

RESEARCH ARTICLE

Detection of CTX-M and CTX-M1 Genes in *Klebsiella* spp. Isolation from Clinical and Environmental Samples in Thi-Qar Province.

Prof. Dr. Yahya A. Abbas¹, Zainab mohammad edi²

1. Nasyhria Technology Institute

2. Collage of Science /Thi-Qar University

Manuscript Info

Manuscript History:

Received: 15 June 2015

Final Accepted: 26 July 2015

Published Online: August 2015

Key words:

*Corresponding Author

Prof. Dr. Yahya A. Abbas

Abstract

The aim of this study was to identify the prevalence of some extended-spectrum β -lactamases genes (ESBLs) (bla_{CTX-M} , bla_{CTX-M1}) in *Klebsiella* spp. isolated from clinical specimens (Burns , wounds , urinary tract infections, respiratory tract infections and otitis media patients and vaginal infection) and hospitals environments . A total of 554 samples (468 clinical and 86 environmental samples) during the period from October 2013 to March 2014 were collected. Only 45(8.1%) samples were gave positive growth for as following: 2/48 (4 %) from burns , 7/40 (17 %) from wounds , 29 /315 (9.20%) from urinary tract infections , 4 / 25 (16%) from respiratory tract infections , 3 /86 (3.48%) from hospitals environments. All the 45 isolates were submitted to molecular detection of some MBLs genes (bla_{CTX-M} , bla_{CTX-M1}) by using PCR technique . The results showed that only 28 (62.22%) isolates were carried these genes. and 21 isolates were carried both genes.

Copy Right, IJAR, 2015,. All rights reserved

INTRODUCTION

Extended-spectrum β -lactamases (ESBLs) resistant Gram-negative bacteria have been associated with increased mortality, long-period of hospitalization and hospital costs (Schwaber *et al.*, 2006). In humans, *Klebsiella* spp. may colonize the skin, pharynx, or gastrointestinal tract, as well as they colonize sterile wounds, urine and may be regarded as normal flora in many parts of the colon, intestinal tract and biliary tract (Podschun and Ullmann 1998 ; Brisse *et al.*, 2006).

Extended spectrum β -lactamases (ESBLs) are a group of enzymes with the ability to hydrolyze and cause resistance to the oxymino- cephalosporins (i.e.cefotaxime, ceftazidime, ceftriaxone, cefuroxime and cefepime) monobactams (i.e. aztreonam) (Peirano and Pitout, 2010).

ESBLs produced mostly by members of Enterobacteriaceae have emerged as serious nosocomial pathogens globally (Moland *et al.*,2002).

Prevalence of ESBL in many parts of the world was (10-40%) among *E. coli* and *Klebsiella pneumoniae* (Rupp and Paul, 2003). The prevalence of ESBLs in Europe is higher than in the USA but lower than in Asia and South America (Girlich *et al.*, 2004). In 2007 in Asia pacific region was found to harbour plasmid borne ESBLs 62% and 75% in *E. coli* and *Klebsiella* spp. respectively (Bell *et al.*, 2007).

In the past several years, the emergence of new variants of ESBL producers, especially CTX-M has suggested the involvement of the co-resistance to other drug classes during endemic condition. This co-resistance is due to the transmission of different types of resistance genes within the same clone. Several studies showed that bla_{CTX-M} genes are commonly found on large plasmids that often carry other genes conferring resistance to other antimicrobial agents including aminoglycosides, fluoroquinolones, chloramphenicols, tetracyclines and others (particularly, bla_{OXA-1} , bla_{TEM-1} , $tetA$, $aac(6')-lber$) (Livermore *et al.*, 2007 ; Harajly *et al.*,2010).

ESBLs of the CTX-M type were rare until the end of the 1980s, but Japan, Argentina and Germany reported almost concomitantly findings of this ESBL type. Predominance of CTX-M B-lactamases may be due to the selective pressure of increased use of ceftriaxone (Pinheiro *et al.*, 2008 ; Samaha-Kfouri and Araj, 2003).

The genes encoding CTX-Ms have been mobilised from *Klyviera* spp. by several genetic events and mechanisms (Perez *et al.*, 2007). With the emergence of the CTX-M, there has been a marked shift in the epidemiology of ESBLs (Coque *et al.*, 2008).

CTX-M type ESBLs typically hydrolyze Cefotaxime and Ceftriaxone more efficiently than Ceftazidime but point mutations around the active site belonging to the CTX-M-1 and CTX-M-9 groups having ability to hydrolyze Ceftazidime significantly (Pitout, 2010).

CTX-M B-lactamases (i.e. 'active on CefoTaXime, first isolated in Munich') were first reported from Japan in 1986 (the enzyme was initially named TOHO-1 and was later changed to CTX-M) (Matsumoto *et al.*, 1988). More than 80 CTX-M enzymes are currently known, they are currently divided into 5 clusters on the basis of amino acid sequence: CTX-M-1, CTX-M-2, CTX-M-8, CTX-M-9 and CTX-M-25 (Al-Agamy *et al.* 2009 ; Smet *et al.*, 2010). named after the enzyme first discovered for each lineage (Pagani *et al.*, 2003). Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 belongs to the CTX- M-1 cluster and is derived from CTX-M-3 by one amino acid substitution at position 240 (Asp→Gly); however, the flanking sequences of the β-lactamases can be very different (Peirano and pitout, 2010).

Materials and Methods

1-Kit :-

In the present study used DNA Extraction kit (Geneaid / Korea) and KAPA2G Robust hot start Ready Mix PCR kit (Kapa /USA.)

2-Molecular Weight Marker

The molecular weight marker used in this study for DNA has been from Kapa (U.S.A). The range of the marker was 100bp-1 Kp.

3-Primers

The primers used in this study listed in Table(1)bellow :

Polymerase Chain Reaction Assay

Preparation of Buffers and Stains (Sambrook *et al*., 1989).

1- Tris- Borate-EDTA (TBE) 5X

Prepared by dissolving of Tris-acid (54.0) gm. , Boric acid (27.5) gm., and EDTA (3.72) gm. in 800 ml of D.D.W. pH 8, and the volume completed to 1L with D. D.W.

2- TBE (1X)

This buffer was prepared by mixing 5 ml of stock TBE -5X with 45 ml of D.D.W., and stored at 4C° until used in.

3-DNA loading buffer

Bromophenol blue	25 mg
Xylene Xyanol	25 mg
Sucrose	4 g
D.W.	10 ml

4-Ethidium bromide (0.5%)

A stock solution has been prepared by dissolving 0.05 gm. of Ethidium bromide stain in 10 ml of D.D.W, then mixed by vortex for complete dissolving, and stored in sterile dark bottle. It has been used in the electrophoresis as specific DNA stain.

Detection of *bla* – genes by PCR assay

1- DNA extraction and purification

The DNA was extracted and purified according to the instructions of the company (Geneaid / Korea).

2- DNA Amplification by PCR

PCR reaction mixture consisted of : 12.5 μ l 2X KAPA2G Robust HotStart ReadyMix² contains KAPA2G Robust HotStart DNA polymerase (1 U per 25 μ l reaction) in a proprietary reaction buffer containing dNTPs (0.2mM of each dNTPs at 1X), MgCl₂ (2 mM at 1X) , reaction buffer pH 8.5, 1.25 μ l of (100 pmole) of each primer (upstream and downstream) , 2 μ l of DNA template (<100 ng) and 8 μ l of nuclease free water in a total volume of 25 μ l . The amplification program of bla-genes was done by simplex PCR (Table 2-7) and (Table 2-8) . The resulting PCR products has been run on 1.4% agarose gels.

3-Agarose gel electrophoresis

The agarose gel was prepared according to the method of Sam-brook *et al.*, (1989).Two concentrations of agarose gel were prepared (1.4% and 2%). The concentration of 1.4% agarose was used in the electrophoresis after DNA extraction process, while 2 % agarose was used for bla gene detection by PCR. A 25ml of 1X TBE buffer and 0.2 μ l ethidium bromide were added into a beaker, 0.25 g agarose was added to the buffer. The mixture was heated for boiling by hot plate until all gel particles were dissolved and allowed to cool down to 50-60°C.

4-Casting of the agarose gel

- .The gel was assembled to a casting tray and the comb was positioned at one end of the tray.
- .The agarose solution was poured into the gel tray and allowed to cool at room temperature for 30 min.
- . The comb was carefully removed and the gel replaced electrophoresis chamber. The chamber then filled with TBE – electrophoresis buffer until it reaches 3–5 mm over the surface of the gel.

5-Loading and running DNA in agarose gel

- . DNA (6 μ l) was mixed with (3 μ l) bromophenol blue (loading buffer) and loaded in the wells of the 1.4% agarose gel.

.The cathode was connected to the well side of the unit and the anode to the other side.

.The gel was run at 60 V for 90 min until the bromophenol blue tracking dye migrated to the end of the gel.

.The DNA was observed and viewed under UV transilluminator.

Results

Table (1): Primers sequences used for genes amplification.

Gene name	primers Sequences (5'-3')		Product Size bp	Reference
CTX-M	F	TTT GCG ATG TGC AGT ACC AGT AA		(Edelstein,pimkin <i>et al.</i> ,2003)
	R	CGA TAT CGT TGG TGG TGC CAT A		
CTX-M1	A	CTT CCA GAA TAA GGA ATC		(Dutour,Bonnet <i>et al.</i> ,2002)
	B	CCG TTT CCG CTA TTA CAA		

F : forward, R : reverse, A. adenine, C. cytosine, G. guanine, T. thymine

Table (2): PCR condition of CTX-M1 (β -Lactamase genes) (Tabbouche *et al.*,2011)

St. No.	Step	Temperature (°C)	Time	Number of Cycles
I	Initial Denaturation	94	10 min	1
II	Denaturation	94	1 min.	30
	Annealing	48	1 min.	
	Extension	72	1 min.	
III	Final Extension	72	7 min.	1

Table (3): PCR condition of CTX-M (β -Lactamase genes) (Arunagiri *et al.*,2013)

St. No.	Step	Temperature (°C)	Time	Number of Cycles
I	Initial Denaturation	94	2 min	1
II	Denaturation	95	1 min.	35
	Annealing	51	1 min.	
	Extension	72	1 min.	
III	Final Extension	72	3 min.	1

Simplex PCR assay has been used to detect the presence of Extended- β -lactamases genes (bla_{CTX-M1} , bla_{CTX-M}) in *K.pneumonia* subsp. *pneumonia* and *K.oxytoca* isolated in the present study.

A total of 27, isolates of *Klebsiella pneumoniae* subsp. *pneumoniae* showed carry bla_{CTX-M1} gene (clinical isolates), and one isolate of *Klebsiella oxytoca* was carry bla_{CTX-M1} gene (clinical isolate). (table-4 and fig-1).

Also the result showed, 25 isolates of *Klebsiella pneumoniae* subsp. *pneumoniae* were carry bla_{CTX-M} gene (24 clinical isolates +1 environmental isolate), and 3 isolates of *Klebsiella oxytoca* were carry bla_{CTX-M} gene (2 clinical isolates +1 environmental isolate) (table-5 and fig-2).

Molecular weight of the CTX-M1 gene (544bp),CTX-M gene (840bp)

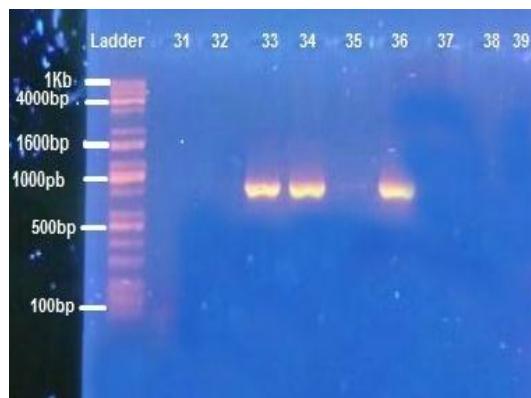

These genes are encoding for enzymes confer higher level resistance to cefotaxime, ceftriaxone and aztreonam than to ceftazidime.

Table (4):show the result of CTX-M1 gene in *Klebsiella* isolates

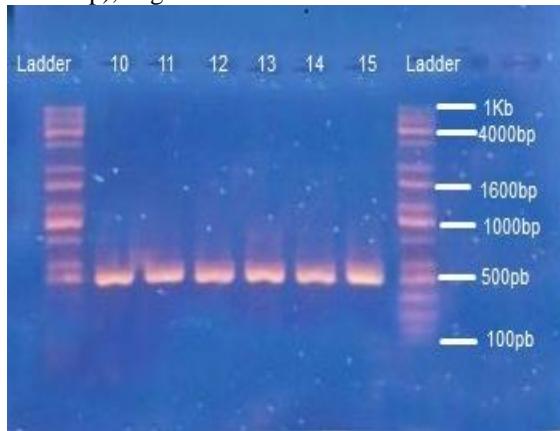

Bacterial type	CTX-M1 gene
<i>Klebsiella pneumoniae</i> subsp. <i>pneumoiniae</i> (Clinical isolate)	27
<i>Klebsiella oxytoca</i> (Clinical isolate)	1
Total	28

Table (5):show the result of CTX-M1 gene in *Klebsiella* isolates

Bacterial type	CTX-M gene
<i>Klebsiella pneumoniae</i> subsp. <i>pneumoiniae</i> (Clinical isolate)	24
<i>Klebsiella pneumoniae</i> subsp. <i>pneumoiniae</i> (environmental isolate)	1
<i>Klebsiella oxytoca</i> (Clinical isolate)	2
<i>Klebsiella oxytoca</i> (environmental isolate)	1
Total	28

Figure(1): PCR amplification bla_{CTX-M1} (840bp) of *Klebsiella pneumoniae* sub spp. *Pneumoniae* (lane 31-38) and *Klebsiella oxytoca* (lane 39) Ladder (100-10000 bp), Agarose 1.4%.

Figure(2): PCR amplification bla_{CTX-M} (544bp) of *Klebsiella pneumoniae* sub spp. *Pneumoniae* Ladder (100-10000 bp). Agarose 1.4%

DISSCUSION

Polymerase chain reaction(PCR) is considered the best efficacy method for ESBLs detection because it is faster than phenotypic detection method (Chiangjong,2006) ,and also detect the existence of poorly or non-expressed (silent) genes difficult to determine by phenotype; PCR may also be used to directly test patient samples as an early predictor of infection (Diekema *et al.*,2004). In addition , each plasmid may contain more than one gene that may encode for different types of ESBLs enzyme. Furthermore , the spread of most broad-spectrum β -lactamases is facilitated by transferable and transconjugable plasmids, which frequently carry other resistance genes by means of their integron architecture (Jacoby and Munoz-Price,2005).

In the present study, from the 45 isolates of *Klebsiella* spp. Only 28 (62.22) have been positive for the presence of genes bla_{CTX-M} and bla_{CTX-M1} . Result presented in this work is disagreement with Jemima & Susan (2008) from India , they have reported 25 of 62 (40%) *Klebsiella* species for bla_{CTX-M} gene .and with result of study Azar *et al.*, (2013) who showed low percentagethan this study.

In the present study, it has been shown that isolates which carry the genes (bla_{CTX-M} and bla_{CTX-M1}) were resistance to cefotaxime. and the isolates which carry one gene (bla_{CTX-M} or bla_{CTX-M1}) were resistance to cefotaxime .while the isolates that don't carry bla_{CTX-M} , bla_{CTX-M1} were sensitive to cefotaxime.

The elevated rate of CTX-M β -lactamases among *E. coli* and *Klebsiella* spp. isolates suggest that the horizontal transfer of bla_{CTX-M} genes, mediated by plasmids and /or mobile elements, contributes to ease with which these enzymes are spreading in *E. coli* and *K. pneumoniae* isolates and the dissemination of CXT-M enzymes. Moreover, in hospital environment, plasmids could be transferred easily between bacteria through health care workers due to hand carriage and antimicrobial selection pressure,(Al-Hilli,2010).

European studies on Enterobacteriaceae have also confirmed the persistence of strains producing TEM and SHV, and the increasing prevalence of strains producing CTX-M (Ruppé,2010). The prevalence of ESBL productions revealed a significant geographical differences, ranging from 0% (Iceland) to less than 1% (Estonia) to 41% for *E. coli* and 91% for *K. pneumonia* (Romania) (Coque *et al.*,2008).

The CTX-M gene predominates in Europe, while in other countries, the ESBL genes are more diverse (Livermore *et al.*,2007) . In the United Kingdom, a dramatic increase of the ESBL producing strains was observed both in the hospitals and in the community, and this increase is attributed to CTX-M-15 (Coque *et al.*,2008) . In Norway and Portugal, the CTX-M is the ESBL enzyme most frequently found in *E. coli* (Tofteland *et al.*,2007; Machado *et al* ., 2007).

The major prevalence of ESBLs was attributed first to *K. pneumonia* strains which have produced TEM and SHV, and then followed by the emergence of *E. coli* strains producers of CTXM which become the prevalent type (Kanj *et al.*, 2008; Daoud and Hakime,2003).

Conclusions

PCR is a molecular method used for detection of ESBLs genes. The *bla*_{CTX-M} and *bla*_{CTX-M1} were showed high prevalence in the tested isolates 28(62.22%)for these genus.

References

Al-Agamy, M.H. ; Shible, A.M. and Tawfik, A.F. (2009). Prevalence and molecular characterization of extended spectrum β -lactamase- producing *Klebsiella Pneumoniae* in Riyadh, Saudi-Arabia, Annals of Saudi Medicine ., 29(4) : 253-257.

Arunagiri, K. ; Aparna, V. ; Menaka, K. and Sekar, B.(2013). Characterization of ESBLs and *ISEcpI* insertion sequences from *Klebsiella pneumoniae* and *Escherichia coli*. in a tertiary hospital in India . International Journal of Pharmacy and Pharmaceutical Sciences., 5:654-658.

Azar, D. ; Hoveizavi, H. and Mehdinejad, M. (2013). prevalence of *Klebsiella pneumoniae* Encoding Genes CTX-M1 ,TEM-1 and SHV1Extended-Spectrum Beta Lactamases (ESBL) Enzymes in Clinical specimens. Jundishapur Journal Microbiology.,6(10):1-5.

Al-Hilli, Z.(2010).Dissemination of β -lactamases in *Escherichia coli* and *Klebsiella* spp. Isolated from Merjan teaching Hospital in Hilla City M.SC. Thesis College of science .Kufa University.

Brisse, S., Grimont, F. & Grimont, P. A. D. (2006). The genus Klebsiella. In The Prokaryotes: A Handbook on the Biology of Bacteria, 3rd edn., 6: 159–196. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt. New York: Springer.

Bell, J.M.; Chitsaz, M. ; Turnidge, JD.; Barton, M.;Walters, LJ.; and Jones, RN. (2007) Prevalence and Significance of a Negative Extended-Spectrum β -Lactamase (ESBL) Confirmation Test Result after a Positive ESBL Screening Test Result for Isolates of *Escherichia coli* and *Klebsiella pneumoniae*: Results from the SENTRY Asia-Pacific Surveillance Program, Journal of Clinical Microbiology ., 45(5) : 1478-1482.

Coque, T.M. ; Baquero, F. and Canton, R.(2008). Increasing prevalence of ESBL producing Enterobacteriaceae in Europe. Eurosurveillance.,13 (47).

Chiangjong, W.(2006).Study of extended-spectrum beta-lactamase (ESBLs) producing *Klebsiella pneumoniae*: phenotypic and genotypic characteristics. M.Sc. Thesis. Mahidol University

Diekema,D.J;BootsMiller,B.J.;Vaughn,T.E.Woolson,R.F.;Yankey,J.W.;Ernst,E.J.;Flach,S.D.;Ward,M.M.;Franciscus,C.L.;Pfaller,M .A. and Doebbeling, B.N.(2004). Antimicrobial resistance trends and outbreak frequency in United States hospitals. Clinical Infectious Disease.,38(1):78-85.

Daoud, Z. and Hakime, N.(2003). Prevalence and susceptibility patterns of extended-spectrum β -lactamase producing *Escherichia coli* and *Klebsiella pneumoniae* in a general university hospital in Beirut, Lebanon. *Revista Espanola de Quimioterapia.*, 16:233-238.

Dutour, C. ; Bonnet, R. ; Marchandin, H. ; Boyer, M. ; Chanal, C. ; Sirot, D. and Sirot, J. (2002). CTX-M-1, CTX-M-3, and CTX-M14 β -lactamases from Enterobacteriaceae isolated in France. *Antimicrobial Agents Chemotherapy.*, 46: 534-537.

Edelstein, M. ; Pimkin, M. ; Palagin, I. ; Edelstein, I. and Stratchounski, L. (2003). Prevalence and molecular epidemiology of CTX-M extended-spectrum β -lactamaseproducing *E. coli* and *K. pneumoniae* in Russian hospitals. *Antimicrobial Agents Chemotherapy.*, 47: 3724-3732.

Girlich, D. ; Naas, T. and Nordmann, P. (2004) Biochemical Characterization of the Naturally Occuring Oxacillinase OXA-50 of *Pseudomonas aeruginosa*. *Antiicrobrial, Agents and Chemotherapy.*, 48(6): 2043-2048.

Haque, R. and Salam, MA. (2010). Detection of ESBL producing nosocomial gram negative bacteria from a tertiary care hospital in Bangladesh, Pk Journal Medical Science ., 26(4) : 887-891.

Harajly, M. ; Khairallah, M.T. ; Corkill, J.E. ; Araj, G.F. and Matar, G.M. (2010). Frequency of conjugative transfer of plasmid encoded ISEcp1-*bla* CTX-M-15. and *aac*(6')-lb-cr genes in Enterobacteriaceae at a tertiary care center in Lebanon - role of transferases. *Annals Clinical Microbiology Antimicrobial.*, 9:19.

Janda, J. and Abbott, S. (2006). The Genera *Klebsiella* and *Raoultella*. *The Enterobacteria* (2nd ed) Washington, USA. ASM Press., PP. 115-129.

Jacoby, GA. and Munoz-Price, L.S.(2005).The New β -Lactamase ; The New England Journal of Medical.,352(4):380-391.

Jemima, S.A. and Susan, V. (2008) Multiplex PCR for *bla*_{CTX-M} and *bla*_{SHV} in the extended spectrum beta lactamase (ESBL) producing Gram-negative isolates. *Indian Journal of Medical Res.*,313-317.

Kanj, S.S. ; Corkill, J.E. ; Kanafani, Z.A. ; Araj, G.F. ; Hart, C.A. ;Jaafar, R. and Matar, G.M.(2008). Molecular characterisation of extended spectrum β -lactamase-producing *Escherichia coli* and *Klebsiella* spp. isolates at a tertiary-care center in Lebanon. *Eur Journal of Clinical Microbiology Infectious Disease.*, 14: 501-504.

Livermore, D.M. ; Canton, R. and Gniadkowski, M. (2007) CTX-M changing the face of ESBLs in Europe. *Journal of Antimicrobial Chemotherapy.*, 59:165-174.

Moland, S.E. ; Black, J.A. Ourada, J. Reisbig, M.D. Hanson, N.D. And Thomson, K.S.(2002) Occurrence of newer B-lactamases in *Klebsiella pneumoniae* isolates from 24 U.S hospitals. *Antimicrobial Agents Chemotherapy.*,46:3837- 3842.

Machado, E. ; Coque ,T.M. ; Canton, R. ; Novais, A. ; Sousa, J.C. and Baquero, F.(2007). High diversity of extended-spectrum β -lactamases among clinical isolates of Enterobacteriaceae from Portugal. *Journal of Antimicrobial Chemotherapy.*, 60:1370-1374.

Podschun, R., and Ullmann, U. (1998). *Klebsiella* spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. *Clinical Microbiology Reviews*, 11(4), 589-603.

Peirano, G.; Pitout, J.D.D. (2010). Molecular epidemiology of *Escherichia coli* producing CTX-M B-Lactamases : worldwide emergence of clone ST131 025:H4.*International journal of Antimicrobial Agents.* , 35 : 316-321.

Pinheiro, M.R.S. ; Lacerda, H.R. ; Melo, RGL. and Maciel, M.A. (2008). *Pseudomonas aureginosa* Infections : Factors Relating to Mortality with Emphasis on Resistance Pattern and Antimicrobial treatment, *The Brazilian Journal of Infectious Diseases* ., **12**(6):509-515.

Perez, F. ; Endimiani, A. ; Hujer, K.M. and Bonomo, R.A.(2007). The continuing challenge of ESBLs. *Current Opinion in Pharmacology* .,7(5): 459-469 .

Pitout, J.D. (2010). Infections with extended-spectrum beta-lactamaseproducing enterobacteriaceae: changing epidemiology and drug treatment choices, *Drugs* ., **70**(3) : 313-33.

Pagani, L. ; Amico, E.D. ; Migliavacca, R. ; D'Andrea, MM. ;Giacobone, E. ; Amicosante, G. ; Romero, E. and Rossolini, GM.(2003). Multiple CTX-M-Type Extended-Spectrum B-Lactamases in Nosocomial Isolates of *Enterobacteriaceae* from a Hospital in Northern Italy, *Journal of Clinical Microbiology* ., **41**(9): 4264-4269.

Rupp, M.E. and Paul, D.(2003). 'Extended Spectrum B-Lactamase (ESBL) Producing Enterobacteriaceae,' *Drugs* ., **63**(4) : 353-356.

Ruppé, E.(2010) Epidémiologie des β -lactamases à spectre élargi: l'avènement des CTX-M. *Antibiotiques*., **12**:3-16.

Schwaber, M. J. ; Navon-Venezia, S. ; Kaye, K. S. ; Ben-Ami, R. ; Schwartz, D. and Carmeli, Y. (2006). Clinical and economic impact of bacteremia with extended spectrum β -lactamaseproducing Enterobacteriaceae. *Antimicrobial Agents Chemotherapy*., **50**:1257-1262.

Samaha-Kfoury, J.N. and Araj, G.F. (2003). Recent developments in β -lactamases and extended spectrum β -lactamases, *Bairut Medical Journal* ., **327**(22):1209-1213.

Smet, A. ; Van Nieuwerburgh, F. ; Vandekerckhove, TTM. ; Martel, A. Deforce, D. et al., (2010). Complete Nucleotide Sequence of CTX-M-15 Plasmids from Clinical *Escherichia coli* Isolates Insertional Events of Transposons and Insertion Sequences, *PLoS.ONE* ., **5**(6):e11202

Tabbouche, S.; Khudary, R. ; Beyrouthy, R.; Daboussi, F. ; Achkar, M. Mallat, H. ; Hlais, S. and Hamze, M.(2011).Detection of genes TEM, OXA, SHV and CTX-M in 73 clinical isolates of *Escherichia coli* producers of extended spectrum Betalactamases and determination of their susceptibility to antibiotics. *The International Arabic Journal of Antimicrobial Agent* ., **1** :1-6.

Tofteland, S. ; Haldorsen, B. ; Dahl, K.H. ; Simonsen, G.S. ;Steinbakk, M. and Walsh, T.R. (2007). Effects of phenotype and genotype on methods for detection of extended spectrum β lactamase producing clinical isolates of *Escherichia coli* and *Klebsiella pneumoniae* in Norway. *Journal of Clinical Microbiology*., **45**:199-205.