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With the rapid increase in computer technology and power, we need to 
develop such a technique which perform fast simulation and provide 

better result in least possible time. The Monte-Carlo (MC) simulation 

is widely used technique for simulation to obtain the results. By using 

MC technique, one get approximate answer quickly to a higher level 

of accuracy. But the major worrisome thing about the MC simulation 

is that, it provides approximation to the desired answer than the exact 

requirement which results an approximate error. Approximate error is 

the major factor taken into account whenever we evaluate answers. 

These approximation errors always effect the estimation of 

performance measure in Monte-Carlo simulation to a greater extent.  

In this paper, we discussed various variance reduction technique to 
overcome such type of error and show that how the Importance 

Sampling (IS) technique provide better approximation by reducing the 

variance to great extent as compared to other well-known techniques 

viz., Antithetic variable and Control Variate.  

                                 
                                                                    Copy Right, IJAR, 2016,. All rights reserved.

…………………………………………………………………………………………………….... 

Introduction:-  
The word “Simulation” means imitation of the operation of real world process or system over a time [4]. In early 

days, simulation was just used to understand deterministic problems and statistical sampling was used to estimate 

the uncertainties associated with simulation but when Monte Carlo simulation came into an existence it reinvented 

the old simulation approach to solve deterministic problems using probabilities analogy [14].  

 

G.S. Fishman (1996) defined the Monte-Carlo Simulation as a method based on probability analysis and is done by 

running a number of different variables through a model in order to determine the different outcomes. With the 

increase in computer technology and power, we need to develop such a technique which perform fast simulation and 

provide better result in short span of time. By using this method, we get approximate answer quickly and to a higher 

level of accuracy [8, 10]. The major thing is that MC simulation only provides approximation to our answer than 
exact answer itself. This leads to approximate error. This error is a major factor to evaluate answers obtained using 

these methods [2, 7]. These approximation errors always effect the estimation of performance measure in Monte-

Carlo simulation to greater extent. Thus introduce Variance Reduction Techniques (VRT) [13] which provides the 

better estimated result by utilizing known information about the simulation model, the more we know about the 

behaviour of system, the greater amount of variance reduction can be achieved. Even a simple variance reduction 

method often is remarkable, effective and easy to implement. 
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In this paper, we discussed some of the Variance Reduction Techniques to overcome approximate error and show 

that how the Importance Sampling (IS) Technique provide better approximation by reducing the variance to great 

extend as compared to other well-known techniques viz., Antithetic variable and Control Variate. The rest of the 

paper is organized as follows. In Section 1.2 we introduce some Variance Reduction Techniques. In section 1.3 we 

take simple network diagram as example. In section 1.4-1.6, we discuss Antithetic Variable, Control Variate and 

Importance Sampling respectively, and obtained results by using MATLAB Program. In section 1.7, we compare the 
obtained numerical results and give the conclusion. 

 

Variance reduction:- 
Variance Reductions Techniques (VRT) are basically used to improve the efficiency of MC simulation by utilizing 

the known information about the simulation model. The more we know about the behavior of the system the greater 

amount of reduction in variance is achieved. 

The main variance reduction techniques that we are discussed in this paper are given below 
1. Antithetic Random Variable. 

2. Control Variate. 

3. Importance Sampling (IS). 

 

In this paper, we have considered a Simple Network Diagram to study and compare all the above variance reduction 

techniques. A MATLAB program has been coded for comparison of results. We begin with estimation of the results 

using Crude Monte Carlo (CMC) Method. 

Consider a simple undirected Network graph as shown in fig.1 

 
Figure 1:- Different length of the path from A to B. 

 

 

Let the random variables 𝑌1 , 𝑌2 , 𝑌3 , 𝑌4 , 𝑌5 , 𝑌6 are the length of each edge of Network Diagram and suppose we have to 

find the expected length L of the shortest path from Node A to Node B,  

That is,            𝐿 = 𝐸 𝐺(𝑌)                                                                    ( 1.1) 
Where         

   𝐺 𝑌 = 𝑚𝑖𝑛 𝑌1 +  𝑌2 +  𝑌3 , 𝑌1 +  𝑌4 +  𝑌6 , 𝑌5 +  𝑌6                 ( 1.2)  

 

Note that,  𝐺 𝑌  is a non-decreasing function in each component vector Y. here we suppose that each of the length of 

𝑌𝑖 , 𝑖 = 1,2,3,4,5,6  is independent and follows uniform distribution with parameter 0 and𝑑𝑖 , i.e. 𝑌𝑖~𝑈 0, 𝑑𝑖 , 𝑖 =
1,2,3,4,5,6 with arbitrary  𝑑1 , 𝑑2 , 𝑑3 , 𝑑4 , 𝑑5 , 𝑑6 = (1,2,1,4,2,3) 

Let 𝑌𝑖 = 𝑑𝑖𝑉𝑖 , 𝑖 = 1,2,3,4,5,6, here we restate the original problem into the problem of estimation and is given by 

       

      𝐿 = 𝐸 𝑔 𝑉                                                                           (1.3)    
 

where,  𝑉 =  𝑉1 , 𝑉2 , 𝑉3 , 𝑉4 , 𝑉5 , 𝑉6  and g  V = 𝐺  𝑑1𝑉1 , 𝑑2𝑉2 , 𝑑3𝑉3 , 𝑑4𝑉4 , 𝑑5𝑉5 , 𝑑6𝑉6  
Crude Monte Carlo (CMC) generate a random vector 𝑉1 , 𝑉2 , 𝑉3 , 𝑉4 , 𝑉5 , 𝑉6 , each are independent and follows uniform 

distribution with parameter (0, 1) i.e. 𝑉𝑖~𝑈(0,1)6 and returning a value 
                                                           

  𝐿 =
1

𝑁
 𝑔 𝑉𝐾 

𝑁
𝑘=1                                                               (1.4)  
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as an estimate of L. To test the accuracy of this estimate 𝐿 , we need to look at the probability distribution of the 

estimator 𝐿 . In particular𝐿 , is an unbiased estimator of L and 𝑉𝑎𝑟(𝐿 ) is 
𝜎2

𝑁
, where 𝜎2 is the variance of 𝑔 𝑉𝐾  . Hence 

if 𝜎2 is finite, then 𝑉𝑎𝑟(𝐿 ) → 0 as 𝑁 → ∞. 

By using the CLT, we have   𝐿 ~𝑁  𝐿,
𝜎2

𝑁
 . 

This implies that, for large N, 

                             𝑃  
 𝐿 −𝐿 

𝜎
 𝑁 

> 𝑍1−𝛼
2 
 ≈ 𝛼                                                    (1.5)  

 

where, 𝑍1−𝛼
2 

 is the  1 − 𝛼
2   quantile of the standard normal distribution. 

Since, Sample Variance given by 

                                                  S2 =
1

N−1
  g Vi − L  

2N
i=1                                               (1.6)  

 

 is an unbiased estimator of 𝜎2. So we replace 𝜎2   by 𝑆2. 
Thus the equation (1.5) is rewritten as 

                    𝑃  𝐿 − 𝑍1−𝛼
2 
𝑆

 𝑁
 ≤ 𝐿 ≤ 𝐿 + 𝑍1−𝛼

2 
𝑆

 𝑁
  ≈ 𝛼                            (1.7)   

 

Here (𝐿 − 𝑍1−𝛼
2 
𝑆

 𝑁
  , 𝐿 + 𝑍1−𝛼

2 
𝑆

 𝑁
 )  is nothing but approximate α-confidence interval for estimating L. 

Typical values of 𝛼 are 0.90 and 0.95 with corresponding quartiles 1.65 and 1.96. The accuracy of an estimate 𝐿  is 

often reported by its estimated relative error  
S

  N
L 

  
. Using MATLAB program for CMC simulation, we attained a 

typical estimated value of 𝐿 = 1.6827 with an estimated Relative Error (RE) is 0.4068 and Elapsed time is 0.047000 

seconds.  

 

Antithetic Variables:- 

A real valued pair is said to be Antithetic pair, if they have identical probability distribution and are negatively 
correlated [8]. If original function gives high value it provides low and vice-versa. As we know that MC averages 

are used for reduction in error which occur in algorithm due to randomness. By making use of Antithetic variable we 

reduce further some more part of error which was ignored by CMC. In other words, An Antithetic sample is that 

which is opposite to the original function. Graphically, some samples and their antithetic counterparts are shown 

below in fig. 2. 

 

 

 
 

Figure 2:- The left panel shows 6 points as solid points connected to their antithetic counterpart shown as open    

circles and the right panel shows one random trajectory of 20 points joined by solid lines connected to the 

origin along with its antithetic mirror image in open points. 

 

Mathematically speaking, 

If 𝑋𝑘~𝑈(0,1), thus their Antithetic counterpart is 𝑋 𝑘 = 1 − 𝑋𝑘  and if  𝑋𝑘~𝑁(0, 𝛴) then their antithetic counterpart 

is 𝑋 𝑘 = −𝑋𝑘  because in this case we use inverse transformation, to get this result. 

In this paper, we use uniform distribution to solve our problems i.e. when 𝑋𝑘~𝑈 0,1  then 𝑋 𝑘 = 1 − 𝑋𝑘  is antithetic 

variable. 
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 Thus the antithetic estimator is given by    𝐿 𝐴 =
1

𝑁
  𝑓 𝑋𝑘 + 𝑓 𝑋 𝑘  

𝑁
2 

𝑘=1
.                                       (1.8)        

   where  𝐿 𝐴 is also an unbiased estimator of 𝐿 = 𝐸 𝑌 .  
 

Now, the variance of antithetic estimator is given by 

           

     𝑣𝑎𝑟 𝐿 𝐴 = 𝑣𝑎𝑟  
1

𝑁
  𝑓 𝑋𝑘 + 𝑓 𝑋 𝑘  

𝑁
2 

𝑘=1
                                                          (1.9)  

                                  

    =
𝑁

2 

𝑁2
 𝑣𝑎𝑟 𝑓 𝑋𝑘  + 𝑣𝑎𝑟 𝑓 𝑋 𝑘  + 2𝑐𝑜𝑣 𝑓 𝑋𝑘 , 𝑓 𝑋 𝑘                 (1.10) 

 

But  𝑣𝑎𝑟 𝑓 𝑋𝑘  = 𝑣𝑎𝑟  𝑓 𝑋 𝑘   
 

Therefore equation (1.10) becomes 

    

     𝑣𝑎𝑟 𝐿 𝐴 =
1

2𝑁
 2𝑣𝑎𝑟 𝑓 𝑋𝑘  + 2𝑐𝑜𝑣 𝑓 𝑋𝑘 , 𝑓 𝑋 𝑘     

      

  =
𝑣𝑎𝑟  𝑓 𝑋𝑘   

𝑁
 1 + 𝜌 𝑓 𝑋𝑘 , 𝑓 𝑋 𝑘                                       (1.11) 

 
where 

𝜌 𝑓 𝑋𝑘 , 𝑓 𝑋 𝑘  = 𝑐𝑜𝑟𝑟 𝑓 𝑋𝑘 , 𝑓 𝑋 𝑘   is the correlation coefficient between antithetic pair  𝑓 𝑋𝑘 , 𝑓 𝑋 𝑘  . 

On comparing equation (1.11) with the variance obtained by the CMC estimator i.e. 
𝜎2

𝑁
, we see that variance of 

antithetic variable is smaller by a quantity  1 + 𝜌 𝑓 𝑋𝑘 , 𝑓 𝑋 𝑘    and the amount of reduction in variance is depend 

crucially on negative correlation between the antithetic variable. 

Generally, the simulation run provide an output of the form 𝑋𝑘 = 𝑕(𝑉), where h is a real valued function and 

𝑉 =  𝑉1 , 𝑉2 , 𝑉3 , 𝑉4 , 𝑉5 , 𝑉6  is a random vector of form U(0,1). Suppose we choose another vector 𝑋 𝑘  from i.i.d. U(0, 

1), which is dependent upon 𝑋𝑘 , in such a way that 𝑋𝑘  and 𝑋 𝑘  are negatively correlated. Then the pair  𝑋𝑘 , 𝑋 𝑘  is 

said to be antithetic pair. 

 

Algorithm 1: Step by step Algorithm for estimating Antithetic variable for monotone function is given 

below:- 

Here, we use 𝑋𝑘  for 𝑓 𝑋𝑘  and 𝑋 𝑘  for 𝑓 𝑋 𝑘  (for simplicity) 

1. Generate  𝑋1 = 𝑕 𝑉1 , 𝑋2 = 𝑕 𝑉2 ……………𝑋𝑁
2 

= 𝑕  𝑉𝑁
2 
   

     Then 𝑋 1 = 𝑕 1 − 𝑉1 , 𝑋 2 = 𝑕 1 − 𝑉2 ……………𝑋 𝑁
2 

= 𝑕  1 − 𝑉𝑁
2 
  

2.  Compare the sample covariance matrix for pair  𝑋𝑘 , 𝑋 𝑘  

                     𝐶 =  

1

 𝑁 2 −1 
  𝑋𝑘 − 𝑋  2

𝑁
2 

𝑘=1
    

1
𝑁

2 
  𝑋𝑘 − 𝑋   𝑋 𝑘 − 𝑋   

𝑁
2 

𝑘=1

1
𝑁

2 
  𝑋𝑘 − 𝑋   𝑋 𝑘 − 𝑋   

𝑁
2 

𝑘=1

1

 𝑁 2 −1 
  𝑋 𝑘 − 𝑋   

2𝑁
2 

𝑘=1

  

3. The estimated value of antithetic variable is given by   𝐿 𝐴 =
1

𝑁
  𝑋𝑘 + 𝑋 𝑘 

𝑁
2 

𝑘=1
 

4. The  1 − 𝛼  confidence interval of 𝐿 𝐴 is given by    𝐿 𝐴 ± 𝑍1−𝛼
2 
𝑆. 𝐸  

 

Where, S.E is the estimated standard error and is given by   𝑆. 𝐸 =  
𝐶11 +𝐶22 +2𝐶12

2𝑁
 , where Cij’s are the element of 

matrix C and 𝑍𝛼  denotes the α-quantile of N (0, 1) distribution. 

Using 𝑁 = 104 , we get the estimated antithetic variable  𝐿 𝐴 = 1.6815 , with estimated relative error 0.2834, 
Correlation = -0.5224 and 95 % Confidence Interval: (-89.556, 92.919) and Elapsed time is 0.019000 seconds.  
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Figure 3:- This figure shows the high negative correlation between 𝑕 𝑉  and 𝑕 1 − 𝑉 , which means there is big 

reduction in simulation effort when compared to CMC. 

 

Control Variate:- 
The Control Variable Method [9] is another important and most common variance reduction technique used to 

reduce the variance of an estimate. Let 𝑋𝑘  be an unbiased estimator obtain from simulation run. A random 

variable 𝑋𝑘
′  , obtained from same simulation run, is said to be control variable of 𝑋𝑘  if the variable 𝑋𝑘  and 𝑋𝑘

′  are 

correlated and the expectation of 𝑋𝑘
′  is known in advance. 

 

Let 𝑋1 , 𝑋2 , 𝑋3 , ………𝑋𝑁  be the output of N independent simulation runs and let 𝑋1
′ , 𝑋2

′ , ……… 𝑋𝑁
′  are the 

corresponding control variable with 𝐸 𝑋𝑘
′  = Ɵ known. 

Here we consider a linear control estimator 

                                 𝐿 𝐶 = 𝑋𝑘 − 𝜆 𝑋𝑘
′ − 𝐸 𝑋𝑘

′    , Where, λ is a scalar quantity.         (1.12) 

The above equation can be rewritten as  

               𝐿 𝐶 = 𝑋𝑘 − 𝜆 𝑋𝑘
′ −Ɵ                                                         (1.13)  

The variance of L C is given by 

                v𝑎𝑟 𝐿 𝐶 = 𝑣𝑎𝑟 𝑋𝑘 − 𝜆 𝑋𝑘
′ −Ɵ                                                   (1.14)  

                                                                       = 𝑣𝑎𝑟 𝑋𝑘 + 𝜆2𝑣𝑎𝑟 𝑋𝑘
′ −Ɵ − 2𝜆𝑐𝑜𝑣 𝑋𝑘 , 𝑋𝑘

′ −Ɵ  

Since Ɵ is an unbiased estimator of 𝑋𝑘
′  

Therefore,                 𝑣𝑎𝑟 𝐿 𝐶 = 𝑣𝑎𝑟 𝑋𝑘 + 𝜆2𝑣𝑎𝑟 𝑋𝑘
′  − 2𝜆𝑐𝑜𝑣 𝑋𝑘 , 𝑋𝑘

′                       (1.15)  

To find the minimum value of λ, we differentiate equation (1.15) with respect to λ and after equating its derivative 

to zero we obtained 

                                                                
𝑑𝑣𝑎𝑟  𝐿 𝐶 

𝑑𝜆
= 0  

                                                      𝜆 =
𝑐𝑜𝑣  𝑋𝑘 ,𝑋𝑘

′  

𝑣𝑎𝑟  𝑋𝑘
′  

                                                                             (1.16)       

After substituting the value of λ in equation  1.15 , we get 

                                 𝑣𝑎𝑟 𝐿 𝐶 = 𝑣𝑎𝑟 𝑋𝑘 +  
𝑐𝑜𝑣  𝑋𝑘 ,𝑋𝑘

′  

𝑣𝑎𝑟  𝑋𝑘
′  

 
2

𝑣𝑎𝑟 𝑋𝑘
′  − 2

𝑐𝑜𝑣 2 𝑋𝑘 ,𝑋𝑘
′  

𝑣𝑎𝑟  𝑋𝑘
′  

  

                                                = 𝑣𝑎𝑟 𝑋𝑘 +
𝑐𝑜𝑣 2 𝑋𝑘 ,𝑋𝑘

′  

𝑣𝑎𝑟  𝑋𝑘
′  

− 2
𝑐𝑜𝑣 2 𝑋𝑘 ,𝑋𝑘

′  

𝑣𝑎𝑟  𝑋𝑘
′  
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                                               = 𝑣𝑎𝑟 𝑋𝑘  1 −  
𝑐𝑜𝑣  𝑋𝑘 ,𝑋𝑘

′  

 𝑣𝑎𝑟  𝑋𝑘   𝑣𝑎𝑟  𝑋𝑘
′  

 

2

                         (1.17) 

               𝑣𝑎𝑟 𝐿 𝐶 = 𝑣𝑎𝑟 𝑋𝑘  1 − 𝜌 𝑋𝑘 , 𝑋𝑘
′                                               (1.18) 

Where 𝜌 𝑋𝑘 , 𝑋𝑘
′   is the correlation coefficient between 𝑋𝑘  and 𝑋𝑘

′  

Here, from equation  1.18 , we can easily see that, if the value of 𝜌 is larger then there will be greater reduction in 

variance. 

 

Algorithm 2: Step by step Algorithm for estimating control variate:- 

1. Generate 𝑋1 , 𝑋2 , ……… , 𝑋𝑁  from n independent simulation runs and control variable 𝑋1
′ , 𝑋2

′ , ……… ,𝑋𝑁
′   

2. Compute the correlation between  𝑋𝑘  and 𝑋𝑘
′  

      C =  

1

 𝑁−1 
  𝑋𝑘 − 𝑋 𝑘 

2𝑁
𝑘=1     

1

 𝑁−1 
  𝑋𝑘 − 𝑋 𝑘  𝑋𝑘

′ − 𝑋 𝑘
′  𝑁

𝑘=1

1

 𝑁−1 
  𝑋𝑘 − 𝑋 𝑘  𝑋𝑘

′ − 𝑋 𝑘
′  𝑁

𝑘=1
1

 𝑁−1 
  𝑋𝑘

′ − 𝑋 𝑘
′  

2𝑁
𝑘=1

  

where,      𝐶 =  
𝐶11     𝐶12

𝐶21      𝐶22
  

      𝐶11 =
1

 𝑁−1 
  𝑋𝑘 − 𝑋 𝑘 

2𝑁
𝑘=1 ,𝐶12 = 𝐶21 =

1

 𝑁−1 
  𝑋𝑘 − 𝑋 𝑘  𝑋𝑘

′ − 𝑋 𝑘
′  𝑁

𝑘=1  and 𝐶22 =
1

 𝑁−1 
  𝑋𝑘

′ − 𝑋 𝑘
′  

2𝑁
𝑘=1  

3. Estimate Ɵ via control variable estimator 𝐿 𝐶   

Here 𝜆 =
𝑐𝑜𝑣  𝑋𝑘 ,𝑋𝑘

′  

𝑣𝑎𝑟  𝑋𝑘
′  

 , which implies 𝜆 =
𝐶12

𝐶22
 in terms of C matrix. 

4. Determine the (1-α) confidence interval   𝐿 𝐶 ± 𝑍1−𝛼
2 
𝑆. 𝐸  

       where,       𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐸𝑟𝑟𝑜𝑟 (𝑆. 𝐸) =  
1

𝑁
 1 −

𝐶12
2

𝐶11𝐶22
  

 

Control Variate Estimation of Stochastic Network Diagram:- 

Here we consider the same problem as used earlier in this chapter to explain the concept of control variable 

estimation i.e. fig 1. Using our current parameter d = (1, 2, 1, 4, 2, 3), we can easily seen that our control variable is 

given by 

 𝑋𝑘
′ = 𝑚𝑖𝑛 𝑌1 +  𝑌2 + 𝑌3 , 𝑌5 + 𝑌6 . 

 

i.e. the shortest path will have a length equal to  Xk
′  or most likely it will be 𝑌1 +  𝑌2 +  𝑌3, so that the latter would 

also be useful as a control variable. A little calculation gives us the expected value of 𝑋𝑘
′ = 1.7011. 

Here for a typical value N=104, estimated value of control variable is  𝐿 𝐶 = 1.68136 , RE is 0.2620 and 95% 

Confidence Interval: (1.82272, 1.82512), Elapsed time is 0.047000 seconds 

 

Figure 4:- Shows that there is highly positive correlation coefficient between 𝑋𝑘  and 𝑋𝑘
′  
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Importance Sampling:- 
Importance sampling [2] is the fundamental variance reduction technique used to improve MC Simulation. To 

explain IS technique let us consider the standard estimation quantity, as before in this paper, 

                            𝐿 = 𝐸𝑓 𝐺 𝑌    =  𝐺 𝑦 𝑓(𝑦)𝑑𝑦                                              (1.19)  

 

Here 𝐺 𝑌  is a real valued performance function and 𝑓  is probability density function of random variable Y. Here in 

equation  1.19  we use the subscript f to indicate that the above expectation is with respect to density f. 

Let us consider another probability density function h such that Gf is dominated by h, i.e.  𝑕 𝑦 = 0 ⇒ 𝐺(𝑦)𝑓(𝑦) =
0. 
 

Therefore equation (1.19) is rewritten as 

     𝐿 =  𝐺 𝑦 
𝑓 𝑦 

𝑕 𝑦 
𝑕 𝑦 𝑑𝑦                                       (1.20)   

      𝐿 = 𝐸𝑕𝐺 𝑦 𝑕 𝑦                                                    (1.21)  

 

In equation (1.21) subscript h means that, the expectation is w.r.t h, which is called IS density or Proposal density or 

Instrumental density (as h is used as an instrument to obtain information about L). 

If 𝑌1 , 𝑌2 , ……… ,𝑌𝑁  are i.i.d. random variable with density function h then the unbiased estimator of L given by 

𝐿 𝐼𝑆 =
1

𝑁
 𝐺 𝑌 

𝑓 𝑦 

𝑕 𝑦 
  is called IS estimator, which can also be written as   

            𝐿 𝐼𝑆 =
1

𝑁
 𝐺 𝑌 𝑙 𝑦                                                       (1.22)  

 

Where 𝑙 𝑦 =
𝑓 𝑦 

𝑕 𝑦 
,  is called likelihood ratio of f and h. In particular if 𝑓 𝑦 = 𝑕(𝑦) (i.e. no change of measure) 

then IS estimator become CMC estimator and provide the same result as in case of CMC. The choice of IS density h 

is so crucial for the variance of the estimator 𝐿 𝐼𝑆  in (1.22), next we consider the problem of minimizing the variance 

of an estimator  𝐿 𝐼𝑆 with respect to h, that is 

         𝑚𝑖𝑛𝑕𝑣𝑎𝑟𝑕  𝐺(𝑌)
𝑓(𝑦)

𝑕(𝑦)
                                                       (1.23)  

The solution of (1.23) is given by 

          𝑕∗ 𝑦 =
 𝐺(𝑦) 𝑓(𝑦)

  𝐺(𝑦) 𝑓(𝑦)
𝑑𝑦                                          (1.24)  

if  𝐺(𝑦) ≥ 0, then  

        𝑕∗ 𝑦 =    
𝐺 𝑌 𝑓 𝑦  

𝐿
                                            (1.25)     

and  

  𝑣𝑎𝑟𝑕∗ 𝐿 𝐼𝑆 = 𝑣𝑎𝑟𝑕∗ 𝐺 𝑌 𝑙 𝑦   = 𝑣𝑎𝑟𝑕∗ 𝐿 = 0 .  

Therefore the density 𝑔∗ in (1.24) and (1.25) is called optimal importance sampling density. 

 

Algorithm 3: Step by step Algorithm for estimation IS is given by:- 

1. First of all select an importance sampling density h that dominates Gf. 

2. Generate 𝑌1 , 𝑌2 , ……… , 𝑌𝑁    
𝑖. 𝑖. 𝑑.

~
  𝑔 and let 𝑍𝑖 = 𝐺 𝑌𝑖 

𝑓 𝑌𝑖 

𝑕 𝑌𝑖 
 , 𝑖 = 1,2…𝑁. 

3. Estimate 𝐿 𝐼𝑆 =
1

𝑁
 𝐺 𝑌 

𝑓 𝑦 

𝑕 𝑦 
  via L. 

4. Determine the (1-α) confidence interval as    𝐿 𝐼𝑆 ± 𝑍1−𝛼
2 
𝑆/ 𝑁 . 

 

where 𝑍𝛼  denotes the α-quantile of N (0, 1) distribution and S is the sample standard deviation of 

𝑍1 , 𝑍2 ,……… ,𝑍𝑁 .    
 

Importance Sampling Estimation of Stochastic Network Diagram:-  
We know that the expected value shortest path of undirected network diagram as shown in figure 1, is given by 

    𝐿 = 𝐸 𝐺(𝑉) =  𝐺(𝑣)𝑑𝑣                                          (1.26)  

Where 𝑉 =  𝑉1 , 𝑉2 , 𝑉3 , 𝑉4 , 𝑉5 , 𝑉6  and each 𝑉1 , 𝑉2 , 𝑉3 , 𝑉4 , 𝑉5 , 𝑉6   
𝑖. 𝑖. 𝑑

~
𝑈 0,1 . 

Thus its p.d.f is given by 

    𝑓 𝑣 = 1, 𝑣 𝜖 (0,1)6                                                   (1.27)  
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Here we suppose that the p.d.f of IS, that is under g is given by 

    𝑕 𝑣 =  𝑢𝑖𝑣𝑖
𝑢𝑖−16

𝑖=1                                                  (1.28)  

where each 𝑉𝑖  
𝑖𝑛𝑑.
∼

𝐵𝑒𝑡𝑎 𝑢𝑖 , 1 , 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑢𝑖 > 0 , 𝑖 = 1,2,…6. 

 

Here we can easily generate vector V under IS by using inverse transformation and a good choice of 𝑢𝑖  will always 

provide better result. MATLAB program is used for estimation of L using IS, for N=104 and using 

(𝑣1 , 𝑣2 , 𝑣3 , 𝑣4 , 𝑣5 , 𝑣6) = (1.1, 1.3, 1.1, 1, 1.1, 1.3)  we get a typical estimated value i.e. 𝐿 𝐼𝑆 = 1.6776 with an 
estimated relative error is 0.2363 and elapsed time is 0.047000 seconds. 

 

Conclusion:-  
In this paper we show that how we can improve the MC Simulation by using some important Variance Reduction 

Techniques. From the following table we can easily see that the CMC method gives us an estimated value 1.6827 
with estimated relative error of 0.4068. Importance Sampling (IS) technique provide better approximation by 

reducing the variance to great extend as compared to other variance reduction techniques i.e. Antithetic variable and 

Control Variate. When dealing with rare event probabilities AV and CV techniques not much of practical utility but 

IS technique leads to the dramatic reduction in variance sometimes up to millions as compared to just 10 times 

reduction by AV and CV. 

 

Variance  Reduction 

Techniques 

Estimates Relative Error (%) Time Elapsed (sec) 

Crude Montecarlo 1.6827 0.4068 0.334700 

Antithetic Variable 1.6815 0.2834 0.119000 

Control Variable 1.6813 0.2620 0.047000 

Importance Sampling 1.6776 0.2363 0.047000 
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