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In this study, we present a compartmental model for the spread of 

malaria in a population where group of individuals were vaccinated. 

The purpose of this paper is to analyze the transmission dynamics of 

Malaria by using the compartmental model, including ordinary 

differential equations for human host and mosquito vector populations. 

A parallel system is obtained, which has two equilibriums: a disease-

free equilibrium and an endemic equilibrium. The stability of the 

equilibrium points is verified by the basic reproduction number𝑅0 .  

Asymptotically stable solution is obtained only for disease-free 

equilibrium and results are presented graphically. 
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Introduction:- 
Malaria is most common in Africa. The disease prevails in warmer climates and in areas where there is abundance 

of humidity and rain. According to latest WHO estimates released in December 2015, there were 214 million cases 

of malaria in 2015 and 438,000 deaths. At present five known species of plasmodium exists which are; P falciparum, 

P vivax, P ovale, P malariae and P knowlesi among them P. falciparum is responsible for most fatal infection and is 

widespread in the tropics. Clinical symptoms of malaria include: high fever, muscle and joint aches, headache, 

vomiting, chills, sweating and anemia etc. Young children and travellers (who do not have developed immunity) are 

at high risk of malaria.  In highly endemic areas people develop a degree of acquired immunity which is boosted-up 

by new infections. Immunity lasts for a certain period in the absence of new infection. The duration of infection 

depends on many factors such as degree of infection, method and time of treatment, resistivity of parasite to drugs 

and biology of host. 

Mathematical modeling has been frequently used in epidemiology and several other fields. Epidemiological 

modeling is very helpful in identifying important model parameters and suggests improvements in models for future 

predictions. 

We modified the model of NidhiNirwani, R. Khandelwal and V.H. Badshah  by performing the stability analysis. 

The purpose of this study is better understanding the dynamics of malaria. 
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Description of Model:- 

Let NH and NV denote human and mosquito population respectively with total population at time t. We assume that 

human and mosquito population has constant size with birth and death rates equal to µH and µV.  

The human population of size NH is composed of Susceptible SH, Infective IH and Recovered RH whereas vector 

population consists of Susceptible SV and Infective IV. 

 
 

We say group of people ρ ,0 ≤ 𝜌 ≥ 1 of newborns host population  be vaccinated. Assume that vaccine is not 

perfect and let the effectiveness of vaccine is s, then µ
𝐻

(1− 𝜌𝑠)𝑁𝐻 newborns remain susceptible, and µ
𝐻
𝜌𝑠𝑁𝐻 

directly being removed to 𝑅𝐻. The governing equations are: 

 

Human population:- 
𝑑𝑆𝐻
𝑑𝑡

= µ
𝐻
 1− 𝜌𝑠 𝑁𝐻 −

𝑎𝑏𝑆𝐻𝐼𝑉
𝑁𝐻

+ 𝜈𝐼𝐻 + ϒ𝑅𝐻 − µ
𝐻
𝑆𝐻 

𝑑𝐼𝐻

𝑑𝑡
=

𝑎𝑏𝑆𝐻 𝐼𝑉

𝑁𝐻
− 𝜈𝐼𝐻 − 𝑟𝐼𝐻 − µ

𝐻
𝐼𝐻                                                (1)                                                                                   

𝑑𝑅𝐻
𝑑𝑡

= µ
𝐻
𝜌𝑠𝑁𝐻 + 𝑟𝐼𝐻 − ϒ𝑅𝐻 − µ

𝐻
𝑅𝐻 

 

Vector Population:- 

 
𝑑𝑆𝑉

𝑑𝑡
= µ

𝑉
𝑁𝑉 −

𝑎𝑐𝑆𝑉 𝐼𝐻

𝑁𝐻
− µ

𝑉
𝑆𝑉(2)                                                                                                          

𝑑𝐼𝑉
𝑑𝑡

=
𝑎𝑐𝑆𝑉𝐼𝐻
𝑁𝐻

− µ
𝑉
𝐼𝑉  

 

The human population of size NH is formed of susceptible SH, infective IH and recovered RH where vector population 

is composed of SH and IH. 

 

Table 2.1:- Description of parameters of the model. 

Variables Interpretation 

a The average infection rate on man by single mosquito. 

b The proportion of bites on man that produce an infection. 

c The probability that a mosquito becomes infectious. 

ϒ The per capita rate of loss of immunity in human hosts. 

r The rate at which human hosts acquire immunity. 

ν The rate of recovery of human hosts from the disease. 

 

Using 𝑆𝐻 + 𝐼𝐻 + 𝑅𝐻 = 𝑁𝐻  and  𝑆𝑉 + 𝐼𝑉 = 𝑁𝑉 , eqs (1) and (2) become 
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𝑑𝑆𝐻
𝑑𝑡

= µ
𝐻
 1− 𝜌𝑠 𝑁𝐻 −

𝑎𝑏𝑆𝐻𝐼𝑉
𝑁𝐻

+ 𝜈𝐼𝐻 + ϒ(𝑁𝐻 + 𝑆𝐻 + 𝐼𝐻) − µ
𝐻
𝑆𝐻  

𝑑𝐼𝐻

𝑑𝑡
=

𝑎𝑏𝑆𝐻 𝐼𝑉

𝑁𝐻
− 𝜈𝐼𝐻 − 𝑟𝐼𝐻 − µ

𝐻
𝐼𝐻                                                                             (3)                                                                                     

𝑑𝐼𝑉
𝑑𝑡

=
𝑎𝑐𝐼𝐻(𝑁𝑉 − 𝐼𝑉)

𝑁𝐻
− µ

𝑉
𝐼𝑉  

Writing the eq (2.3) in population proportion 

𝑆ℎ =
𝑆𝐻

𝑁𝐻
 , 𝐼ℎ =

𝐼𝐻

𝑁𝐻
and 𝐼𝑣 =

𝐼𝑉

𝑁𝑉
 ,  

𝑑𝑆ℎ
𝑑𝑡

= µ
𝐻
 1 − 𝜌𝑠 − 𝑎𝑏𝜙𝑆ℎ𝐼𝑣 + 𝜈𝐼ℎ + ϒ− ϒ 𝑆ℎ + 𝐼ℎ − µ

𝐻
𝑆ℎ  

𝑑𝐼ℎ

𝑑𝑡
= 𝑎𝑏𝜙𝑆ℎ𝐼𝑣 − 𝜈𝐼ℎ − 𝑟𝐼ℎ − µ

𝐻
𝐼ℎ                                                                                 (4)                                                                                         

𝑑𝐼𝑣
𝑑𝑡

= 𝑎𝑐𝐼ℎ 1 − 𝐼𝑣 − µ
𝑣
𝐼𝑣 

Where 𝜙 =
𝑁𝑉

𝑁𝐻
  is the ratio of host and vector population.  

Further we rescale t by ac and let𝑥 = 𝑆ℎ , 𝑦 = 𝐼ℎand  𝑧 = 𝐼𝑣  
𝑑𝑥

𝑑𝑡
= µ 1 − 𝑥 − 𝜍𝑥 − 𝜂𝑥𝑧 + 𝑘𝑦+ 𝜑 − 𝜑𝑦 

𝑑𝑦

𝑑𝑡
= 𝜂𝑥𝑧 − (𝑘 +𝑚)𝑦                                                                                          (5)                                                                                                      

𝑑𝑧

𝑑𝑡
= 𝑦 1 − 𝑧 − 𝜔𝑧 

Where 

µ =
µ𝐻

𝑎𝑐
,  𝜋 = 𝜌𝑠, 𝜂 =

𝑏ɸ

𝑐
,  𝑚 =

µ𝐻+𝑟

𝑎𝑐
, 𝜔 =

µ𝑉

𝑎𝑐
,  𝑘 =

𝜈

𝑎𝑐
, 𝜍 =

µ𝐻+ϒ

𝑎𝑐
, 𝜑 =

ϒ

𝑎𝑐
 

 

Euler Method:- 

Values of parameters used were𝛽 = 0.000318  and 𝜇 = 0.0175 and the initial conditions were   S (0) =460, I (0) 

=12, R (0) =0 

 

The Euler method 

 

 
𝑤0 = 𝛼

𝑤𝑖+1 = 𝑤𝑖 + ℎ𝑓 𝑡𝑖 ,𝑤𝑖 
    ,   𝑖 = 0, 1, 2,……… . . ,𝑁 − 1   

 

The time interval was [0 90] and N=10 so 

h = 
𝑏−𝑎

𝑁
 

h=
90−0

10
 = 9 

𝑡0 = 0,𝑡1 = 9, 𝑡2 = 18, 𝑡3 = 27,……….., 𝑡10 = 90 

𝑤0 =  
𝑆 0 

𝐼 0 

𝑅(0)
 =  

460
12
0
 =  

𝑤1,0

𝑤2,0

𝑤3,0

  

Iteration-1       for   i= 0 

𝑤1 = 𝑤0 + ℎ𝑓 𝑡0,𝑤0  
 

𝑤1 =  

𝑤1,0

𝑤2,0

𝑤3,0

 + ℎ𝑓(0,𝑤0) 

 

𝑤1 =  
460
12
0
 + 9 

−0.00038
−0.20962

0.21
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Steady State And Equilibrium Points:- 

The system (5) has a disease-free equilibrium point E0 (
µ 1−𝜋 +𝜑

𝜍
, 0, 0) and an endemic equilibrium point  E1(xe,ye 

,ze) , where 

𝑥𝑒 =
 𝑘 + 𝑚 [µ 1− 𝜋 + 𝜑 + (𝑚 + 𝜑)𝜔]

𝜂(𝑚+ 𝜑) + 𝜍(𝑘 + 𝑚)
 

=
 𝜈 + µ

𝐻
+ 𝑟 [𝑎𝑐{µ

𝐻
 1− 𝜌𝑠 + ϒ} + (µ

𝐻
+ 𝑟)µ

𝑉
]

𝑎𝑐[𝑎𝑏𝜙 µ
𝐻

+ 𝑟 + ϒ + (µ
𝐻

+ ϒ)(𝜈 + µ
𝐻

+ 𝑟)]
 

𝑦𝑒 =
𝜂[µ 1− 𝜋 + 𝜑]− 𝜍(𝑘 + 𝑚)𝜔

𝜂(𝑚+ 𝜑) + 𝜍(𝑘 + 𝑚)
 

=
𝑎2𝑏𝑐𝜙[µ

𝐻
 1− 𝜌𝑠 + ϒ] − (µ

𝐻
+ ϒ)(𝜈 + µ

𝐻
+ 𝑟)µ

𝑉

𝑎𝑐[𝑎𝑏𝜙 µ
𝐻

+ 𝑟 + ϒ + (µ
𝐻

+ ϒ)(𝜈 + µ
𝐻

+ 𝑟)]
 

𝑧𝑒 =
𝜂[µ 1− 𝜋 + 𝜑] − 𝜍(𝑘 +𝑚)𝜔

𝜂[µ 1− 𝜋 + 𝜑 + (𝑚 + 𝜑)𝜔]
 

=
𝑎2𝑏𝑐𝜙[µ

𝐻
 1− 𝜌𝑠 + ϒ] − (µ

𝐻
+ ϒ)(𝜈 + µ

𝐻
+ 𝑟)µ

𝑉

𝑎𝑏𝜙[𝑎𝑐{µ
𝐻
 1− 𝜌𝑠 + ϒ} + (𝜈 + µ

𝐻
+ 𝑟)µ

𝑉
]

 

 

 

This has been obtained by setting the time derivatives of the Eq (5) equal to zero. Here the basic reproduction 

number R0 is defined by 

𝑅0 =
𝜂[µ 1− 𝜋 + 𝜑]

𝜍(𝑘 +𝑚)𝜔
=
𝑎2𝑏𝑐𝜙[µ

𝐻
 1− 𝜌𝑠 + ϒ]

(µ
𝐻

+ ϒ)(𝜈 + µ
𝐻

+ 𝑟)µ
𝑉

 

And an endemic equilibrium E1 (xe , ye , ze) is stable when 

𝑅0 =
𝜂[µ 1− 𝜋 + 𝜑]

𝜍(𝑘 +𝑚)𝜔
> 0 

 

𝑤1 =  
459.99658
10.11342

1.89

  

 

Asymptotic Behaviour Of The Model:- 

Theorem 1: If R0<1, then the disease-free equilibrium is locally E0 is locally stable and if R0=1, E0 is stable. 

Proof: 

To discuss the stability of the model, the governing dynamical system is 

𝐹1 = µ 1 − 𝜋 − 𝜍𝑥 − 𝜂𝑥𝑧 + 𝑘𝑦+ 𝜑 − 𝜑𝑦                                                (6) 

𝐹2=𝜂𝑥𝑧 − 𝑘𝑦 −𝑚𝑦                                                                                        (7) 

𝐹3 = 𝑦 1 − 𝑧 − 𝜔𝑧                                                                                       (8) 

The variation matrix of the above system is given by 

𝐽 =  
−𝜍 − 𝜂𝑧 𝑘 − 𝜑 −𝜂𝑥
𝜂𝑧 −𝑘 − 𝑚 𝜂𝑥
0 1 − 𝑧 −𝑦 − 𝜔

  

For disease free equilibrium E0 (
µ 1−𝜋 +𝜑

𝜍
, 0, 0) the variation matrix will be 

𝐽 𝐸0 =

 
 
 
 
 −𝜍 𝑘 − 𝜑

−𝜂[µ 1− 𝜋 + 𝜑]

𝜍

0 −𝑘 − 𝑚
𝜂[µ 1− 𝜋 + 𝜑]

𝜍
0 1 −𝜔  

 
 
 
 

 

The characteristic equation of it will be 

 𝜍 + 𝜆  𝜆2 +  𝑘 +𝑚 + 𝜔 𝜆 + (𝑘 +𝑚)𝜔 −
𝜂[µ 1−𝜋 +𝜑]

𝜍
 = 0 (9) 

By the above equation at eigenvalues, one can easily see that disease-free equilibrium E0 is locally stable if 
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(𝑘 +𝑚)𝜔 −
𝜂[µ 1− 𝜋 + 𝜑]

𝜍
> 0 

i.e., R0<1 

 
Stability of disease-free equilibrium:- 

The assumed values of all the parameters are given in the table below: 

Parameters Values 

µ 1.16 

η 0.00492 

𝜋 0.009 

σ 2.1724 

ϕ 0.9 

k 0.0026 

ω 1 

m 0.011 

 

With initial conditions  𝑥 0 ,𝑦 0 ,𝑧 0  = (0.5,0.5,0.4) 

After substituting the values in equation (4.4) we get; 
 2.1724 + 𝜆  𝜆2 + 1.0136𝜆 + 0.0089 = 0(10) 

Where, 

𝜆1 = −2.1724 

𝜆2 = −0.0089 

𝜆3 = −1.00475 

We see all Eigen values are real and negative, also  𝑅0 =  0.3413084471 <  1 , so the system is stable. 

 

 

Stability of disease-free equilibrium:- 

Taking equations (6) and (7); the variation matrix is given by 

𝐽1 =  
−𝜍 − 𝜂𝑧 𝑘 − 𝜑
𝜂𝑧 −𝑘 −𝑚

  

For disease free equilibrium E0 (
µ 1−𝜋 +𝜑

𝜍
, 0, 0) the variation matrix will be 

𝐽1 =  
−𝜍 𝑘 − 𝜑
0 −𝑘 − 𝑚

  

 And putting the values from the table of disease-free equilibrium, we will get the following linear system; 

𝑥 = −2.1724𝑥 − 0.89747𝑦 

𝑦 = −0.0136𝑦 
Now we take the graph of above equation through p-plane 
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Now, taking equations (6) and (7); the variation matrix is given by 

 

𝐽2 =  
−𝑘 − 𝑚 𝜂𝑥

1 − 𝑧 −𝑦 − 𝜔
  

 

For disease free equilibrium E0 (
µ 1−𝜋 +𝜑

𝜍
, 0, 0) the variation matrix will be 

𝐽1 =  −𝑘 −𝑚
𝜂[µ 1− 𝜋 + 𝜑]

𝜍
1 −𝜔

  

 

 And putting the values from the table of disease-free equilibrium, we will get the following linear system; 

 

𝑦 = −0.0136𝑦+ 0.004047𝑧 
𝑧 = 𝑦 − 𝑧 

 

Now we take the graph of above equation through p-plane 

 

 
 

Now, taking equations (6) and (9); the variation matrix is given by 

 

𝐽3 =  
−𝜍 − 𝜂𝑧 𝜂𝑥

0 −𝑦 − 𝜔  

 

For disease free equilibrium E0 (
µ 1−𝜋 +𝜑

𝜍
, 0, 0) the variation matrix will be 

 

𝐽1 =  −𝜍
𝜂[µ 1− 𝜋 + 𝜑]

𝜍
0 −𝜔

  

 

 And putting the values from the table of disease-free equilibrium, we will get the following linear system; 

 

𝑥 = −2.1724𝑥 + 0.004047𝑧 
𝑧 = −𝑧 

 

Now we take the graph of above equation through p-plane 
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Conclusion 

In this paper we present compartmental model for spread of malaria. An identical system is obtained which has two 

equilibrium points; a disease-free equilibrium and an endemic equilibrium. We discussed the stability of the disease-

free equilibrium point numerically by computing Eigen-values and by using basic reproduction number. Further we 

perform stability analysis and graphically verify our results. All the graph indicate that the system is stable.  

Future Work 

The model presented here is multi-dimensional. In future we can perform stability analysis for endemic-equilibrium. 

Furthermore we can establish these results by using any of the numerical methods.  Also we can work on its 

sensitivity analysis and parameter estimation. 
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