictional capacity of pile

Layer 1			
		Location	Bharuch
	D	Stem dia , cm	75
	L	Length of pile L1, cm	250
	K	Coefficient of earth pressure	1.0
		Unit weight in kg/cm ³	0.0018
	α	Reduction factor	1.0
	C	Average cohesion ,kg/cm ²	0.36
		Angle of wall friction between pile and soil, degree	10
Layer 2			
	D	Stem dia , cm	75
	L	Length of pile L2, cm	400
	K	Coefficient of earth pressure	1.0
		Unit weight in kg/cm ³	0.00183
	α	Reduction factor	1.0
	С	Average cohesion ,kg/cm ²	0.33
		Angle of wall friction between pile and soil, degree	15

Layer 3			
	D	Stem dia , cm	75
	L	Length of pile L3, cm	350
	K	Coefficient of earth pressure	1.0
		Unit weight in kg/cm ³	0.0020
	α	Reduction factor	1.0
	С	Average cohesion ,kg/cm ²	0.35
		Angle of wall friction between pile and soil, degree	20

End bearing capacity of pile

D	Pile Dia in cms	75
	Effective unit weight of soil at pile tip in kg/cm ³	0.0022
Ø	Angle of internal friction around pile tip in degree	20
C _p	Average cohesion at pile tip,kg/cm ²	0.35

Location 4 Frictional capacity of pile

Layer 1			
		Location	Dahej
	D	Stem dia , cm	90
	L	Length of pile L1, cm	440
	K	Coefficient of earth pressure	1.0
		Unit weight in kg/cm ³	0.0018
	α	Reduction factor	1.0
	С	Average cohesion ,kg/cm ²	0.36
		Angle of wall friction between pile and soil, degree	0
Layer 2			
	D	Stem dia , cm	90
	L	Length of pile L2, cm	360
	K	Coefficient of earth pressure	1.0
		Unit weight in kg/cm ³	0.00183
	α	Reduction factor	0.6
	С	Average cohesion ,kg/cm ²	0.81
		Angle of wall friction between pile and soil, degree	0
Layer 3			
	D	Stem dia , cm	90
	L	Length of pile L3, cm	600
	K	Coefficient of earth pressure	1.0
		Unit weight in kg/cm ³	0.0020
	α	Reduction factor	0.4
	С	Average cohesion ,kg/cm ²	1.1
		Angle of wall friction between pile and soil, degree	0

End bearing capacity of pile

D	Pile Dia in cms	90
	Effective unit weight of soil at pile tip in kg/cm ³	0.0022
Ø	Angle of internal friction around pile tip in degree	0
C _p	Average cohesion at pile tip,kg/cm ²	1.1

Location 5

Frictional capacity of pile

Layer 1		
	Location	Rajasthan

	D	Stem dia , cm	75
	L	Length of pile L1, cm	250
	K	Coefficient of earth pressure	1.0
		Unit weight in kg/cm ³	0.0018
	α	Reduction factor	1.0
	С	Average cohesion ,kg/cm ²	0
		Angle of wall friction between pile and soil, degree	21
Layer 2			
	D	Stem dia , cm	75
	L	Length of pile L2, cm	480
	K	Coefficient of earth pressure	1.0
		Unit weight in kg/cm ³	0.00183
	α	Reduction factor	1.0
	С	Average cohesion ,kg/cm ²	0
		Angle of wall friction between pile and soil, degree	25
Layer 3			
	D	Stem dia , cm	75
	L	Length of pile L3, cm	500
	K	Coefficient of earth pressure	1.0
		Unit weight in kg/cm ³	0.0020
	α	Reduction factor	1.0
	С	Average cohesion ,kg/cm ²	0
		Angle of wall friction between pile and soil, degree	32

End bearing capacity of pile

D	Pile Dia in cms	75
	Effective unit weight of soil at pile tip in kg/cm ³	0.0022
Ø	Angle of internal friction around pile tip in degree	32
Cp	Average cohesion at pile tip,kg/cm ²	0

SOFTWARE COMPUTED DATA

The data and soil test results are input for the software to work. These data inputted will compute the pile capacity based on the formula we have derived. The software computed results are as shown below:-

Lay	yer 1					
Fri	Frictional capacity of pile					
Ult	imate fric	tional capacity $(Q_u)_f = [\Sigma K x Pdi]$	$x \tan \Box \Box x As + [\Box x C x A_s]$	Locatio		
[Gı	anular soil	+ Cohesive soil]		n		
				Vasad		
1	D	Stem dia , cm	Given	45		
2	L	Length of pile L1, cm	Given	200		
3	Ар	C/S area of base of pile, cm ²	$Ap = (\pi/4) D^2$	1590		
4	K	Coefficient of earth pressure	K is taken as 1.0	1.0		
5	Pdi	Top overburden pressure (Pdi) _{top} , kg/cm ²	(Pdi) _{top} is always zero	0		
		Bottom overburden pressure (Pdi) _{bottom} ,	$(Pdi)_{bottom} = (Pdi)_{top} + \Upsilon L$	0.38		
		kg/cm ²	-			
		Average overburden pressure, kg/cm ²	Avg of (Pdi) _{top} & (Pdi) _{bottom}	0.19		
6		Unit weight in kg/cm ³	Given	0.0019		
7	А	Reduction factor	Refer Fig 1	1.0		
8	С	Average cohesion ,kg/cm ²	Given	0.9		
9		Angle of wall friction between pile and soil,	Given	21		
		degree				
1	As	Surface area of pile shaft in cm ²	$As = \pi D L$	28274		

0				
1 1	$(Q_u)_f$	Ultimate skin frictional resistance, MT	$(Qu)f = [k x Pdi x tan\delta x As] + [\alpha x C As]$	x 27.51
$\frac{1}{2}$	FOS	Factor of safety	Generally 2.5	2.5
1	$(\mathbf{Q}_s)_f$	Safe skin frictional resistance in MT	$(Q_s)_f = (Q_u)_f / FOS$	11.0
Lav	ver 2			
Fri	ctional c	apacity of pile		
Ult	imate fr	ictional capacity $(Q_{\mu})_{f} = \sum K x P di x$	tan $\Box \Box x As + [\Box x C x A_s]$	Location
[Gr	anular s	oil + Cohesive soil]	0_	Vasad
1	D	Stem dia , cm	Given	45
2	L	Length of pile L2, cm	Given	350
3	Ар	C/S area of base of pile, cm ²	$Ap = (\pi/4) D^2$	1590
4	Κ	Coefficient of earth pressure	K is taken as 1.0	1.0
5	Pdi	Top overburden pressure (Pdi) _{top} , kg/cm ²	(Pdi) _{top} is always zero	0.38
		Bottom overburden pressure (Pdi) _{bottom} , kg/cm ²	$(Pdi)_{bottom} = (Pdi)_{top} + \Upsilon L$	1.05
		Average overburden pressure, kg/cm ²	Avg of (Pdi)top& (Pdi)bottom	0.71
6		Unit weight in kg/cm ³	Given	0.0019
7	А	Reduction factor	Refer Fig 1	1.0
8	С	Average cohesion ,kg/cm ²	Given	0.3
9		Angle of wall friction between pile and soil, degree	Given	19
1 0	As	Surface area of pile shaft in cm ²	$As = \pi D L$	49480
1 1	$(Q_u)_f$	Ultimate skin frictional resistance, MT	$(Qu)f = [k x Pdi x tan \delta x As] + [\alpha x C x As]$	26.98
1 2	FOS	Factor of safety	Generally 2.5	2.5
1 3	$(\mathbf{Q}_s)_f$	Safe skin frictional resistance in MT	$(Q_s)_f = (Q_u)_f / FOS$	10.8
Lay	yer 3			
Fri	ctional c	apacity of pile		
Ult	imate fr	ictional capacity $(Q_u)_f = [\Sigma K x Pdi x]$	$tan \Box \Box x As] + [\Box x C x A_s]$	Location
[Gr	anular s	oil + Cohesive soil]		Vasad
1	D	Stem dia , cm	Given	45
2	L	Length of pile L3, cm	Given	425
3	Ар	C/S area of base of pile, cm ²	$Ap = (\pi/4) D^2$	1590
4	K	Coefficient of earth pressure	K is taken as 1.0	1.0
5	Pdi	Top overburden pressure (Pdi) _{top} , kg/cm ²	(Pdi) _{top} is always zero	1.05
		Bottom overburden pressure (Pdi) _{bottom} , kg/cm ²	$(Pdi)_{bottom} = (Pdi)_{top} + \Upsilon L$	1.85
		Average overburden pressure, kg/cm ²	Avg of (Pdi) _{top} & (Pdi) _{bottom}	1.45
6		Unit weight in kg/cm ³	Given	0.0019
7	А	Reduction factor	Refer Fig 1	1.0
8	С	Average cohesion ,kg/cm ²	Given	0.3
9		Angle of wall friction between pile and soil, degree	Given	23
1 0	As	Surface area of pile shaft in cm ²	$As = \pi D L$	60083
1 1	$(Q_u)_f$	Ultimate skin frictional resistance, MT	$(Qu)f = [k x Pdi x tan \delta x As] + [\alpha x C x As]$	54.97
1 2	FOS	Factor of safety	Generally 2.5	2.5

1	$(\mathbf{Q}_s)_f$	Safe skin frictional resistance in MT	$(\mathbf{Q}_{s})_{f} = (\mathbf{Q}_{u})_{f} / \text{FOS}$	22.0
Ene	d bearing c	apacity of pile		
(Qı	$\mathbf{I}_{b} =$	$\begin{bmatrix} Ap(1/2 D x \Box x N_{\Box} + P_d \end{bmatrix}$	$\mathbf{x} \mathbf{N}_{q}$)] + $[\mathbf{A}_{p} \mathbf{x} \mathbf{N}_{c}]$	x C _p]
[Gı	anular soil	+ Cohesive soil]		
1	D	Pile Dia in cms	Given	45
2	Ар	Cross Section area of base of pile in cm ²	$Ap = (\pi/4) D^2$	1590
3		Effective unit weight of soil at pile tip in kg/cm ³	Given	0.0021
4	Ø	Angle of internal friction around pile tip in degree	Given	23
5	N_{\Box}	Bearing capacity factor based on Øat pile tip	$N_{\gamma} = 2 [e^{\pi \tan(\phi)} * \tan^2(45 + \phi/2) + 1] * \tan(\phi)$	8.20
6	Pd	Effective overburden pressure at pile tip kg/cm ²	$Pd = (Pdi)_{bottom}$	1.85
7	N _q	Bearing capacity factor based on Ø at pile tip	Refer Fig 2	7.4
8	N _c	Bearing capacity factor usually taken as 9	Nc is always 9.0 for deep foundation	9
9	C _p	Average cohesion at pile tip,kg/cm ²	Given	0.3
1	$(Q_u)_b$	Ultimate end bearing resistance, MT	$(Q_u)_b = [Ap \ x \ (0.5 \ x \ D \ x \ \Upsilon \ x \ N_{\Upsilon} + Pd \ x)]$	26.72
0			$[Ap x Nc x C_p] $	
1	FOS	Factor of safety	Generally 2.5	2.5
1				
1	$(Q_s)_b$	Safe end bearing resistance in MT	$(Q_s)_b = (Q_u)_b / FOS$	10.7
2				
Qs	= Safe capa	acity of pile in compression, MT	$\mathbf{Qs} = (\mathbf{Qs})_{\mathbf{f}} + (\mathbf{Qs})_{\mathbf{b}}$	54.5
	$\mathbf{L} = \mathbf{T}\mathbf{c}$	otal length of pile in M	$\mathbf{L} = \mathbf{L}1 + \mathbf{L}2 + \mathbf{L}3$	9.8

Lay	ver 1				
Fri	Frictional capacity of pile				
Ultimate frictional capacity $(Q_u)_f = [\Sigma K \times Pdi \times tan \Box \Delta K As] + [\Box \times C \times A_s]$ Locatio					
[Granular soil + Cohesive soil] n					
Su					
1	D	Stem dia , cm	Given	60	
2	L	Length of pile L1, cm	Given	100	
3	Ар	C/S area of base of pile, cm ²	$Ap = (\pi/4) D^2$	2827	
4	Κ	Coefficient of earth pressure	K is taken as 1.0	1.0	
5	Pdi	Top overburden pressure (Pdi) _{top} , kg/cm ²	(Pdi) _{top} is always zero	0	
		Bottom overburden pressure (Pdi) _{bottom} ,	$(Pdi)_{bottom} = (Pdi)_{top} + \Upsilon L$	0.18	
		kg/cm ²	-		
		Average overburden pressure, kg/cm ²	Avg of (Pdi) _{top} & (Pdi) _{bottom}	0.09	
6		Unit weight in kg/cm ³	Given	0.0018	
7	α	Reduction factor	Refer Fig 1	1.0	
8	С	Average cohesion ,kg/cm ²	Given	0.4	
9		Angle of wall friction between pile and soil,	Given	12	
		degree			
1	As	Surface area of pile shaft in cm ²	$As = \pi D L$	18850	
0					
1	$(Q_u)_f$	Ultimate skin frictional resistance, MT	$(Qu)f = [k x Pdi x tan \delta x As] + [\alpha x C x]$	7.90	
1			As]		
1	FOS	Factor of safety	Generally 2.5	2.5	
2					
1	$(\mathbf{Q}_{s})_{\mathbf{f}}$	Safe skin frictional resistance in MT	$(Q_s)_f = (Q_u)_f / FOS$	3.2	

3				
Lav	ver 2			
Fri	ctional cap	acity of pile		I
Ult	imate fric	tional canacity $(\mathbf{O}_{\mathbf{x}})_{\mathbf{f}} = [\Sigma \mathbf{K} \mathbf{x} \mathbf{P} \mathbf{d}]$	x tan $\Box \Box x As] + [\Box x C x A_s]$	Locatio
[Gr	anular soil	+ Cohesive soil]		n
10-				Surat
1	D	Stem dia . cm	Given	60
2	L	Length of pile L2 cm	Given	400
3	An	C/S area of base of pile, cm^2	$Ap = (\pi/4) D^2$	2827
4	K	Coefficient of earth pressure	K is taken as 1.0	1.0
5	Pdi	Top overburden pressure (Pdi), kg/cm^2	(Pdi), is always zero	0.18
5	1 01	Bottom overburden pressure (Pdi)	$(Pdi)_{top}$ is always zero $(Pdi)_{top} = (Pdi)_{top} + \Upsilon I_{top}$	0.92
		kg/cm^2		0.72
		Average overburden pressure kg/cm^2	Avg of (Pdi)ton& (Pdi)hottom	0.55
6		Unit weight in kg/cm ³	Given	0.00185
7	a	Reduction factor	Refer Fig 1	1.0
8	с С	Average cohesion kg/cm^2	Given	0.32
9		Angle of wall friction between pile and soil	Given	19
		degree		
1	As	Surface area of pile shaft in cm^2	$As = \pi D L$	75398
0		r		
1	$(Q_{u})_{f}$	Ultimate skin frictional resistance, MT	$(Qu)f = [k \times Pdi \times tan\delta \times As] + [\alpha \times C \times Ian \Delta x + [\alpha \times Ian \Delta$	38.41
1			As]	
1	FOS	Factor of safety	Generally 2.5	2.5
2		•	-	
1	$(\mathbf{Q}_{s})_{f}$	Safe skin frictional resistance in MT	$(Q_s)_f = (Q_u)_f / FOS$	15.4
3				
Lay	ver 3			
Lay Fri	ver 3 ctional cap	acity of pile		
Lay Frie Ult	ver 3 ctional cap imate fric	acity of pile tional capacity $(Q_u)_f = [\Sigma K x Pdi]$	x tan □ □x As] + [□ x C x A _s]	Locatio
Lay Frie Ulti [Gr	ver 3 ctional cap imate fric 'anular soil	acity of pile tional capacity $(Q_u)_f = [\Sigma K x Pdi]$ + Cohesive soil]	x tan \Box \Box x As] + $[\Box$ x C x A _s]	Locatio n
Lay Frie Ult [Gr	ver 3 ctional cap imate fric 'anular soil	acity of pile tional capacity $(Q_u)_f = [\Sigma K x Pdi]$ + Cohesive soil]	x tan 🗆 🗆 x As] + [🗆 x C x A _s]	Locatio n Surat
Lay Frie Ult [Gr 1	ver 3 ctional cap imate fric ranular soil D	acity of pile tional capacity $(Q_u)_f = [\Sigma K x Pdi]$ + Cohesive soil] Stem dia, cm	x tan $\Box \Box x As$] + [$\Box x C x A_s$] Given	Locatio n Surat 60
Lay Frid Ulti [Gr 1 2	ver 3 ctional cap imate fric canular soil D L	acity of piletional capacity $(Q_u)_f = [\Sigma \ K \ x \ Pdi$ + Cohesive soil]Stem dia , cmLength of pile L3, cm	x tan \Box \Box x As] + $[\Box$ x C x A _s] Given Given	Locatio n Surat 60 350
Lay Frid Ulti [Gr 1 2 3	ver 3 ctional cap imate fric canular soil D L Ap	acity of piletional capacity $(Q_u)_f = [\Sigma \ K \ x \ Pdi$ + Cohesive soil]Stem dia , cmLength of pile L3, cmC/S area of base of pile , cm ²	x tan \Box \Box x As] + $[\Box$ x C x A _s] Given Given Ap =($\pi/4$) D ²	Locatio n Surat 60 350 2827
Lay Frid Ulti [Gr 1 2 3 4	ver 3 ctional cap imate fric canular soil D L Ap K	acity of piletional capacity $(Q_u)_f = [\Sigma \ K \ x \ Pdi$ + Cohesive soil]Stem dia , cmLength of pile L3, cmC/S area of base of pile , cm ² Coefficient of earth pressure	x tan \Box [x As] + [\Box x C x A _s] Given Given Ap =($\pi/4$) D ² K is taken as 1.0	Locatio n Surat 60 350 2827 1.0
Lay Frid Ulti [Gr 1 2 3 4 5	ver 3 ctional cap imate fric ranular soil D L Ap K Pdi	acity of pile tional capacity $(Q_u)_f = [\Sigma \ K \ x \ Pdi$ + Cohesive soil] Stem dia , cm Length of pile L3, cm C/S area of base of pile , cm ² Coefficient of earth pressure Top overburden pressure (Pdi) _{top} , kg/cm ²	x tan \Box $[x As] + [\Box x C x A_s]$ Given Given Ap =($\pi/4$) D ² K is taken as 1.0 (Pdi) _{top} is always zero	Locatio n Surat 60 350 2827 1.0 0.92
Lay Frid Ulti [Gr 1 2 3 4 5	ver 3 ctional cap imate fric ranular soil D L Ap K Pdi	acity of pile tional capacity $(Q_u)_f = [\Sigma \ K \ x \ Pdi$ + Cohesive soil] Stem dia, cm Length of pile L3, cm C/S area of base of pile, cm ² Coefficient of earth pressure Top overburden pressure (Pdi) _{top} , kg/cm ² Bottom overburden pressure (Pdi) _{bottom} ,	x tan \Box \Box x As] + [\Box x C x A _s] Given Given Ap =($\pi/4$) D ² K is taken as 1.0 (Pdi) _{top} is always zero (Pdi) _{bottom} = (Pdi) _{top} + Υ L	Locatio n Surat 60 350 2827 1.0 0.92 1.59
Lay Frid Ulti [Gr 1 2 3 4 5	ver 3 ctional cap imate fric ranular soil D L Ap K Pdi	acity of pile tional capacity $(Q_u)_f = [\Sigma \ K \ x \ Pdi$ + Cohesive soil] Stem dia, cm Length of pile L3, cm C/S area of base of pile, cm ² Coefficient of earth pressure Top overburden pressure (Pdi) _{top} , kg/cm ² Bottom overburden pressure (Pdi) _{bottom} , kg/cm ²	x tan \Box [x As] + [\Box x C x A _s] Given Given Ap =($\pi/4$) D ² K is taken as 1.0 (Pdi) _{top} is always zero (Pdi) _{bottom} = (Pdi) _{top} + Υ L	Locatio n Surat 60 350 2827 1.0 0.92 1.59
Lay Frid Ulti [Gr 1 2 3 4 5	ver 3 ctional cap imate fric canular soil D L L Ap K Pdi	acity of pile tional capacity $(Q_u)_f = [\Sigma \ K \ x \ Pdi$ + Cohesive soil] Stem dia , cm Length of pile L3, cm C/S area of base of pile , cm ² Coefficient of earth pressure Top overburden pressure (Pdi) _{top} , kg/cm ² Bottom overburden pressure (Pdi) _{bottom} , kg/cm ² Average overburden pressure , kg/cm ²	x tan \Box x As] + [\Box x C x A _s] Given Given Ap =($\pi/4$) D ² K is taken as 1.0 (Pdi) _{top} is always zero (Pdi) _{bottom} = (Pdi) _{top} + Y L Avg of (Pdi) _{top} & (Pdi) _{bottom}	Locatio n Surat 60 350 2827 1.0 0.92 1.59 1.26
Lay Frid Ulti [Gr 1 2 3 4 5 6	ver 3 ctional cap imate fric canular soil D L Ap K Pdi	acity of pile tional capacity $(Q_u)_f = [\Sigma \ K \ x \ Pdi$ + Cohesive soil] Stem dia , cm Length of pile L3, cm C/S area of base of pile , cm ² Coefficient of earth pressure Top overburden pressure (Pdi) _{top} , kg/cm ² Bottom overburden pressure (Pdi) _{bottom} , kg/cm ² Average overburden pressure , kg/cm ² Unit weight in kg/cm ³	x tan \Box [x As] + [\Box x C x A _s] Given Given Ap =($\pi/4$) D ² K is taken as 1.0 (Pdi) _{top} is always zero (Pdi) _{bottom} = (Pdi) _{top} + Y L Avg of (Pdi) _{top} & (Pdi) _{bottom} Given	Locatio n Surat 60 350 2827 1.0 0.92 1.59 1.26 0.0019
Lay Frid Ulti [Gr 1 2 3 4 5 6 7	ver 3 ctional cap imate fric ranular soil D L Ap K Pdi	acity of pile tional capacity $(Q_u)_f = [\Sigma \ K \ x \ Pdi$ + Cohesive soil] Stem dia , cm Length of pile L3, cm C/S area of base of pile , cm ² Coefficient of earth pressure Top overburden pressure (Pdi) _{top} , kg/cm ² Bottom overburden pressure (Pdi) _{bottom} , kg/cm ² Average overburden pressure , kg/cm ² Unit weight in kg/cm ³ Reduction factor	x tan \Box $[x As] + [\Box x C x A_s]$ Given Given Ap =($\pi/4$) D ² K is taken as 1.0 (Pdi) _{top} is always zero (Pdi) _{bottom} = (Pdi) _{top} + Υ L Avg of (Pdi) _{top} & (Pdi) _{bottom} Given Refer Fig 1	Locatio n Surat 60 350 2827 1.0 0.92 1.59 1.26 0.0019 1.0
Lay Frid Ulti [Gr 1 2 3 4 5 5 6 7 7 8	ver 3 ctional cap imate fric ranular soil D L Ap K Pdi Ω α C	acity of pile tional capacity $(Q_u)_f = [\Sigma K x Pdi]$ + Cohesive soil] Stem dia , cm Length of pile L3, cm C/S area of base of pile , cm ² Coefficient of earth pressure Top overburden pressure (Pdi) _{top} , kg/cm ² Bottom overburden pressure (Pdi) _{bottom} , kg/cm ² Average overburden pressure , kg/cm ² Unit weight in kg/cm ³ Reduction factor Average cohesion ,kg/cm ²	x tan \Box [x As] + [\Box x C x A _s] Given Given Ap =($\pi/4$) D ² K is taken as 1.0 (Pdi) _{top} is always zero (Pdi) _{bottom} = (Pdi) _{top} + Υ L Avg of (Pdi) _{top} & (Pdi) _{bottom} Given Refer Fig 1 Given	Locatio n Surat 60 350 2827 1.0 0.92 1.59 1.26 0.0019 1.0 0.36
Lay Frid Ulti [GI 1 2 3 4 5 5 6 7 7 8 9	ver 3 ctional cap imate fric ranular soil D L Ap K Pdi α C C	acity of pile tional capacity $(Q_u)_f = [\Sigma K x Pdi]$ + Cohesive soil] Stem dia , cm Length of pile L3, cm C/S area of base of pile , cm ² Coefficient of earth pressure Top overburden pressure (Pdi) _{top} , kg/cm ² Bottom overburden pressure (Pdi) _{bottom} , kg/cm ² Average overburden pressure , kg/cm ² Unit weight in kg/cm ³ Reduction factor Average cohesion ,kg/cm ² Angle of wall friction between pile and soil,	x tan \Box [x As] + [\Box x C x A _s] Given Given Ap =($\pi/4$) D ² K is taken as 1.0 (Pdi) _{top} is always zero (Pdi) _{bottom} = (Pdi) _{top} + Υ L Avg of (Pdi) _{top} & (Pdi) _{bottom} Given Refer Fig 1 Given Given	Locatio n Surat 60 350 2827 1.0 0.92 1.59 1.26 0.0019 1.0 0.36 24
Lay Frid Ulti [GI 1 2 3 4 5 5 6 7 8 9 9	ver 3 ctional cap imate fric ranular soil D L Ap K Pdi α C C ·	acity of pile tional capacity $(Q_u)_f = [\Sigma K x Pdi]$ + Cohesive soil] Stem dia, cm Length of pile L3, cm C/S area of base of pile, cm ² Coefficient of earth pressure Top overburden pressure (Pdi) _{top} , kg/cm ² Bottom overburden pressure (Pdi) _{bottom} , kg/cm ² Bottom overburden pressure (Pdi) _{bottom} , kg/cm ² Average overburden pressure , kg/cm ² Unit weight in kg/cm ³ Reduction factor Average cohesion ,kg/cm ² Angle of wall friction between pile and soil, degree	x tan \Box [x As] + [\Box x C x A _s] Given Given Ap =($\pi/4$) D ² K is taken as 1.0 (Pdi) _{top} is always zero (Pdi) _{bottom} = (Pdi) _{top} + Y L Avg of (Pdi) _{top} & (Pdi) _{bottom} Given Refer Fig 1 Given	Locatio n Surat 60 350 2827 1.0 0.92 1.59 1.26 0.0019 1.0 0.36 24
Lay Frid Ult [Gr 1 2 3 4 5 5 6 7 7 8 9 9	ver 3 ctional cap imate fric ranular soil D L Ap K Pdi □ α C □ As	acity of pile tional capacity $(Q_u)_f = [\Sigma K x Pdi$ + Cohesive soil] Stem dia , cm Length of pile L3, cm C/S area of base of pile , cm ² Coefficient of earth pressure Top overburden pressure (Pdi) _{top} , kg/cm ² Bottom overburden pressure (Pdi) _{bottom} , kg/cm ² Average overburden pressure , kg/cm ² Unit weight in kg/cm ³ Reduction factor Average cohesion ,kg/cm ² Angle of wall friction between pile and soil, degree Surface area of pile shaft in cm ²	x tan \Box [x As] + [\Box x C x A _s] Given Given Ap =($\pi/4$) D ² K is taken as 1.0 (Pdi) _{top} is always zero (Pdi) _{bottom} = (Pdi) _{top} + Y L Avg of (Pdi) _{top} & (Pdi) _{bottom} Given Refer Fig 1 Given Given As = π D L	Locatio n Surat 60 350 2827 1.0 0.92 1.59 1.26 0.0019 1.0 0.36 24 65973
Lay Frid Ulti [Gr 1 2 3 4 5 5 6 7 8 9 9 1 0 0	ver 3 ctional cap imate fric ranular soil D L Ap K Pdi \alpha \alpha \alpha As	acity of pile tional capacity $(Q_u)_f = [\Sigma \ K \ x \ Pdi$ + Cohesive soil] Stem dia , cm Length of pile L3, cm C/S area of base of pile , cm ² Coefficient of earth pressure Top overburden pressure (Pdi) _{top} , kg/cm ² Bottom overburden pressure (Pdi) _{bottom} , kg/cm ² Average overburden pressure , kg/cm ² Unit weight in kg/cm ³ Reduction factor Average cohesion ,kg/cm ² Angle of wall friction between pile and soil, degree Surface area of pile shaft in cm ²	x tan \Box [x As] + [\Box x C x A _s] Given Given Ap =($\pi/4$) D ² K is taken as 1.0 (Pdi) _{top} is always zero (Pdi) _{bottom} = (Pdi) _{top} + Υ L Avg of (Pdi) _{top} & (Pdi) _{bottom} Given Refer Fig 1 Given Given As = π D L	Locatio n Surat 60 350 2827 1.0 0.92 1.59 1.26 0.0019 1.0 0.36 24 65973 60,64
Lay Frid Ulti [Gri 2 3 4 5 5 6 7 7 8 9 9 1 0 1	ver 3 ctional cap imate fric ranular soil D L Ap K Pdi □ α C □ As (Qu)f	acity of pile tional capacity $(Q_u)_f = [\Sigma K x Pdi]$ + Cohesive soil] Stem dia , cm Length of pile L3, cm C/S area of base of pile , cm ² Coefficient of earth pressure Top overburden pressure (Pdi) _{top} , kg/cm ² Bottom overburden pressure (Pdi) _{bottom} , kg/cm ² Average overburden pressure , kg/cm ² Unit weight in kg/cm ³ Reduction factor Average cohesion ,kg/cm ² Angle of wall friction between pile and soil, degree Surface area of pile shaft in cm ²	x tan \Box [x As] + [\Box x C x A _s] Given Given Ap =($\pi/4$) D ² K is taken as 1.0 (Pdi) _{top} is always zero (Pdi) _{bottom} = (Pdi) _{top} + Y L Avg of (Pdi) _{top} & (Pdi) _{bottom} Given Refer Fig 1 Given Given As = π D L (Qu)f =[k x Pdi x tan\delta x As] + [α x C x	Locatio n Surat 60 350 2827 1.0 0.92 1.59 1.26 0.0019 1.0 0.36 24 65973 60.64
Lay Frid Ulti [GI 1 2 3 4 5 5 6 7 8 9 9 1 1 0 1 1	ver 3 ctional cap imate fric ranular soil D L Ap K Pdi α C C As (Qu)f EOS	acity of pile tional capacity $(Q_u)_f = [\Sigma K x Pdi]$ + Cohesive soil] Stem dia , cm Length of pile L3, cm C/S area of base of pile , cm ² Coefficient of earth pressure Top overburden pressure (Pdi) _{top} , kg/cm ² Bottom overburden pressure (Pdi) _{bottom} , kg/cm ² Average overburden pressure , kg/cm ² Unit weight in kg/cm ³ Reduction factor Average cohesion ,kg/cm ² Angle of wall friction between pile and soil, degree Surface area of pile shaft in cm ² Ultimate skin frictional resistance, MT	x tan \Box [x As] + [\Box x C x A _s] Given Given Ap =($\pi/4$) D ² K is taken as 1.0 (Pdi) _{top} is always zero (Pdi) _{bottom} = (Pdi) _{top} + Υ L Avg of (Pdi) _{top} & (Pdi) _{bottom} Given Given Refer Fig 1 Given Given As = π D L (Qu)f =[k x Pdi x tan δ x As] + [α x C x As] Cumarelly 2.5	Locatio n Surat 60 350 2827 1.0 0.92 1.59 1.26 0.0019 1.0 0.36 24 65973 60.64 2.5
Lay Frid Ulti [GI 1 2 3 4 5 5 6 7 7 8 9 9 1 0 1 1 1 2	ver 3 ctional cap imate fric ranular soil D L Ap K Pdi a C a C As (Qu)f FOS	acity of pile tional capacity $(Q_u)_f = [\Sigma K x Pdi]$ + Cohesive soil] Stem dia , cm Length of pile L3, cm C/S area of base of pile , cm ² Coefficient of earth pressure Top overburden pressure (Pdi) _{top} , kg/cm ² Bottom overburden pressure (Pdi) _{bottom} , kg/cm ² Average overburden pressure , kg/cm ² Unit weight in kg/cm ³ Reduction factor Average cohesion ,kg/cm ² Angle of wall friction between pile and soil, degree Surface area of pile shaft in cm ² Ultimate skin frictional resistance, MT Factor of safety	x tan \Box [x As] + [\Box x C x A _s] Given Given Ap =($\pi/4$) D ² K is taken as 1.0 (Pdi) _{top} is always zero (Pdi) _{top} = (Pdi) _{top} + Y L Avg of (Pdi) _{top} & (Pdi) _{bottom} Given Refer Fig 1 Given Given As = π D L (Qu)f =[k x Pdi x tan\delta x As] + [α x C x As] Generally 2.5	Locatio n Surat 60 350 2827 1.0 0.92 1.59 1.26 0.0019 1.0 0.36 24 65973 60.64 2.5
Lay Frid Ulti [Gr 1 2 3 4 5 5 6 7 8 9 9 1 0 1 1 1 2 2 1	ver 3 ctional cap imate fric ranular soil D L Ap K Pdi a C As (Qu)f FOS	acity of pile tional capacity $(Q_u)_f = [\Sigma K x Pdi]$ + Cohesive soil] Stem dia, cm Length of pile L3, cm C/S area of base of pile, cm ² Coefficient of earth pressure Top overburden pressure (Pdi) _{top} , kg/cm ² Bottom overburden pressure (Pdi) _{bottom} , kg/cm ² Average overburden pressure, kg/cm ² Unit weight in kg/cm ³ Reduction factor Average cohesion ,kg/cm ² Angle of wall friction between pile and soil, degree Surface area of pile shaft in cm ² Ultimate skin frictional resistance, MT Factor of safety	x tan \Box \Box x As] + [\Box x C x A _s] Given Given Ap =($\pi/4$) D ² K is taken as 1.0 (Pdi) _{top} is always zero (Pdi) _{bottom} = (Pdi) _{top} + Y L Avg of (Pdi) _{top} & (Pdi) _{bottom} Given Refer Fig 1 Given Given As = π D L (Qu)f =[k x Pdi x tan\delta x As] + [α x C x As] Generally 2.5	Locatio n Surat 60 350 2827 1.0 0.92 1.59 1.26 0.0019 1.0 0.36 24 65973 60.64 2.5 24.3
Lay Frid Ulti [Gr 1 2 3 4 5 5 6 7 8 9 9 1 0 1 1 1 2 1 3	Ver 3ctional capimate fricranular soilDLApKPdi α C α C α C β	acity of pile tional capacity $(Q_u)_f = [\Sigma K x Pdi]$ + Cohesive soil] Stem dia, cm Length of pile L3, cm C/S area of base of pile, cm ² Coefficient of earth pressure Top overburden pressure (Pdi) _{top} , kg/cm ² Bottom overburden pressure (Pdi) _{bottom} , kg/cm ² Average overburden pressure, kg/cm ² Unit weight in kg/cm ³ Reduction factor Average cohesion, kg/cm ² Angle of wall friction between pile and soil, degree Surface area of pile shaft in cm ² Ultimate skin frictional resistance, MT Factor of safety Safe skin frictional resistance in MT	x tan \Box [x As] + [\Box x C x A _s] Given Given Ap =($\pi/4$) D ² K is taken as 1.0 (Pdi) _{top} is always zero (Pdi) _{bottom} = (Pdi) _{top} + Y L Avg of (Pdi) _{top} & (Pdi) _{bottom} Given Refer Fig 1 Given Given As = π D L (Qu)f =[k x Pdi x tan\delta x As] + [α x C x As] Generally 2.5 (Q _s) _f = (Q _u) _f /FOS	Locatio n Surat 60 350 2827 1.0 0.92 1.59 1.26 0.0019 1.0 0.36 24 65973 60.64 2.5 24.3
Lay Frid Ulti [GI 1 2 3 4 5 5 6 7 7 8 9 9 1 1 1 2 1 1 2 5 7 8 9 9 1 1 1 2 5 5 5 5 5 7 7 8 9 9 1 1 1 2 5 5 5 5 5 7 6 1 1 1 1 1 5 5 5 5 7 1 1 1 1 1 1 1 1 1 5 5 5 5	ver 3 ctional cap imate fric ranular soil D L Ap K Pdi □ α C □ As (Qu)f FOS (Qs)f	acity of pile tional capacity $(Q_u)_f = [\Sigma K x Pdi]$ + Cohesive soil] Stem dia , cm Length of pile L3, cm C/S area of base of pile , cm ² Coefficient of earth pressure Top overburden pressure (Pdi) _{top} , kg/cm ² Bottom overburden pressure (Pdi) _{bottom} , kg/cm ² Average overburden pressure , kg/cm ² Unit weight in kg/cm ³ Reduction factor Average cohesion ,kg/cm ² Angle of wall friction between pile and soil, degree Surface area of pile shaft in cm ² Ultimate skin frictional resistance, MT Factor of safety Safe skin frictional resistance in MT anacity of pile	x tan \Box [x As] + [\Box x C x A _s] Given Given Ap =($\pi/4$) D ² K is taken as 1.0 (Pdi) _{top} is always zero (Pdi) _{bottom} = (Pdi) _{top} + Y L Avg of (Pdi) _{top} & (Pdi) _{bottom} Given Refer Fig 1 Given Given As = π D L (Qu)f =[k x Pdi x tan\delta x As] + [α x C x As] Generally 2.5 (Q _s) _f = (Q _u) _f /FOS	Locatio n Surat 60 350 2827 1.0 0.92 1.59 1.26 0.0019 1.0 0.36 24 65973 60.64 2.5 24.3

(Q1	1) _b =	$[Ap(1/2 D x \Box x N_{\Box} + P_d]$	$\mathbf{X} = \mathbf{N}_{q}$] + $[\mathbf{A}_{p} = \mathbf{X} = \mathbf{N}_{c}$	x C _p]
[Gı	anular soi	+ Cohesive soil]		
1	D	Pile Dia in cms	Given	60
2	Ар	Cross Section area of base of pile in cm ²	$Ap = (\pi/4) D^2$	2827
3		Effective unit weight of soil at pile tip in kg/cm ³	Given	0.0021
4	Ø	Angle of internal friction around pile tip in degree	Given	24
5	N_{\Box}	Bearing capacity factor based on Øat pile tip	$N_{\gamma} = 2 [e^{\pi \tan(\phi)} * \tan^2(45 + \phi/2) + 1] * \tan(\phi)$	9.44
6	Pd	Effective overburden pressure at pile tip kg/cm ²	$Pd = (Pdi)_{bottom}$	1.59
7	N _q	Bearing capacity factor based on Ø at pile tip	Refer Fig 2	8.5
8	N _c	Bearing capacity factor usually taken as 9	Nc is always 9.0 for deep foundation	9
9	C _p	Average cohesion at pile tip,kg/cm ²	Given	0.36
1 0	(Q _u) _b	Ultimate end bearing resistance, MT	$(Q_u)_b = [Ap \ x \ (0.5 \ x \ D \ x \ \Upsilon \ N_{\Upsilon} + Pd \ x N_{\Upsilon} + Pd \ x] + [Ap \ x \ Nc \ x \ C_p]$	49.28
1 1	FOS	Factor of safety	Generally 2.5	2.5
1 2	$(\overline{\mathbf{Q}_s})_b$	Safe end bearing resistance in MT	$(\mathbf{Q}_s)_b = (\overline{\mathbf{Q}_u})_b / \text{FOS}$	19.7
Qs	= Safe capa	acity of pile in compression, MT	$\mathbf{Qs} = (\mathbf{Qs})_{\mathbf{f}} + (\mathbf{Qs})_{\mathbf{b}}$	62.5
	$\mathbf{L} = \mathbf{T}\mathbf{c}$	otal length of pile in M	$\mathbf{L} = \mathbf{L}1 + \mathbf{L}2 + \mathbf{L}3$	8.5

Lay	yer 1			
Fri	ctional cap	acity of pile		
Ult	imate fric	tional capacity $(Q_u)_f = [\Sigma K x Pdi]$	x tan $\Box \Box x As$] + [$\Box x C x A_s$]	Locatio
[Gı	ranular soil	+ Cohesive soil]		n
				Bharuc
				h
1	D	Stem dia , cm	Given	75
2	L	Length of pile L1, cm	Given	250
3	Ар	C/S area of base of pile, cm ²	$Ap = (\pi/4) D^2$	4418
4	K	Coefficient of earth pressure	K is taken as 1.0	1.0
5	Pdi	Top overburden pressure (Pdi) _{top} , kg/cm ²	(Pdi) _{top} is always zero	0
		Bottom overburden pressure (Pdi) _{bottom} ,	$(Pdi)_{bottom} = (Pdi)_{top} + \Upsilon L$	0.45
		kg/cm ²	·	
		Average overburden pressure, kg/cm ²	Avg of (Pdi) _{top} & (Pdi) _{bottom}	0.23
6		Unit weight in kg/cm ³	Given	0.0018
7	α	Reduction factor	Refer Fig 1	1.0
8	С	Average cohesion ,kg/cm ²	Given	0.36
9		Angle of wall friction between pile and soil,	Given	10
		degree		
1	As	Surface area of pile shaft in cm ²	$As = \pi D L$	58905
0				
1	$(Q_u)_f$	Ultimate skin frictional resistance, MT	$(Qu)f = [k x Pdi x tan \delta x As] + [\alpha x C x]$	23.56
1			As]	
1	FOS	Factor of safety	Generally 2.5	2.5
2				
1	$(\mathbf{Q}_{s})_{f}$	Safe skin frictional resistance in MT	$(Q_s)_f = (Q_u)_f / FOS$	9.4
3				
Lay	yer 2			

T , T , T , T ,	Frictional capacity of pile							
Ultimate frictional capacity $(Q_u)_f = [\Sigma K \times Pdi \times tan \Box \Box x As] + [\Box x C \times A_s]$ Loc								
[Gı	anular soil	+ Cohesive soil]		n				
				Bharuc				
				h				
1	D	Stem dia , cm	Given	75				
2	L	Length of pile L2, cm	Given	400				
3	Ар	C/S area of base of pile, cm ²	$Ap = (\pi/4) D^2$	4418				
4	Κ	Coefficient of earth pressure	K is taken as 1.0	1.0				
5	Pdi	Top overburden pressure (Pdi) _{top} , kg/cm ²	(Pdi) _{top} is always zero	0.45				
		Bottom overburden pressure (Pdi) _{bottom} ,	$(Pdi)_{bottom} = (Pdi)_{top} + \Upsilon L$	1.18				
		kg/cm ²						
		Average overburden pressure , kg/cm ²	Avg of (Pdi) _{top} & (Pdi) _{bottom}	0.82				
6		Unit weight in kg/cm ³	Given	0.00183				
7	α	Reduction factor	Refer Fig 1	1.0				
8	C	Average cohesion ,kg/cm ²	Given	0.33				
9		Angle of wall friction between pile and soil, degree	Given	15				
1 0	As	Surface area of pile shaft in cm ²	$As = \pi D L$	94248				
1 1	$(Q_u)_f$	Ultimate skin frictional resistance, MT	$(Qu)f = [k x Pdi x tan\delta x As] + [\alpha x C x As]$	51.77				
1	FOS	Factor of safety	Generally 2.5	2.5				
2								
1	$(\mathbf{Q}_{s})_{f}$	f Safe skin frictional resistance in MT $(Q_s)_f = (Q_u)_f / FOS$						
3								
Lay	yer 3							
Fri	Frictional capacity of pile							
Ultimate frictional capacity $(Q_u)_f = [\Sigma K x Pdi x tan \Box \Box x As] + [\Box x C x A_s]$ Locatio								
Ult	imate fric	tional capacity $(Q_u)_f = [\Sigma K x Pdi]$	$x \tan \Box \Box x As + [\Box x C x A_s]$	Locatio				
Ult [G1	imate fric anular soil	tional capacity $(Q_u)_f = [\Sigma K x Pdi]$ + Cohesive soil]	$x \tan \Box \Box x As + [\Box x C x A_s]$	Locatio n				
Ult [G1	imate fric anular soil	tional capacity $(Q_u)_f = [\Sigma K x Pdi]$ + Cohesive soil]	$\mathbf{x} \ \mathbf{tan} \ \Box \ \mathbf{x} \ \mathbf{As} \mathbf{s} \mathbf{s} \mathbf{s} \mathbf{s} \mathbf{s} \mathbf{s} \mathbf{s} $	Locatio n Bharuc				
Ult [Gi	imate fric anular soil	tional capacity $(Q_u)_f = [\Sigma K x Pdi + Cohesive soil]$	$\mathbf{x} \ $ tan $\Box \ $ $\mathbf{x} \ $ As \mathbf{x} + [$\Box \ $ $\mathbf{x} \ $ C $ \ $ $\mathbf{x} \ $ As \mathbf{x}]	Locatio n Bharuc h				
Ult [G1	imate fric anular soil	tional capacity $(Q_u)_f = [\Sigma K x Pdi + Cohesive soil]$ Stem dia, cm	x tan \Box \Box x As] + $[\Box$ x C x A _s] Given	Locatio n Bharuc h 75				
Ult [Gr 1 2 3	imate fric ranular soil D L	tional capacity $(Q_u)_f = [\Sigma \ K \ x \ Pdi$ + Cohesive soil] Stem dia, cm Length of pile L3, cm	x tan \Box $[x As] + [\Box x C x A_s]$ Given Given $\Delta n = (\pi/4) D^2$	Locatio n Bharuc h 75 350 4418				
Ult [Gr 1 2 3 4	imate fric ranular soil D L Ap	tional capacity $(Q_u)_f = [\Sigma \ K \ x \ Pdi$ + Cohesive soil] Stem dia, cm Length of pile L3, cm C/S area of base of pile, cm ² Coefficient of earth pressure	x tan \Box [x As] + [\Box x C x A _s] Given Given Ap =($\pi/4$) D ² K is taken as 1.0	Locatio n Bharuc h 75 350 4418				
Ult [G1 1 2 3 4 5	imate fric canular soil D L Ap K Pdi	tional capacity $(Q_u)_f = [\Sigma \ K \ x \ Pdi$ + Cohesive soil] Stem dia , cm Length of pile L3, cm C/S area of base of pile , cm ² Coefficient of earth pressure Top overburden pressure (Pdi) kg/cm^2	x tan \Box [x As] + [\Box x C x A _s] Given Given Ap =($\pi/4$) D ² K is taken as 1.0 (Pdi) is always zero	Locatio n Bharuc h 75 350 4418 1.0 1 18				
Ult. [G1 1 2 3 4 5	imate fric ranular soil D L Ap K Pdi	tional capacity $(Q_u)_f = [\Sigma \ K \ x \ Pdi$ + Cohesive soil] Stem dia , cm Length of pile L3, cm C/S area of base of pile , cm ² Coefficient of earth pressure Top overburden pressure (Pdi) _{top} , kg/cm ² Bottom overburden pressure (Pdi)	x tan \Box [x As] + [\Box x C x A _s] Given Given Ap =($\pi/4$) D ² K is taken as 1.0 (Pdi) _{top} is always zero (Pdi) = (Pdi) + Υ L	Locatio n Bharuc h 75 350 4418 1.0 1.18 1.87				
Ult [Gu 1 2 3 4 5	imate fric ranular soil D L Ap K Pdi	tional capacity $(Q_u)_f = [\Sigma \ K \ x \ Pdi$ + Cohesive soil] Stem dia , cm Length of pile L3, cm C/S area of base of pile , cm ² Coefficient of earth pressure Top overburden pressure (Pdi) _{top} , kg/cm ² Bottom overburden pressure (Pdi) _{bottom} , kg/cm ²	x tan \Box x As] + [\Box x C x A _s] Given Given Ap = ($\pi/4$) D ² K is taken as 1.0 (Pdi) _{top} is always zero (Pdi) _{bottom} = (Pdi) _{top} + Y L	Locatio n Bharuc h 75 350 4418 1.0 1.18 1.87				
Ult [G1 1 2 3 4 5	imate fric canular soil D L Ap K Pdi	tional capacity $(Q_u)_f = [\Sigma \ K \ x \ Pdi$ + Cohesive soil] Stem dia , cm Length of pile L3, cm C/S area of base of pile , cm ² Coefficient of earth pressure Top overburden pressure (Pdi) _{top} , kg/cm ² Bottom overburden pressure (Pdi) _{bottom} , kg/cm ² Average overburden pressure , kg/cm ²	x tan \Box x As] + [\Box x C x A _s] Given Given Ap = $(\pi/4)$ D ² K is taken as 1.0 (Pdi) _{top} is always zero (Pdi) _{bottom} = (Pdi) _{top} + Y L Avg of (Pdi) _{top} & (Pdi) _{bottom}	Locatio n Bharuc h 75 350 4418 1.0 1.18 1.87 1.53				
Ult [G1 1 2 3 4 5 6	imate fric canular soil D L Ap K Pdi	Stem dia , cmLength of pile L3, cmC/S area of base of pile , cm²Coefficient of earth pressureTop overburden pressure (Pdi) _{top} , kg/cm²Bottom overburden pressure (Pdi) _{bottom} , kg/cm²Average overburden pressure , kg/cm²Unit weight in kg/cm³	x tan \Box x As] + [\Box x C x A _s] Given Given Ap = ($\pi/4$) D ² K is taken as 1.0 (Pdi) _{top} is always zero (Pdi) _{bottom} = (Pdi) _{top} + Y L Avg of (Pdi) _{top} & (Pdi) _{bottom} Given	Locatio n Bharuc h 75 350 4418 1.0 1.18 1.87 1.53 0.0020				
Ult [G1 2 3 4 5 6 7	imate fric ranular soil D L Ap K Pdi	tional capacity $(Q_u)_f = [\Sigma K x Pdi]$ tensive soil] Stem dia, cm Length of pile L3, cm C/S area of base of pile, cm ² Coefficient of earth pressure Top overburden pressure (Pdi) _{top} , kg/cm ² Bottom overburden pressure (Pdi) _{bottom} , kg/cm ² Average overburden pressure, kg/cm ² Unit weight in kg/cm ³ Reduction factor	x tan \Box x As] + [\Box x C x A _s] Given Given Ap =($\pi/4$) D ² K is taken as 1.0 (Pdi) _{top} is always zero (Pdi) _{bottom} = (Pdi) _{top} + Y L Avg of (Pdi) _{top} & (Pdi) _{bottom} Given Refer Fig 1	Locatio n Bharuc h 75 350 4418 1.0 1.18 1.87 1.53 0.0020 1.0				
Ult [G1 2 3 4 5 6 7 8	imate fric ranular soil D L Ap K Pdi Ω C	tional capacity $(Q_u)_f = [\Sigma \ K \ x \ Pdi$ + Cohesive soil] Stem dia , cm Length of pile L3, cm C/S area of base of pile , cm ² Coefficient of earth pressure Top overburden pressure (Pdi) _{top} , kg/cm ² Bottom overburden pressure (Pdi) _{bottom} , kg/cm ² Average overburden pressure , kg/cm ² Unit weight in kg/cm ³ Reduction factor Average cohesion ,kg/cm ²	x tan \Box x As] + [\Box x C x As] Given Given Ap =($\pi/4$) D ² K is taken as 1.0 (Pdi) _{top} is always zero (Pdi) _{bottom} = (Pdi) _{top} + Y L Avg of (Pdi) _{top} & (Pdi) _{bottom} Given Refer Fig 1 Given	Locatio n Bharuc h 75 350 4418 1.0 1.18 1.87 1.53 0.0020 1.0 0.35				
Ult [G1 2 3 4 5 6 7 8 9	imate fric canular soil D L Ap K Pdi α C C	tional capacity $(Q_u)_f = [\Sigma K x Pdi]$ stem dia , cm Length of pile L3, cm C/S area of base of pile , cm ² Coefficient of earth pressure Top overburden pressure (Pdi) _{top} , kg/cm ² Bottom overburden pressure (Pdi) _{bottom} , kg/cm ² Average overburden pressure , kg/cm ² Unit weight in kg/cm ³ Reduction factor Average cohesion ,kg/cm ² Angle of wall friction between pile and soil, degree	x tan \Box x As] + [\Box x C x A _s] Given Given Ap =($\pi/4$) D ² K is taken as 1.0 (Pdi) _{top} is always zero (Pdi) _{bottom} = (Pdi) _{top} + Y L Avg of (Pdi) _{top} & (Pdi) _{bottom} Given Refer Fig 1 Given Given	Locatio n Bharuc h 75 350 4418 1.0 1.18 1.87 1.53 0.0020 1.0 0.35 20				
Ult [G1 1 2 3 4 5 5 6 7 8 9 9 1 0	imate fric canular soil D L Ap K Pdi α C C C As	tional capacity $(Q_u)_f = [\Sigma K x Pdi]$ Stem dia , cm Length of pile L3, cm C/S area of base of pile , cm ² Coefficient of earth pressure Top overburden pressure (Pdi) _{top} , kg/cm ² Bottom overburden pressure (Pdi) _{bottom} , kg/cm ² Bottom overburden pressure , kg/cm ² Average overburden pressure , kg/cm ² Unit weight in kg/cm ³ Reduction factor Average cohesion , kg/cm ² Angle of wall friction between pile and soil, degree Surface area of pile shaft in cm ²	x tan \Box x As] + [\Box x C x A _s] Given Given Ap = (π /4) D ² K is taken as 1.0 (Pdi) _{top} is always zero (Pdi) _{bottom} = (Pdi) _{top} + Y L Avg of (Pdi) _{top} & (Pdi) _{bottom} Given Refer Fig 1 Given Given As = π D L	Locatio n Bharuc h 75 350 4418 1.0 1.18 1.87 1.53 0.0020 1.0 0.35 20 82467				
Ult [G1 1 2 3 4 5 5 6 7 7 8 9 1 0 1 1 1	imate fric imate fric canular soil D L Ap K Pdi α C □ a C □ As (Qu)f	tional capacity $(Q_u)_f = [\Sigma K x Pdi]$ Stem dia, cm Length of pile L3, cm C/S area of base of pile, cm ² Coefficient of earth pressure Top overburden pressure (Pdi) _{top} , kg/cm ² Bottom overburden pressure (Pdi) _{bottom} , kg/cm ² Average overburden pressure, kg/cm ² Unit weight in kg/cm ³ Reduction factor Average cohesion, kg/cm ² Angle of wall friction between pile and soil, degree Surface area of pile shaft in cm ² Ultimate skin frictional resistance, MT	x tan \Box $[x As] + [\Box x C x A_s]$ Given Given Ap =($\pi/4$) D ² K is taken as 1.0 (Pdi) _{top} is always zero (Pdi) _{bottom} = (Pdi) _{top} + Y L Avg of (Pdi) _{top} & (Pdi) _{bottom} Given Refer Fig 1 Given Given As = π D L (Qu)f =[k x Pdi x tan\delta x As] + [α x C x As]	Locatio n Bharuc h 75 350 4418 1.0 1.18 1.87 1.53 0.0020 1.0 0.35 20 82467 74.66				
Ult [Gr 1 2 3 4 5 5 6 7 8 9 1 0 1 1 1 1 2	imate fric canular soil D L Ap K Pdi α C Ω As (Q _u) _f FOS	tional capacity $(Q_u)_f = [\Sigma K x Pdi]$ Stem dia, cm Length of pile L3, cm C/S area of base of pile, cm ² Coefficient of earth pressure Top overburden pressure (Pdi) _{top} , kg/cm ² Bottom overburden pressure (Pdi) _{bottom} , kg/cm ² Average overburden pressure, kg/cm ² Unit weight in kg/cm ³ Reduction factor Average cohesion, kg/cm ² Angle of wall friction between pile and soil, degree Surface area of pile shaft in cm ² Ultimate skin frictional resistance, MT Factor of safety	xtan \Box \mathbf{x} \mathbf{As} \mathbf{As} \mathbf{F} \mathbf{x} \mathbf{C} \mathbf{x} $\mathbf{A_s}$ GivenAp = $(\pi/4)$ D ² KKK<	Locatio n Bharuc h 75 350 4418 1.0 1.18 1.87 1.53 0.0020 1.0 0.35 20 82467 74.66 2.5				
Ult [Gr 1 2 3 4 5 5 6 7 8 9 1 0 1 1 1 2 1 3	imate fric ranular soil D L Ap K Pdi α C C C As $(Q_u)_f$ FOS $(Q_s)_f$	tional capacity $(Q_u)_f = [\Sigma K x Pdi]$ Stem dia , cm Length of pile L3, cm C/S area of base of pile , cm ² Coefficient of earth pressure Top overburden pressure (Pdi) _{top} , kg/cm ² Bottom overburden pressure (Pdi) _{bottom} , kg/cm ² Average overburden pressure , kg/cm ² Unit weight in kg/cm ³ Reduction factor Average cohesion ,kg/cm ² Angle of wall friction between pile and soil, degree Surface area of pile shaft in cm ² Ultimate skin frictional resistance, MT Factor of safety Safe skin frictional resistance in MT	x tan \Box [x As] + [\Box x C x A _s] Given Given Ap =($\pi/4$) D ² K is taken as 1.0 (Pdi) _{top} is always zero (Pdi) _{bottom} = (Pdi) _{top} + Y L Avg of (Pdi) _{top} & (Pdi) _{bottom} Given Refer Fig 1 Given Given As = π D L (Qu)f =[k x Pdi x tan\delta x As] + [α x C x As] Generally 2.5 (Q _s) _f = (Q _u) _f /FOS	Locatio n Bharuc h 75 350 4418 1.0 1.18 1.87 1.53 0.0020 1.0 0.35 20 82467 74.66 2.5 29.9				

(Qı	1) _b =	$[Ap(1/2 D x \Box x N_{\Box} + P_d]$	$\mathbf{X} \mathbf{N}_{\mathbf{q}}$] + $[\mathbf{A}_{\mathbf{p}} \mathbf{X} \mathbf{N}_{\mathbf{c}}]$	x C _p]
[Gı	anular soi	+ Cohesive soil]		
1	D	Pile Dia in cms	Given	75
2	Ар	Cross Section area of base of pile in cm ²	$Ap = (\pi/4) D^2$	4418
3		Effective unit weight of soil at pile tip in kg/cm ³	Given	0.0022
4	Ø	Angle of internal friction around pile tip in degree	Given	20
5	N_{\Box}	Bearing capacity factor based on Øat pile tip	$N_{\gamma} = 2 [e^{\pi \tan(\phi)} * \tan^2(45 + \phi/2) + 1] * \tan(\phi)$	5.39
6	Pd	Effective overburden pressure at pile tip kg/cm ²	$Pd = (Pdi)_{bottom}$	1.87
7	Nq	Bearing capacity factor based on Ø at pile tip	Refer Fig 2	4.8
8	N _c	Bearing capacity factor usually taken as 9	Nc is always 9.0 for deep foundation	9
9	C _p	Average cohesion at pile tip,kg/cm ²	Given	0.35
1 0	$(Q_u)_b$	Ultimate end bearing resistance, MT	$(Q_u)_b = [Ap x (0.5 x D x \Upsilon x N_{\Upsilon} + Pd x Nq)] + [Ap x Nc x C_p]$	55.63
1 1	FOS	Factor of safety	Generally 2.5	2.5
1 2	$(\overline{\mathbf{Q}_{s}})_{b}$	Safe end bearing resistance in MT	$(Q_s)_b = (\overline{Q_u})_b / FOS$	22.3
Qs	= Safe cap	acity of pile in compression, MT	$\mathbf{Qs} = (\mathbf{Qs})_{\mathbf{f}} + (\mathbf{Qs})_{\mathbf{b}}$	82.2
	$\mathbf{L} = \mathbf{T}\mathbf{c}$	otal length of pile in M	L = L1 + L2 + L3	10.0

Lay	yer 1								
Fri	Frictional capacity of pile								
Ultimate frictional capacity $(Q_u)_f = [\Sigma K \times Pdi \times tan \square \Box x As] + [\square x C \times A_s] \perp L$									
[Granular soil + Cohesive soil]									
1	D	Stem dia , cm Given							
2	L	Length of pile L1, cm	Given	440					
3	Ар	C/S area of base of pile, cm ²	$Ap = (\pi/4) D^2$	6362					
4	Κ	Coefficient of earth pressure	K is taken as 1.0	1.0					
5	Pdi	Top overburden pressure (Pdi) _{top} , kg/cm ²	(Pdi) _{top} is always zero	0					
		Bottom overburden pressure (Pdi) _{bottom} ,	$(Pdi)_{bottom} = (Pdi)_{top} + \Upsilon L$	0.80					
		kg/cm ²							
		Average overburden pressure, kg/cm ²	Avg of (Pdi)top& (Pdi)bottom	0.40					
6		Unit weight in kg/cm ³	Given	0.0018					
7	α	Reduction factor	Refer Fig 1	1.0					
8	С	Average cohesion ,kg/cm ²	Given	0.36					
9		Angle of wall friction between pile and soil, degree	Given	0					
1	As	Surface area of pile shaft in cm^2	$As = \pi D L$	124407					
0		F							
1	$(Q_u)_f$	Ultimate skin frictional resistance, MT	$(Qu)f = [k x Pdi x tan \delta x As] + [\alpha x$	44.79					
1			C x As]						
1	FOS	Factor of safety	Generally 2.5	2.5					
2			-						
1	$(\mathbf{Q}_s)_f$	Safe skin frictional resistance in MT	$(Q_s)_f = (\overline{Q_u})_f / FOS$	17.9					
3									
Lay	yer 2								
Fri	ctional cap	acity of pile							
Ult	imate fric	tional capacity $(Q_u)_f = \sum K x P di x$	tan $\Box \Box x As + [\Box x C x A_s]$	Location					

[Gı	Granular soil + Cohesive soil]						
1	D	Stem dia, cm	Given	90			
2	L	Length of pile L2, cm	Given	360			
3	Ар	C/S area of base of pile, cm^2	$Ap = (\pi/4) D^2$	6362			
4	K	Coefficient of earth pressure	K is taken as 1.0	1.0			
5	Pdi	Top overburden pressure (Pdi) _{top} , kg/cm^2	(Pdi) _{top} is always zero	0.80			
		Bottom overburden pressure (Pdi) _{bottom} ,	$(Pdi)_{hottom} = (Pdi)_{top} + \Upsilon L$	1.46			
		kg/cm ²					
		Average overburden pressure, kg/cm ²	Avg of (Pdi) _{top} & (Pdi) _{bottom}	1.13			
6		Unit weight in kg/cm ³	Given	0.00183			
7	α	Reduction factor	Refer Fig 1	0.6			
8	C	Average cohesion .kg/cm ²	Given	0.81			
9		Angle of wall friction between pile and soil.	Given	0			
		degree		-			
1	As	Surface area of pile shaft in cm ²	$As = \pi D L$	101788			
0		r					
1	$(Q_u)_f$	Ultimate skin frictional resistance, MT	$(Qu)f = [k \times Pdi \times tan\delta \times As] + [\alpha \times As]$	49.47			
1			C x As]				
1	FOS	Factor of safety	Generally 2.5	2.5			
2							
1	$(\mathbf{Q}_{s})_{f}$	Safe skin frictional resistance in MT	$(\mathbf{Q}_{s})_{f} = (\mathbf{Q}_{u})_{f} / FOS$	19.8			
3							
Lay	yer 3						
Fri	ctional cap	acity of pile					
Ult	imate fric	tional capacity $(Q_u)_f = [\Sigma K x Pdi x]$	$\tan \Box \Box x As] + [\Box x C x A_s]$	Location			
[Gı	ranular soil	+ Cohesive soil]		Dahej			
1	D	Stem dia , cm	Given	90			
2	L	Length of pile L3, cm	Given	600			
3	Ар	C/S area of base of pile, cm ²	$Ap = (\pi/4) D^2$	6362			
4	K	Coefficient of earth pressure	K is taken as 1.0	1.0			
5	Pdi	Top overburden pressure (Pdi) _{top} , kg/cm ²	(Pdi) _{top} is always zero	1.46			
		Bottom overburden pressure (Pdi) _{bottom} ,	$(Pdi)_{bottom} = (Pdi)_{top} + \Upsilon L$	2.63			
		kg/cm ²					
		Average overburden pressure , kg/cm ²	Avg of (Pdi) _{top} & (Pdi) _{bottom}	2.04			
6		Unit weight in kg/cm ³	Given	0.0020			
7	α	Reduction factor	Refer Fig 1	0.4			
8	С	Average cohesion ,kg/cm ²	Given	1.1			
9		Angle of wall friction between pile and soil,	Given	0			
		degree					
1	As	Surface area of pile shaft in cm ²	$As = \pi D L$	169646			
0							
1	$(Q_u)_f$	Ultimate skin frictional resistance, MT	$(Qu)f = [k \times Pdi \times tan\delta \times As] + [\alpha \times Qu)f = [k \times Pdi \times tan\delta \times As]$	74.64			
1	FOR		C x As]	2.5			
	FOS	Factor of safety	Generally 2.5	2.5			
2	(0)	Safa akin friational register as in MT	skin frigtional register of in MT $(0) (0) (0) (50)$				
1	(V s)f	Sale Skill Incuolial resistance in MT	$(Q_s)_f = (Q_u)_f / \Gamma OS$	29.9			
Fn	d hearing o	anacity of nile	1				
	n ocaring C	$\frac{1}{[\Delta n(1/2)]} D = v = \nabla N_{-\perp} = D$	v N)] ⊥ [A v N	x Cl			
		+ Cohesive soil]	A TYPI I LAP A TYC	л Срј			
1	D	Pile Dia in cms	Given	90			
2	Ap	Cross Section area of base of nile in cm^2	$Ap = (\pi/4) D^2$	6362			
3		Effective unit weight of soil at nile tin in	Given	0.0022			
		kg/cm ³					

4	Ø	Angle of internal friction around pile tip in	Given	0
		degree		
5	\mathbf{N}_{\Box}	Bearing capacity factor based on Øat pile tip	$N_{\gamma} = 2 \left[e^{\pi \tan(\phi)} * \tan^2(45 + \phi/2) + 1 \right]$	0.00
			* $tan(\phi)$	
6	Pd	Effective overburden pressure at pile tip	$Pd = (Pdi)_{bottom}$	2.63
		kg/cm ²		
7	N _q	Bearing capacity factor based on Ø at pile tip	Refer Fig 2	0.3
8	N _c	Bearing capacity factor usually taken as 9	Nc is always 9.0 for deep foundation	9
9	C _p	Average cohesion at pile tip,kg/cm ²	Given	1.1
1	$(Q_u)_b$	Ultimate end bearing resistance, MT	$(Q_u)_b = [Ap x (0.5 x D x \Upsilon x N_{\Upsilon} + Pd]$	67.59
0			x Nq)]	
			$+ [Ap x Nc x C_p]$	
1	FOS	Factor of safety	Generally 2.5	2.5
1				
1	$(Q_s)_b$	Safe end bearing resistance in MT	$(\mathbf{Q}_{s})_{b} = (\mathbf{Q}_{u})_{b} / \text{FOS}$	27.0
2				
Qs	= Safe capa	acity of pile in compression, MT	$\mathbf{Qs} = (\mathbf{Qs})_{\mathbf{f}} + (\mathbf{Qs})_{\mathbf{b}}$	94.6
	$\mathbf{L} = \mathbf{T}\mathbf{c}$	otal length of pile in M	$\mathbf{L} = \mathbf{L}1 + \mathbf{L}2 + \mathbf{L}3$	14.0

Lay	yer 1						
Frictional capacity of pile							
Ult	imate fric	tional capacity $(Q_u)_f = [\Sigma K x Pdi]$	x tan $\Box \Box x As$] + [$\Box x C x A_s$]	Locatio			
[Gı	anular soi	I + Cohesive soil]		n			
				Rajastha			
<u> </u>							
1	D	Stem dia , cm	Given	75			
2	L	Length of pile L1, cm	Given	250			
3	Ар	C/S area of base of pile, cm ²	$Ap = (\pi/4) D^2$	4418			
4	K	Coefficient of earth pressure	K is taken as 1.0	1.0			
5	Pdi	Top overburden pressure (Pdi) _{top} , kg/cm ²	(Pdi) _{top} is always zero	0			
		Bottom overburden pressure (Pdi) _{bottom} ,	$(Pdi)_{bottom} = (Pdi)_{top} + \Upsilon L$	0.45			
		kg/cm ²					
		Average overburden pressure, kg/cm ²	Avg of (Pdi) _{top} & (Pdi) _{bottom}	0.23			
6		Unit weight in kg/cm ³ Given					
7	α	Reduction factor Refer Fig 1					
8	С	Average cohesion ,kg/cm ²	Given	0			
9		Angle of wall friction between pile and soil,	Given	21			
		degree					
1	As	Surface area of pile shaft in cm ²	$As = \pi D L$	58905			
0							
1	$(Q_u)_f$	Ultimate skin frictional resistance, MT	$(Qu)f = [k x Pdi x tan \delta x As] + [\alpha x C x]$	5.12			
1			As]				
1	FOS	Factor of safety	Generally 2.5	2.5			
2							
1	$(\mathbf{Q}_{s})_{f}$	Safe skin frictional resistance in MT	$(Q_s)_f = (Q_u)_f / FOS$	2.0			
3							
Lay	yer 2						
Fri	ctional cap	acity of pile					
Ult	imate fric	tional capacity $(Q_u)_f = [\Sigma K x P di x]$	$x \tan \Box \Box x As + [\Box x C x A_s]$	Location			
[Gı	anular soi	I + Cohesive soil]]	Rajasthan			
1	D	Stem dia , cm	Given	15			
2	L	Length of pile L2, cm	Given	180			
3	Ар	C/S area of base of pile, cm^2 Ap =($\pi/4$) D ² 44					

4	V	Coefficient of earth pressure	K is taken as 1.0	1.0	
4		$\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} + 1$		1.0	
5	Pai	Top overburden pressure (Pdi) _{top} , kg/cm	(Pdl) _{top} is always zero	0.45	
		Bottom overburden pressure (Pdi) _{bottom} ,	$(Pdi)_{bottom} = (Pdi)_{top} + Y L$	1.33	
		kg/cm ²			
		Average overburden pressure, kg/cm ²	Avg of (Pdi) _{top} & (Pdi) _{bottom}	0.89	
6		Unit weight in kg/cm ³	Given	0.00183	
7	α	Reduction factor	Refer Fig 1	1.0	
8	С	Average cohesion .kg/cm ²	Given	0	
9		Angle of wall friction between pile and soil	Given	25	
		degree			
1		Surface area of nile shaft in am^2	$\Lambda_0 = \pi D I$	112007	
1	AS	Surface area or prie shart in chi	AS = h D L	113077	
1	(0)	Illtimate alin fristianal assistance. MT	$(O_{rr})f = [1 + r D_{rr}]i + ters S_{rr} A_{rr}] + [rr + C_{rr}]i$	47.02	
1	$(\mathbf{Q}_{u})_{f}$	Ultimate skin iriculonal resistance, MT	$(Qu)I = [K \times PuI \times tano \times AS] + [\alpha \times C]$	47.03	
1	500			2.7	
1	FOS	Factor of safety	Generally 2.5	2.5	
2					
1	$(\mathbf{Q}_{s})_{f}$	Safe skin frictional resistance in MT	$(\mathbf{Q}_{s})_{f} = (\mathbf{Q}_{u})_{f} / \text{FOS}$	18.8	
3					
Lay	yer 3				
Fri	ctional cap	acity of pile			
Ult	imate fric	tional capacity $(O_n)_f = \sum K \times Pdi x$	$x \tan \Box \Box x As + [\Box x C x As]$	Location	
[Gi	anular soi	I + Cohesive soil]		Rajasthan	
1	D	Stem dia cm	Given	75	
2	I	Length of nile L2 cm		500	
2	L An	Length of phe L3, cm $Oiven$		4410	
3	Ар	C/S area of base of pile, cm $Ap = (\pi/4) D$		4410	
4	K	Coefficient of earth pressure K is taken as 1.0		1.0	
5	Pdi	Top overburden pressure (Pdi) _{top} , kg/cm ² (Pdi) _{top} is always zero		1.33	
		Bottom overburden pressure (Pdi) _{bottom} ,	$(Pdi)_{bottom} = (Pdi)_{top} + \Upsilon L$	2.31	
		kg/cm ²			
		Average overburden pressure, kg/cm ²	Avg of (Pdi) _{top} & (Pdi) _{bottom}	1.82	
6		Unit weight in kg/cm ³	Given	0.0020	
7	α	Reduction factor	Refer Fig 1	1.0	
8	С	Average cohesion .kg/cm ²	Given	0	
9		Angle of wall friction between pile and soil	Given	32	
		degree		52	
1	Δε	Surface area of nile shaft in cm^2	$\Delta s = \pi D I$	117810	
0	115	Surface area or pric shart in em		117010	
1	(0)	Illtimate skin frictional resistance MT	$(\Omega_{u})f = [k \times Ddi \times ton S \times Ad] + [a \times C]$	133.86	
	(Qu)f	Orthinate Skill interiorial resistance, WI	$(Qu)I = [K \land I UI \land tallo \land AS] + [U \land C]$	155.00	
	EOC		A AS]	2.5	
	FOS	ractor of safety	Generally 2.5	2.3	
2		~			
1	$(\mathbf{Q}_{s})_{f}$	Sate skin frictional resistance in MT	$(\mathbf{Q}_{s})_{f} = (\mathbf{Q}_{u})_{f} / FOS$	53.5	
3				L	
En	d bearing c	capacity of pile			
(Qı	1) _b =	$[Ap(1/2 D x \Box x N_{\Box} + P_d]$	$\mathbf{X} \mathbf{N}_{q}$] + $[\mathbf{A}_{p} \mathbf{X} \mathbf{N}_{c}]$	x C _p]	
[Gı	anular soi	l + Cohesive soil]		-	
1	D	Pile Dia in cms	Given	75	
2	Ар	Cross Section area of base of pile in cm ²	$Ap = (\pi/4) D^2$	4418	
3		Effective unit weight of soil at pile tip in	Given	0.0022	
۲ ا	-	kg/cm ³			
Δ	Ø	Angle of internal friction around nile tin in	Given	32	
-	<i>v</i>	degree		52	
5	N	Descring consolity factor based on Oct will the	$N = 2 \left[e^{\pi \tan(\phi)} * \tan^2(45 + e^{2}) + 1 \right]$	* 20.01	
5	1N 🗆	bearing capacity factor based on wat pile tip	$\ln_{\gamma} - 2 [e - \tan(43 + \phi/2) + 1]$	50.21	
1			1.1411.001	1	

6	Pd	Effective overburden pressure at pile tip	$Pd = (Pdi)_{bottom}$	2.31
		kg/cm ²		
7	N _q	Bearing capacity factor based on Ø at pile tip	Refer Fig 2	29.0
8	N _c	Bearing capacity factor usually taken as 9	Nc is always 9.0 for deep foundation	9
9	C _p	Average cohesion at pile tip,kg/cm ²	Given	0
1	$(Q_u)_b$	Ultimate end bearing resistance, MT	$(Q_u)_b = [Ap \ x \ (0.5 \ x \ D \ x \ \Upsilon \ x \ N_{\Upsilon} + Pd \ x)]$	306.44
0			Nq)]	
			$+ [Ap x Nc x C_p]$	
1	FOS	Factor of safety	Generally 2.5	2.5
1				
1	$(Q_s)_b$	Safe end bearing resistance in MT	$(Q_s)_b = (Q_u)_b / FOS$	122.6
2				
Qs	= Safe capa	acity of pile in compression, MT	$\mathbf{Qs} = (\mathbf{Qs})_{\mathbf{f}} + (\mathbf{Qs})_{\mathbf{b}}$	197.0
	$\mathbf{L} = \mathbf{T}\mathbf{c}$	otal length of pile in M	$\mathbf{L} = \mathbf{L}1 + \mathbf{L}2 + \mathbf{L}3$	12.3

PILE LOAD TEST DATA:-

First of all pile load test equipment is set up at the actual field, having attached 3-4 deformation dial gauges. Suitable load increments are given at a definite interval of the time. Also the settlement due to loads is also recorded. Form this set of readings a graph of load v/s settlement is plotted.

Here pile load test data from actual site is given and is compared with our software.

Sr. No.	Load in	Dial Gauge Readings (L.C - 0.01 mm)			Average	Settlement	
		A	B	С	D	Tananig	<i></i>
1	0	3000	3000	3000	3000	3000.00	0.00
2	20	2900	2900	2930	2687	2854.25	1.46
3	40	2830	2800	2810	2713	2788.25	2.12
4	60	2856	2586	2693	2588	2680.75	3.19
5	80	2801	2533	2636	2533	2625.75	3.74
6	100	2755	2483	2580	2483	2575.25	4.25
7	120	2700	2426	2537	2435	2524.50	4.76
8	140	2634	2355	2461	2360	2452.50	5.48
9	160	2403	2135	2227	2144	2227.25	7.73
10	160	2060	1786	1882	1783	1877.75	11.22
11	160	1740	1473	1568	1480	1565.25	14.35
12	160	1396	1125	1225	1135	1220.25	17.80

= 64 MT

LOCATION 3

Sr. No.	Load in	D	Dial Gauge Readings (L.C - 0.01 mm)			Average	Settlement
	MI	A	B	C	D	Reading	in mm
1	0	3300	3300	3300	3300	3300	0.00
2	25	3290	3291	3295	3289	3291	0.09
3	50	3286	3285	3284	3279	3284	0.17
4	75	3281	3286	3285	3284	3284	0.16
5	100	3279	3280	3275	3274	3277	0.23
6	125	3270	3272	3276	3264	3271	0.30
7	150	3260	3270	3259	3261	3263	0.38
8	175	3247	3247	3247	3247	3247	0.53
9	200	3138	3137	3135	3141	3138	1.62
10	225	2877	2879	2884	2873	2878	4.22
11	250	2437	2430	2441	2439	2437	8.63
12	275	2047	2041	2054	2045	2047	12.53

Safe pile capacity = Ultimate pile capacity /Factor of safety

= 200/2.5 =

80 MT

Sr. No.	Load in	Dial Gauge Readings (L.C - 0.01 mm)				Average	Settlement
		A	B	С	D	Annania	
1	0	4000	4000	4000	4000	4000	0.00
2	25	3980	3981	3994	3974	3982	0.18
3	50	3960	3964	3954	3959	3959	0.41
4	75	3942	3940	3936	3940	3940	0.61
5	100	3920	3925	3920	3916	3920	0.50
6	125	3902	3896	3900	3899	3899	1.01
7	150	3880	3880	3880	3880	3880	1.20
8	175	3860	3860	3860	3860	3860	1.40
9	200	3778	3779	3780	3779	3779	2.21
10	225	3786	3500	3522	3500	3577	4.23
- 11	250	3000	3002	3000	2996	3000	10.01
12	275	1996	2006	2000	1995	1999	20.01

LOCATION 5

COMPARISION OF RESULTS

We have collect the five numbers of pile load test data, which is sufficient to verify the accuracy of the software. By comparison of the actual field pile load test results are precisely same to the software results. Following table shows the comparison of the calculated results of the pile load test by the manually and by the software.

Sr no.	Field pile capacity(MT)	Calculated capacity in software(MT)
1	56.5	56.4
2	62.2	64
3	82.2	80
4	94.6	92
5	197	192

Conclusions and future scope:-

On the basis of software we develop we conclude that pile capacity of soil calculated by software is precisely same as from pile load test. However necessary updates/modifications in the software should be incorporated time to time with any amendment in the IS code, new concepts and other modifications in the literature based on experimental results.

The software we are making can be used "n" number of times according to the changes in the IS codal provisions and any literature changes can be incorporated.

The software can be used for finding out the pile load capacity in case of different soil stratification and variable length of piles.

FORMULA

The given formula is derived from the IS CODE 2911. a) Frictional capacity of pile: $(Qu)f = [\Sigma K x Pdi x tand x As] + [a x C x As]$ [Granular soil + Cohesive soil]

b) End bearing capacity of pile:

(Qu)b = [Ap(1/2 D x g x Ng + Pd x Nq)] + [Ap x Nc x Cp][Granular soil + Cohesive soil]

References

- 1. Broms, B. B. (1946a). "Lateral Resistance of piles in cohesion-less soils." ASCE Journal of the Soil Mechanics and Foundation Division Proceedings (JSMFD), 90 (SM3), pages 123-156.
- 2. Broms, B. B. (1946b). "Lateral Resistance of piles in cohesion soils." *ASCE Journal of the Soil Mechanics and Foundation Division Proceedings (JSMFD)*, 90 (SM3), pages 123-156.
- 3. Dr.K.R.Arora (2003). "Soil Mechanics and Foundation Engineering", Standard Publishers, India.
- 4. Dr.Kaniraj (1979) "Design Aids in soil mechanics and Foundation Engineering", Tata McGraw-hill publication, India.
- 5. G. G. Meyerhof and Gopal Ranjan (1972). "The Bearing Capacity of rigid piles under Inclined Loads in Sand. I: Vertical Piles."*Canadian Geotechnical Journal*, Vol 9, pages 430-446.
- 6. G.G. Meyerhof and Gopal Ranjan (1973) "The Bearing Capacity of Rigid Piles under Inclined Loads in Sand. III: Piles Groups." *Canadian Geotechnical Journal*, Vol. 10, pages 428-438.
- 7. G.G.Meyerhof, A.Yalcin, S.Mathur (1983). "Ultimate pile capacity for eccentric inclined load." ASCE Journal of the Geotechnical Engineering Division, 109(GT3), pages 408-423.
- 8. I.S. 2911, Part 4 (1985): "Code of Practice for Design and Construction of Pile Foundations".
- 9. I.S. 2911, Part I (1997): "Code of Practice for Design and Construction of Pile Foundations-part-1 concrete piles section-1 driven cast in-situ concrete piles".
- I.S. 2911, Part I (1997): "Code of Practice for Design and Construction of Pile Foundations-part-1 concrete piles section-2 bored cast in-situ piles".
- 11. I.S. 2911, Part I (1997): "Code of Practice for Design and Construction of Pile Foundations-part-1 concrete piles section-3 Driven Precast concrete piles".
- 12. I.S. 2911, Part I (1997): "Code of Practice for Design and Construction of Pile Foundations-part-1 concrete piles section-4 Bored Precast concrete piles".
- 13. Terzaghi K. (1955). "Evaluation of co-efficient of subgrade reaction." Geotechnique, 5 (4), pages 297-326.