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Introduction 
Suppose ∑𝑎𝑛  is an infinite series with sequence of partial sums {𝑠𝑛 } where 𝑠𝑛  is defined by 𝑠𝑛 = 𝑎0 + 𝑎1 + ⋯ + 𝑎𝑛 . 

Also, let 𝑢𝑛 = 𝑛𝑎𝑛 . Let 𝜎𝑛  denotes the 𝑛𝑡ℎ  Cesàro means of order 1 of the sequence {𝑠𝑛 } and 𝑡𝑛  denotes the 𝑛𝑡ℎ  

Cesàro means of order 1 of the sequence  𝑢𝑛  . 
            In Order to appreciate the work already done in this field, we require the following definitions: 

Definition 1.1  The series ∑𝑎𝑛  is said to be absolutely summable (𝐶, 1) of order k or simply summable  𝐶, 1 𝑘, if  

(cf, [3]) 

∑ 𝑛𝑘−1∞
𝑛=1  𝜎𝑛 − 𝜎𝑛−1 𝑘 < ∞                                                                                                                                    (1.1)                    

Since 𝑡𝑛 = 𝑛 𝜎𝑛 − 𝜎𝑛−1 (cf. [5]) , condition (1.1) can also be written as , 

∑
1

𝑛
 𝑡𝑛  𝑘 < ∞∞

𝑛=1                                                                                                                                                        (1.2) 

Let (𝑝𝑛 ) be a sequence of positive real numbers such that 

𝑃𝑛 = ∑ 𝑝𝜈 → ∞,𝑛
𝜈=0 as𝑛 → ∞ (𝑃−1 = 𝑝−1 = 0  )                                                                                                        (1.3) 

The sequence-to-sequence transformation 

𝑇𝑛 =
1

𝑃𝑛
∑ 𝑝𝜈𝑠𝜈

𝑛
𝜈=0                                                                                                                                                       (1.4) 

Defines the sequence (𝑇𝑛 ) of the Riesz means or simply  𝑁 , 𝑝𝑛  mean of the sequence (𝑠𝑛 ) generated by the 

sequence of coefficients (𝑝𝑛 ). 

Definition 1.2 The series ∑𝑎𝑛  is said to be summable  𝑁 , 𝑝𝑛  𝑘   𝑘 ≥ 1,if  (cf. [4] ) 

    ∑  
𝑃𝑛

𝑝𝑛
 
𝑘

 𝑇𝑛 − 𝑇𝑛−1 𝑘 < ∞  ∞
𝑛=1                                                                          (1.5) 

In the special case 𝑝𝑛 = 1, for all values of n,  𝑁 , 𝑝𝑛  𝑘  summability is same as  𝐶, 1 𝑘 

summability. Let (𝜃𝑛 ) be any sequence of positive constants. 

Definition  1.3The series ∑𝑎𝑛  is said to be summable  𝑁 , 𝑝𝑛 , 𝜃𝑛  𝑘 , 𝑘 ≥ 1, if  (cf. [6] ) 

∑ 𝜃𝑛
𝑘−1 𝑇𝑛 − 𝑇𝑛−1 𝑘 < ∞  ∞

𝑛=1                                                                                                                                    (1.6) 

2. Results already proved. 

Refer the results concerning the relationship between  𝑁 , 𝑝𝑛  𝑘  summability and  𝐶, 1 𝑘 summability. 
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Theorem 2.1 (cf. [1]) Let  𝑝𝑛  be a sequence of positive real constants such that, as 𝑛 → ∞, 
(i) 𝑛𝑝𝑛 = 𝑂(𝑃𝑛 )        (ii)     𝑃𝑛 = 𝑂(𝑛𝑝𝑛 )                                                 (2.1) 

If ∑𝑎𝑛  is summable  𝐶, 1 𝑘 , then it is also summable  𝑁 , 𝑝𝑛  𝑘 ,   𝑘 ≥ 1. 

Theorem 2.2 (cf. [2]) Let(𝑝𝑛 ) be a sequence of positive real constants such that  it satisfies the condition (2.1). If 

∑𝑎𝑛  is summable  𝑁 , 𝑝𝑛  𝑘 , then it is also summable  𝐶, 1 𝑘 ,   𝑘 ≥ 1. 

Theorem 2.3 (cf. [2]) Suppose(𝑝𝑛 ) is a sequence of non-negative real constants such that 𝑃𝑛 = ∑ 𝑝𝜈 ≠ 0,   𝑃𝑛 →𝑛
𝜈=0

∞, as 𝑛 → ∞, and that (2.1) holds. Then summability 𝐶, 1 𝑘 is equivalent to summability  𝑁 , 𝑝𝑛  𝑘 , 𝑘 ≥ 1. 
3. Main result 

We now state our main theorem which is an extension of Theorem 2.3 with simple set of conditions. 

Theorem 3.1Let (𝑝𝑛 ) be a sequence of positive real numbers such that𝑃𝑛 = ∑ 𝑝𝜈 ≠ 0,   𝑃𝑛 → ∞,𝑛
𝜈=0  as 𝑛 → ∞, and 

that it satisfies condition (2.1). Let (𝜃𝑛 ) be any sequence of positive real numbers satisfying following conditions 

𝑛 = 𝑂(𝜃𝑛 )                                                                                                                                                                 (3.1) 
1

𝑛
= 𝑂(

1

𝜃𝑛
)                                                                                                                                                                  (3.2) 

𝑃𝑛

𝑝𝑛
= 𝑂(𝜃𝑛 )                                                                                                                                                                (3.3) 

𝜃𝑛 = 𝑂  
𝑃𝑛

𝑝𝑛
                                                                                                                                                                (3.4) 

Then summability 𝐶, 1 𝑘 , is equivalent to summability  𝑁 , 𝑝𝑛 , 𝜃𝑛  𝑘 , 𝑘 ≥ 1. 
Proof of Theorem 3.1 

We first establish that  𝑁 , 𝑝𝑛 , 𝜃𝑛  𝑘 ⊂  𝐶, 1 𝑘 𝑘 ≥ 1 . 

We have                                𝑇𝑛 =
1

𝑃𝑛
∑ 𝑝𝑖𝑠𝑖

𝑛
𝑖=0  

                                                   =
1

𝑃𝑛
∑ 𝑝𝑖 ∑ 𝑎𝜈

𝑖
𝜈=0

𝑛
𝑖=0  

                                                   = 
1

𝑃𝑛
∑ 𝑎𝜈 ∑ 𝑝𝑖

𝑛
𝑖=𝜈

𝑛
𝜈=0  

                                                   = 
1

𝑃𝑛
∑  𝑃𝑛 − 𝑃𝜈−1 𝑎𝜈

𝑛
𝜈=0       (𝑃−1 = 0, by convention) 

Consider,                        Δ𝑇𝑛−1 = 𝑇𝑛 − 𝑇𝑛−1 

                                                   = 
1

𝑃𝑛
∑  𝑃𝑛 − 𝑃𝜈−1 𝑎𝜈

𝑛
𝜈=0 − 

1

𝑃𝑛−1
∑  𝑃𝑛−1 − 𝑃𝜈−1 𝑎𝜈

𝑛−1
𝜈=0  

                                                  = [
1

𝑃𝑛−1
−

1

𝑃𝑛
] ∑ 𝑃𝜈−1𝑎𝜈

𝑛
𝜈=1  

                                                  = 
𝑝𝑛

𝑃𝑛𝑃𝑛−1
∑ 𝑃𝜈−1𝑎𝜈

𝑛
𝜈=1  

                             
𝑃𝑛𝑃𝑛−1

𝑝𝑛
Δ𝑇𝑛−1 =   ∑ 𝑃𝜈−1𝑎𝜈

𝑛
𝜈=1    

                          
𝑃𝑛−1𝑃𝑛−2

𝑝𝑛−1
Δ𝑇𝑛−2 =   ∑ 𝑃𝜈−1𝑎𝜈

𝑛−1
𝜈=1   

                  Hence,               𝑎𝑛 =
𝑃𝑛

𝑝𝑛
Δ𝑇𝑛−1 −

𝑃𝑛−2

𝑝𝑛−1
Δ𝑇𝑛−2 ,   𝑛 ≥ 1.                                                                         (3.5) 

It may be easily seen that (3.5) also holds for n=1, since in this case 𝑃−1 = 0. 

By 𝑡𝑛 , we denote the 𝑛𝑡ℎ  (C,1) mean of the sequence (𝑛𝑎𝑛 ) i.e.   𝑡𝑛 =  
1

𝑛+1
∑ 𝜈𝑎𝜈

𝑛
𝜈=1  

Since, by (3.5)                 𝑎𝜈 =
𝑃𝜈

𝑝𝜈
Δ𝑇𝜈−1 −

𝑃𝜈−2

𝑝𝜈−1
Δ𝑇𝜈−2 ,    

So                                    𝑡𝑛   =  
1

𝑛+1
∑ 𝜈(

𝑃𝜈

𝑝𝜈
Δ𝑇𝜈−1 −

𝑃𝜈−2

𝑝𝜈−1
Δ𝑇𝜈−2)𝑛

𝜈=1  

         =  
1

𝑛+1
∑ 𝜈𝑛−1

 𝜈=1
𝑃𝜈

𝑝𝜈
Δ𝑇𝜈−1 +

𝑛𝑃𝑛

 𝑛+1 𝑝𝑛
Δ𝑇𝑛−1 −

1

𝑛+1
∑ 𝜈

𝑃𝜈−2

𝑝𝜈−1
Δ𝑇𝜈−2

𝑛
𝜈=1   

                                              = 
1

𝑛+1
 ∑ 𝜈

𝑃𝜈

𝑝𝜈
Δ𝑇𝜈−1 −𝑛−1

𝜈=1 ∑  𝜈 + 1 
𝑃𝜈−1

𝑝𝜈
Δ𝑇𝜈−1

𝑛−1
𝜈=1  +

𝑛𝑃𝑛

 𝑛+1 𝑝𝑛
Δ𝑇𝑛−1 

                                              =
1

𝑛+1
{∑

1

𝑝𝜈
Δ𝑇𝜈−1[𝜈𝑃𝜈 −  𝜈 + 1 𝑃𝜈−1]𝑛−1

𝜈=1 }+
𝑛𝑃𝑛

 𝑛+1 𝑝𝑛
Δ𝑇𝑛−1 

Since      𝜈𝑃𝜈 −  𝜈 + 1 𝑃𝜈−1 = 𝜈𝑃𝜈 −  𝜈 + 1  𝑃𝜈 − 𝑝𝜈 =  𝜈 + 1 𝑝𝜈 − 𝑃𝜈  

We  have,                         𝑡𝑛  =  
1

𝑛+1
{∑

1

𝑝𝜈
Δ𝑇𝜈−1[ 𝜈 + 1 𝑝𝜈 − 𝑃𝜈 ]𝑛−1

𝜈=1 }+
𝑛𝑃𝑛

 𝑛+1 𝑝𝑛
Δ𝑇𝑛−1 

                                              =
1

𝑛+1
∑  𝜈 + 1 Δ𝑇𝜈−1 −

1

𝑛+1
∑

𝑃𝜈

𝑝𝜈
Δ𝑇𝜈−1 +

𝑛𝑃𝑛

 𝑛+1 𝑝𝑛
Δ𝑇𝑛−1

𝑛−1
𝜈=1

𝑛−1
𝜈=1  

                                              =  𝑡𝑛1 + 𝑡𝑛2 + 𝑡𝑛3                     (say) 

To prove the theorem, by Minkowski’s inequality it is sufficient to show that 

                        ∑
1

𝑛
 𝑡𝑛𝑟  𝑘 < ∞  ∞

𝑛=1 for  r = 1,2,3.        
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Now by applying Hölder’s inequality, we have 

                            ∑
1

𝑛
 𝑡𝑛1 𝑘 =   ∑

1

𝑛
 

1

𝑛+1
∑  𝜈 + 1 Δ𝑇𝜈−1

𝑛−1
𝜈=1  

𝑘
𝑚+1
𝑛=2

𝑚+1
𝑛=2   

                                                          = ∑
1

𝑛
 

1

𝑛+1
∑

𝜈+1

ν
 νΔ𝑇𝜈−1

𝑛−1
𝜈=1  

𝑘
𝑚+1
𝑛=2   

                                                          = 𝑂(1) ∑
1

𝑛𝑘+1
 ∑ 𝜈 Δ𝑇𝜈−1 𝑛−1

𝜈=1  𝑘𝑚+1
𝑛=2   

                                                         = 𝑂(1) ∑
1

𝑛2
∑ 𝜈𝑘  Δ𝑇𝜈−1 𝑘𝑛−1

𝜈=1 ×  
1

𝑛
∑ 1𝑛−1

𝜈=1  
𝑘−1

𝑚+1
𝑛=2   

                                                          =   𝑂 1 ∑
1

𝑛2
∑ 𝜈𝑘  Δ𝑇𝜈−1 𝑘𝑛−1

𝜈=1
𝑚+1
𝑛=2   

                                                   =   𝑂(1) ∑ 𝜈𝑘  Δ𝑇𝜈−1 𝑘 ∑
1

𝑛2
𝑚+1
𝑛=𝜈+1

𝑚
𝜈=1   

                                                   =   𝑂 1 ∑ 𝜈𝑘  Δ𝑇𝜈−1 𝑘
1

𝜈

𝑚
𝜈=1   

                                                   =   𝑂(1) ∑ 𝜈𝑘−1 Δ𝑇𝜈−1 𝑘𝑚
𝜈=1   

                                                   =   𝑂(1) ∑ 𝜃𝜈
𝑘−1 Δ𝑇𝜈−1 𝑘𝑚

𝜈=1     (By (3.1))   

                                                   =   𝑂 1 as  m→∞. 

Again, by applying Hölder’s inequality, we have  

                           ∑
1

𝑛
 𝑡𝑛2 𝑘𝑚+1

𝑛=2 =  ∑
1

𝑛
 

1

𝑛+1
∑

𝑃𝜈

𝑝𝜈
Δ𝑇𝜈−1

𝑛−1
𝜈=1  

𝑘
𝑚+1
𝑛=2   

                                                  ≤ ∑
1

𝑛𝑘+1  ∑
𝑃𝜈

𝑝𝜈
 Δ𝑇𝜈−1 𝑛−1

𝜈=1  
𝑘

𝑚+1
𝑛=2   

                                                  ≤  ∑
1

𝑛2
∑  

𝑃𝜈

𝑝𝜈
 
𝑘
 Δ𝑇𝜈−1 𝑘𝑛−1

𝜈=1 ×  
1

𝑛
∑ 1𝑛−1

𝜈=1  
𝑘−1

𝑚+1
𝑛=2   

                                                  =   𝑂(1) ∑
1

𝑛2
∑  

𝑃𝜈

𝑝𝜈
 
𝑘

 Δ𝑇𝜈−1 𝑘𝑛−1
𝜈=1

𝑚+1
𝑛=2   

                                                  =  𝑂 1 ∑  
𝑃𝜈

𝑝𝜈
 
𝑘

𝑚
𝜈=1  Δ𝑇𝜈−1 𝑘 ∑

1

𝑛2
𝑚+1
𝑛=𝜈+1   

                                                  =   𝑂(1) ∑  
𝑃𝜈

𝑝𝜈
 
𝑘 1

𝜈
 Δ𝑇𝜈−1 𝑘𝑚

𝜈=1   

                                                  =   𝑂(1) ∑ 𝜃𝜈
𝑘 1

𝜃𝜈
 Δ𝑇𝜈−1 𝑘𝑚

𝜈=1         (By (3.2) and (3.3)) 

                                                  =   𝑂(1) ∑ 𝜃𝜈
𝑘−1 Δ𝑇𝜈−1 𝑘𝑚

𝜈=1    

                                                  =   𝑂 1     as  𝑚 → ∞ 

Finally, by applying Hölder’s inequality, we have 

                           ∑
1

𝑛
 𝑡𝑛3 𝑘  =   ∑

1

𝑛
 

𝑛𝑃𝑛

 𝑛+1 𝑝𝑛
Δ𝑇𝑛−1 

𝑘
𝑚
𝑛=1

∞
𝑛=1   

                                                  = 𝑂 1 ∑
1

𝑛
 
𝑃𝑛

𝑝𝑛
 
𝑘

𝑚
𝑛=1  Δ𝑇𝑛−1 𝑘   

                                                  =   𝑂(1) ∑ 𝜃𝑛
𝑘−1 Δ𝑇𝑛−1 𝑘𝑚

𝑛=1             (By (3.2) and (3.3)) 

                                                  =   𝑂 1   as  𝑚 → ∞ 

Therefore from above estimates, we finally  arrive at the  conclusion that  

                           ∑
1

𝑛
 𝑡𝑛𝑟  𝑘  =   𝑂(1)𝑚

𝑛=1 as  m→∞, for r = 1,2,3. 

                          So ,∑
1

𝑛
 𝑡𝑛  𝑘 < ∞∞

𝑛=1  

Hence  ∑𝑎𝑛  is summable  𝐶, 1 𝑘  

Conversely, we shall now establish the following inclusion: 𝐶, 1 𝑘 ⊂  𝑁 , 𝑝𝑛 , 𝜃𝑛  𝑘 , 𝑘 ≥ 1 

We  have                                 𝑇𝑛  =   
1

𝑃𝑛
∑ 𝑝𝜈𝑠𝜈  =   

1

𝑃𝑛
∑  𝑃𝑛 − 𝑃𝜈−1 𝑎𝜈 .𝑛

𝜈=0
𝑛
𝜈=0                                                            (3.6) 

Therefore                𝑇𝑛 − 𝑇𝑛−1  =   
𝑝𝑛

𝑃𝑛𝑃𝑛−1
∑ 𝑃𝜈−1𝑎𝜈 =  

𝑝𝑛

𝑃𝑛 𝑃𝑛−1
∑ 𝑃𝜈−1𝜈−1𝜈𝑎𝜈 .𝑛

𝜈=1
𝑛
𝜈=1                                               (3.7) 

By applying Abel’s partial summation summation formula to the sum  ∑ 𝑃𝜈−1𝜈−1𝜈𝑎𝜈 ,𝑛
𝜈=1  we get 

                    ∑ 𝑃𝜈−1𝜈−1𝜈𝑎𝜈
𝑛
𝜈=1 =   ∑ {𝑃𝜈−1𝜈−1 − 𝑃𝜈 𝜈 + 1 −1} ∑ 𝑖𝑎𝑖 +  𝑃𝑛−1𝑛−1 ∑ 𝑖𝑎𝑖

𝑛
𝑖=1

𝜈
𝑖=1

𝑛−1
𝜈=1   

                                                  =  ∑  𝑃𝜈−1𝜈−1 − 𝑃𝜈𝜈−1 + 𝑃𝜈𝜈−1 − 𝑃𝜈 𝜈 + 1 −1  𝜈 + 1 𝑡𝜈 +
𝑛+1

𝑛
𝑃𝑛−1𝑡𝑛

𝑛−1
𝜈=1  

                                                  =  ∑ {−𝑝𝜈
𝑛−1
𝜈=1 𝜈−1 + 𝑃𝜈𝜈−1 𝜈 + 1 −1} 𝜈 + 1 𝑡𝜈 +

𝑛+1

𝑛
𝑃𝑛−1𝑡𝑛   

                                                  =  ∑ −𝑝𝜈
𝑛−1
𝜈=1 𝜈−1 𝜈 + 1 𝑡𝜈 + ∑ 𝑃𝜈

𝑛−1
𝜈=1 𝜈−1𝑡𝜈 +

𝑛+1

𝑛
𝑃𝑛−1𝑡𝑛   

Referring (3.7),  we get 

                                  𝑇𝑛 − 𝑇𝑛−1  =  
𝑝𝑛

𝑃𝑛𝑃𝑛−1
∑ − 𝜈 + 1 𝜈−1𝑝𝜈𝑡𝜈 +𝑛−1

𝜈=1
𝑝𝑛

𝑃𝑛𝑃𝑛−1
∑ 𝜈−1𝑃𝜈𝑡𝜈 +  

𝑛+1

𝑛
 

𝑝𝑛

𝑃𝑛
𝑡𝑛

𝑛−1
𝜈=1   
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                                                     =   𝑡𝑛1 + 𝑡𝑛2 + 𝑡𝑛3,                         (say) 

To prove the theorem, by Minkowski’s inequality, it is enough if we show that 

                         ∑ 𝜃𝑛
𝑘−1 𝑡𝑛,𝑟  

𝑘
< ∞,∞

𝑛=1  for  r = 1,2,3.                                                                                                (3.8)                                                                                                                  

Now by using Hölder’s inequality, we have  

                         ∑ 𝜃𝑛
𝑘−1 𝑡𝑛1 𝑘 = 𝑂(1) ∑  

𝑃𝑛

𝑝𝑛
 

𝑘−1
 𝑡𝑛1 𝑘𝑚+1

𝑛=2
𝑚+1
𝑛=2              (By (3.4)) 

                                                     ≤ ∑
𝑝𝑛

𝑃𝑛𝑃𝑛−1
𝑘  ∑

𝜈+1

𝜈
𝑝𝜈  𝑡𝜈  𝑛−1

𝜈=1  
𝑘

𝑚+1
𝑛=2   

                                                     =   𝑂 1 ∑
𝑝𝑛

𝑃𝑛𝑃𝑛−1
∑ 𝑝𝜈  𝑡𝜈  𝑘𝑛−1

𝜈=1
𝑚+1
𝑛=2 ×  

1

𝑃𝑛−1
∑ 𝑝𝜈

𝑛−1
𝜈=1  

𝑘−1

  

                                                     =   𝑂(1) ∑ 𝑝𝜈  𝑡𝜈  𝑘 ∑
𝑝𝑛

𝑃𝑛𝑃𝑛−1

𝑚+1
𝑛=𝜈+1

𝑚
𝜈=1   

                                                     =   𝑂(1) ∑
𝑝𝜈

𝑃𝜈
 𝑡𝜈  𝑘𝑚

𝜈=1   

                                                     =   𝑂(1) ∑
1

𝜈
 𝑡𝜈  𝑘𝑚

𝜈=1       (By (2.1))  

                                                     = 𝑂(1)   as    𝑚 → ∞  

Again consider, 

                        ∑ 𝜃𝑛
𝑘−1 𝑡𝑛2 𝑘 = 𝑂(1) ∑  

𝑃𝑛

𝑝𝑛
 

𝑘−1
 𝑡𝑛2 𝑘𝑚+1

𝑛=2
𝑚+1
𝑛=2       (By (3.4)) 

                                                     =   𝑂(1) ∑  
𝑃𝑛

𝑝𝑛
 

𝑘−1

 
𝑝𝑛

𝑃𝑛 𝑃𝑛−1
∑ 𝑃𝜈

𝑛−1
𝜈=1 𝜈−1|𝑡𝜈 | 

𝑘
𝑚+1
𝑛=2   

                                                     =   𝑂 1 ∑
𝑝𝑛

𝑃𝑛 𝑃𝑛−1
𝑘 {∑ 𝑝𝜈 |𝑡𝜈 |}𝑛−1

𝜈=1
𝑚+1
𝑛=2

𝑘
   (By (2.1)(ii)) 

                                                     =   𝑂 1 ∑
𝑝𝑛

𝑃𝑛 𝑃𝑛−1
∑ 𝑝𝜈  𝑡𝜈  𝑘𝑛−1

𝜈=1
𝑚+1
𝑛=2 ×  

1

𝑃𝑛−1
∑ 𝑝𝜈

𝑛−1
𝜈=1  

𝑘−1

  

                                                     =   𝑂 1 ∑ 𝑝𝜈  𝑡𝜈  𝑘 ∑
𝑝𝑛

𝑃𝑛𝑃𝑛−1

𝑚+1
𝑛=𝜈+1

𝑚
𝜈=1   

                                                     =   𝑂(1) ∑
𝑝𝜈

𝑃𝜈
 𝑡𝜈  𝑘𝑚

𝜈=1   

                                                     =   𝑂(1) ∑
1

𝜈
 𝑡𝜈  𝑘𝑚

𝜈=1       (By (2.1)) 

                                                     =   𝑂(1) as  𝑚 → ∞. 
Finally, we have  

                         ∑ 𝜃𝑛
𝑘−1 𝑡𝑛3 𝑘 = 𝑂(1) ∑  

𝑃𝑛

𝑝𝑛
 

𝑘−1
 𝑡𝑛3 𝑘𝑚

𝑛=1
𝑚
𝑛=1   

                                                     =   𝑂 1 ∑  
𝑃𝑛

𝑝𝑛
 

𝑘−1

|𝑚
𝑛=1  

𝑛+1

𝑛
 

𝑝𝑛

𝑃𝑛
𝑡𝑛

  𝑘   

                                                      =   𝑂 1 
𝑝𝑛

𝑃𝑛
 𝑡𝑛  𝑘  

                                                     =   𝑂 1 
1

𝑛
 𝑡𝑛  𝑘          (By (2.1)) 

                                                     =   𝑂 1         𝑎𝑠  𝑛 → ∞. 

Therefore by (3.8), we get  

                        ∑ 𝜃𝑛
𝑘−1 𝑡𝑛𝑟  𝑘  =   𝑂 1   𝑎𝑠   𝑚 → ∞,𝑚

𝑛=1      for  r = 1,2,3. 

Which completes the  proof of the theorem. 

Remark. It may be noted that condition (2.1) is being discarded from the proof of the first part of the theorem. 

Flett (cf. [7])  has shown that  𝐶, 𝛼 𝑘 ⇒  𝐶, 𝛽 𝑘 , 𝛼 ≥ 1, 𝛽 ≥ 𝛼, 𝛼 > −1. Following corollary is a direct consequence 

of a result due to Flett. 

Corollary 3.1 𝑁 , 𝑝𝑛 , 𝜃𝑛  𝑘 ⊂  𝐶, 𝛽 𝑘  ,    𝛽 ≥ 1,   𝑘 ≥ 1. 
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